Version 41.3 by Xiaoling on 2023/05/16 10:41

Hide last authors
Xiaoling 41.2 1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
Edwin Chen 2.1 3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
Edwin Chen 5.1 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 18
Edwin Chen 4.1 19 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 20
21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 23
24
Edwin Chen 4.1 25 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 26
27
Edwin Chen 4.1 28 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 29
30
Edwin Chen 4.1 31 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 32
Edwin Chen 4.1 33
Edwin Chen 2.1 34 == 1.2 ​Features ==
35
36 * LoRaWAN 1.0.3 Class A
37 * Ultra-low power consumption
Edwin Chen 5.1 38 * Open-Source hardware/software
Edwin Chen 2.1 39 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
40 * Support Bluetooth v5.1 and LoRaWAN remote configure
41 * Support wireless OTA update firmware
42 * Uplink on periodically
43 * Downlink to change configure
44 * 8500mAh Battery for long term use
45
46 == 1.3 Specification ==
47
48 (% style="color:#037691" %)**Common DC Characteristics:**
49
50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
51 * Operating Temperature: -40 ~~ 85°C
52
Edwin Chen 5.1 53 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 54
Edwin Chen 5.1 55 * Battery output (2.6v ~~ 3.6v depends on battery)
56 * +5v controllable output
57 * 3 x Interrupt or Digital IN/OUT pins
58 * 3 x one-wire interfaces
59 * 1 x UART Interface
60 * 1 x I2C Interface
Edwin Chen 2.1 61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Battery:**
70
71 * Li/SOCI2 un-chargeable battery
72 * Capacity: 8500mAh
73 * Self-Discharge: <1% / Year @ 25°C
74 * Max continuously current: 130mA
75 * Max boost current: 2A, 1 second
76
77 (% style="color:#037691" %)**Power Consumption**
78
79 * Sleep Mode: 5uA @ 3.3v
80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81
82 == 1.4 Sleep mode and working mode ==
83
84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
Edwin Chen 5.1 111 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
Edwin Chen 6.1 123 == 1.7 Pin Definitions ==
Edwin Chen 2.1 124
125
Saxer Lin 36.1 126 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
Edwin Chen 5.1 139 == Hole Option ==
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
Edwin Chen 10.1 148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 149
150 == 2.1 How it works ==
151
152
Edwin Chen 11.2 153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
Edwin Chen 11.2 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 165
Edwin Chen 11.2 166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 167
Edwin Chen 11.2 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
Edwin Chen 11.2 195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 196
197
Edwin Chen 11.2 198 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
Edwin Chen 11.2 210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
Edwin Chen 11.2 223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
Edwin Chen 12.1 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 277
278
Edwin Chen 12.1 279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
Edwin Chen 13.1 286 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 291
Edwin Chen 13.1 292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 293
294 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
295
Saxer Lin 40.1 296 (% style="width:1110px" %)
297 |**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
298 |**Value**|Bat|(% style="width:191px" %)(((
Saxer Lin 26.2 299 Temperature(DS18B20)
Edwin Chen 12.1 300
Saxer Lin 26.2 301 (PC13)
Saxer Lin 40.1 302 )))|(% style="width:78px" %)(((
Saxer Lin 26.2 303 ADC
304
305 (PA4)
306 )))|(% style="width:216px" %)(((
Saxer Lin 36.1 307 Digital in(PB15) &
Saxer Lin 26.2 308
Saxer Lin 36.1 309 Digital Interrupt(PA8)
310
Saxer Lin 26.2 311
Saxer Lin 40.1 312 )))|(% style="width:308px" %)(((
Saxer Lin 36.1 313 Temperature
Saxer Lin 26.2 314
Saxer Lin 36.1 315 (SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 316 )))|(% style="width:154px" %)(((
Saxer Lin 36.1 317 Humidity
318
319 (SHT20 or SHT31)
320 )))
321
Edwin Chen 12.1 322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323
324
Edwin Chen 13.1 325 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326
Edwin Chen 12.1 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
Saxer Lin 40.1 329 (% style="width:1011px" %)
330 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
331 |**Value**|BAT|(% style="width:196px" %)(((
Edwin Chen 12.1 332 Temperature(DS18B20)
Saxer Lin 36.1 333
334 (PC13)
Saxer Lin 40.1 335 )))|(% style="width:87px" %)(((
Saxer Lin 36.1 336 ADC
337
338 (PA4)
Saxer Lin 40.1 339 )))|(% style="width:189px" %)(((
Saxer Lin 36.1 340 Digital in(PB15) &
341
342 Digital Interrupt(PA8)
Saxer Lin 40.1 343 )))|(% style="width:208px" %)(((
Edwin Chen 12.1 344 Distance measure by:
345 1) LIDAR-Lite V3HP
346 Or
347 2) Ultrasonic Sensor
Saxer Lin 40.1 348 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 349
350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
351
352 **Connection of LIDAR-Lite V3HP:**
353
Saxer Lin 26.2 354 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 355
356 **Connection to Ultrasonic Sensor:**
357
Saxer Lin 36.1 358 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
359
Saxer Lin 26.2 360 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 361
362 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
363
Saxer Lin 40.1 364 (% style="width:1113px" %)
365 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
366 |**Value**|BAT|(% style="width:183px" %)(((
Edwin Chen 12.1 367 Temperature(DS18B20)
Saxer Lin 36.1 368
369 (PC13)
Saxer Lin 40.1 370 )))|(% style="width:173px" %)(((
Saxer Lin 36.1 371 Digital in(PB15) &
372
373 Digital Interrupt(PA8)
Saxer Lin 40.1 374 )))|(% style="width:84px" %)(((
Saxer Lin 36.1 375 ADC
376
377 (PA4)
Saxer Lin 40.1 378 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 379 Distance measure by:1)TF-Mini plus LiDAR
380 Or 
381 2) TF-Luna LiDAR
Saxer Lin 40.1 382 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 383
384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
385
386 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
387
Saxer Lin 36.1 388 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 389
Saxer Lin 26.2 390 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 391
392 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
393
Saxer Lin 36.1 394 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 395
Saxer Lin 36.1 396 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 397
398
Edwin Chen 13.1 399 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
400
Edwin Chen 12.1 401 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
402
Saxer Lin 36.1 403 (% style="width:1031px" %)
Edwin Chen 12.1 404 |=(((
405 **Size(bytes)**
Saxer Lin 36.1 406 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
Saxer Lin 26.2 407 |**Value**|(% style="width:68px" %)(((
Saxer Lin 36.1 408 ADC1
Saxer Lin 26.2 409
Saxer Lin 36.1 410 (PA4)
Saxer Lin 26.2 411 )))|(% style="width:75px" %)(((
412 ADC2
413
Saxer Lin 36.1 414 (PA5)
415 )))|(((
416 ADC3
Edwin Chen 12.1 417
Saxer Lin 36.1 418 (PA8)
419 )))|(((
420 Digital Interrupt(PB15)
421 )))|(% style="width:304px" %)(((
422 Temperature
Edwin Chen 12.1 423
Saxer Lin 36.1 424 (SHT20 or SHT31 or BH1750 Illumination Sensor)
425 )))|(% style="width:163px" %)(((
426 Humidity
Edwin Chen 12.1 427
Saxer Lin 36.1 428 (SHT20 or SHT31)
429 )))|(% style="width:53px" %)Bat
430
431 [[image:image-20230513110214-6.png]]
432
433
Edwin Chen 13.1 434 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
435
Edwin Chen 12.1 436
Saxer Lin 26.2 437 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 438
Saxer Lin 26.2 439 (% style="width:1017px" %)
440 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
441 |**Value**|BAT|(% style="width:186px" %)(((
442 Temperature1(DS18B20)
443 (PC13)
444 )))|(% style="width:82px" %)(((
445 ADC
Edwin Chen 12.1 446
Saxer Lin 26.2 447 (PA4)
448 )))|(% style="width:210px" %)(((
Saxer Lin 36.1 449 Digital in(PB15) &
Edwin Chen 12.1 450
Saxer Lin 36.1 451 Digital Interrupt(PA8) 
Saxer Lin 26.2 452 )))|(% style="width:191px" %)Temperature2(DS18B20)
453 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
454 (PB8)
Edwin Chen 12.1 455
456 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
457
Saxer Lin 39.2 458 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 459
Saxer Lin 39.1 460
Edwin Chen 13.1 461 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
462
Saxer Lin 26.2 463 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 464
465 Each HX711 need to be calibrated before used. User need to do below two steps:
466
467 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
468 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
469 1. (((
Saxer Lin 26.2 470 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 471 )))
472
473 For example:
474
Saxer Lin 26.2 475 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 476
477 Response:  Weight is 401 g
478
479 Check the response of this command and adjust the value to match the real value for thing.
480
Saxer Lin 40.1 481 (% style="width:767px" %)
Edwin Chen 12.1 482 |=(((
483 **Size(bytes)**
Saxer Lin 40.1 484 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
485 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 486 Temperature(DS18B20)
Edwin Chen 12.1 487
Saxer Lin 26.2 488 (PC13)
489
490
Saxer Lin 40.1 491 )))|(% style="width:85px" %)(((
Saxer Lin 36.1 492 ADC
Saxer Lin 26.2 493
494 (PA4)
Saxer Lin 40.1 495 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 496 Digital in(PB15) &
Saxer Lin 26.2 497
Saxer Lin 36.1 498 Digital Interrupt(PA8)
Saxer Lin 40.1 499 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 500
Edwin Chen 12.1 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
502
503
Edwin Chen 13.1 504 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
505
Edwin Chen 12.1 506 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
507
508 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
509
Saxer Lin 26.2 510 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 511
Saxer Lin 36.1 512 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
Edwin Chen 12.1 513
Saxer Lin 36.1 514 (% style="width:961px" %)
515 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
516 |**Value**|BAT|(% style="width:256px" %)(((
517 Temperature(DS18B20)
Edwin Chen 12.1 518
Saxer Lin 36.1 519 (PC13)
520 )))|(% style="width:108px" %)(((
521 ADC
522
523 (PA4)
524 )))|(% style="width:126px" %)(((
525 Digital in
526
527 (PB15)
528 )))|(% style="width:145px" %)(((
529 Count
530
531 (PA8)
532 )))
533
Edwin Chen 12.1 534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
535
536
Edwin Chen 13.1 537 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
538
Saxer Lin 40.1 539 (% style="width:1108px" %)
Edwin Chen 12.1 540 |=(((
541 **Size(bytes)**
Saxer Lin 40.1 542 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
543 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 544 Temperature(DS18B20)
Edwin Chen 12.1 545
Saxer Lin 36.1 546 (PC13)
Saxer Lin 40.1 547 )))|(% style="width:83px" %)(((
Saxer Lin 36.1 548 ADC
549
550 (PA5)
Saxer Lin 40.1 551 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 552 Digital Interrupt1(PA8)
Saxer Lin 40.1 553 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 554
555 [[image:image-20230513111203-7.png||height="324" width="975"]]
556
Edwin Chen 13.1 557 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
558
Saxer Lin 40.1 559 (% style="width:922px" %)
Edwin Chen 12.1 560 |=(((
561 **Size(bytes)**
Saxer Lin 40.1 562 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
Saxer Lin 36.1 563 |**Value**|BAT|(% style="width:207px" %)(((
564 Temperature(DS18B20)
565
566 (PC13)
567 )))|(% style="width:94px" %)(((
568 ADC1
569
570 (PA4)
571 )))|(% style="width:198px" %)(((
572 Digital Interrupt(PB15)
573 )))|(% style="width:84px" %)(((
574 ADC2
575
576 (PA5)
Saxer Lin 40.1 577 )))|(% style="width:82px" %)(((
Saxer Lin 36.1 578 ADC3
579
580 (PA8)
Edwin Chen 12.1 581 )))
582
Saxer Lin 36.1 583 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 584
585
Edwin Chen 13.1 586 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
587
Saxer Lin 36.1 588 (% style="width:1010px" %)
Edwin Chen 12.1 589 |=(((
590 **Size(bytes)**
Saxer Lin 36.1 591 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
Edwin Chen 12.1 592 |**Value**|BAT|(((
Saxer Lin 36.1 593 Temperature1(DS18B20)
594
595 (PC13)
Edwin Chen 12.1 596 )))|(((
Saxer Lin 36.1 597 Temperature2(DS18B20)
598
599 (PB9)
Edwin Chen 12.1 600 )))|(((
Saxer Lin 36.1 601 Digital Interrupt
602
603 (PB15)
604 )))|(% style="width:193px" %)(((
605 Temperature3(DS18B20)
606
607 (PB8)
608 )))|(% style="width:78px" %)(((
609 Count1
610
611 (PA8)
612 )))|(% style="width:78px" %)(((
613 Count2
614
615 (PA4)
Edwin Chen 12.1 616 )))
617
Saxer Lin 36.1 618 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 619
620 **The newly added AT command is issued correspondingly:**
621
Saxer Lin 36.1 622 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
Edwin Chen 12.1 623
Saxer Lin 36.1 624 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
Edwin Chen 12.1 625
Saxer Lin 36.1 626 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
Edwin Chen 12.1 627
628 **AT+SETCNT=aa,bb** 
629
Saxer Lin 36.1 630 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 631
Saxer Lin 36.1 632 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 633
634
Edwin Chen 14.1 635
636 === 2.3.3  ​Decode payload ===
637
Edwin Chen 12.1 638 While using TTN V3 network, you can add the payload format to decode the payload.
639
640 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
641
642 The payload decoder function for TTN V3 are here:
643
Edwin Chen 14.1 644 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 645
646
Edwin Chen 14.1 647 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 648
Edwin Chen 14.1 649 Check the battery voltage for SN50v3.
Edwin Chen 2.1 650
651 Ex1: 0x0B45 = 2885mV
652
653 Ex2: 0x0B49 = 2889mV
654
655
Edwin Chen 14.1 656 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 657
Edwin Chen 14.1 658 If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 659
Edwin Chen 14.1 660 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
661
662 **Connection:**
663
Saxer Lin 26.2 664 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 665
Edwin Chen 2.1 666 **Example**:
667
668 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
669
670 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
671
672 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
673
674
Edwin Chen 14.1 675 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 676
Saxer Lin 26.2 677 The digital input for pin PB15,
Edwin Chen 2.1 678
Saxer Lin 26.2 679 * When PB15 is high, the bit 1 of payload byte 6 is 1.
680 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 681
Saxer Lin 26.2 682 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
683 (((
Saxer Lin 36.1 684 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
685
686 **Note:**The maximum voltage input supports 3.6V.
Saxer Lin 26.2 687 )))
688
Edwin Chen 14.1 689 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 690
Saxer Lin 36.1 691 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 692
Saxer Lin 36.1 693 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 694
Saxer Lin 26.2 695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 696
Saxer Lin 36.1 697 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
Edwin Chen 14.1 698
699 ==== 2.3.3.5 Digital Interrupt ====
700
Saxer Lin 36.1 701 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 702
703 **~ Interrupt connection method:**
704
Saxer Lin 36.1 705 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 706
707 **Example to use with door sensor :**
708
709 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
710
711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
712
Saxer Lin 36.1 713 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 714
715 **~ Below is the installation example:**
716
Saxer Lin 36.1 717 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 718
719 * (((
Saxer Lin 36.1 720 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 721 )))
722 * (((
Saxer Lin 36.1 723 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 724 )))
725
Saxer Lin 36.1 726 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 727
728 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
729
Saxer Lin 36.1 730 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 731
732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
733
734 The above photos shows the two parts of the magnetic switch fitted to a door.
735
736 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
737
738 The command is:
739
Saxer Lin 36.1 740 **AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 741
742 Below shows some screen captures in TTN V3:
743
744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
745
746 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
747
748 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
749
750
Saxer Lin 26.2 751 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 752
Saxer Lin 26.2 753 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 754
Saxer Lin 40.1 755 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 756
Saxer Lin 40.1 757 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 758
759 Below is the connection to SHT20/ SHT31. The connection is as below:
760
761
Saxer Lin 40.1 762 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 763
Edwin Chen 14.1 764 The device will be able to get the I2C sensor data now and upload to IoT Server.
765
766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
767
768 Convert the read byte to decimal and divide it by ten.
769
Edwin Chen 2.1 770 **Example:**
771
Edwin Chen 14.1 772 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 773
Edwin Chen 14.1 774 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 775
Edwin Chen 14.1 776 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 777
778
Edwin Chen 14.1 779 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 780
Edwin Chen 14.1 781 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
782
783
784 ==== 2.3.3.8 Ultrasonic Sensor ====
785
Saxer Lin 26.2 786 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 787
Saxer Lin 36.1 788 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 789
Saxer Lin 36.1 790 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
791
Edwin Chen 14.1 792 The picture below shows the connection:
793
Saxer Lin 36.1 794 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 795
Saxer Lin 36.1 796 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 797
798 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
799
800 **Example:**
801
802 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
803
804
805
806 ==== 2.3.3.9  Battery Output - BAT pin ====
807
808 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
809
810
811 ==== 2.3.3.10  +5V Output ====
812
813 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
814
815 The 5V output time can be controlled by AT Command.
816
817 **AT+5VT=1000**
818
819 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
820
821 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
822
823
824
825 ==== 2.3.3.11  BH1750 Illumination Sensor ====
826
827 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
828
Saxer Lin 40.1 829 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 830
Saxer Lin 40.1 831 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 832
833
834 ==== 2.3.3.12  Working MOD ====
835
836 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
837
838 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
839
840 Case 7^^th^^ Byte >> 2 & 0x1f:
841
842 * 0: MOD1
843 * 1: MOD2
844 * 2: MOD3
845 * 3: MOD4
846 * 4: MOD5
847 * 5: MOD6
Saxer Lin 36.1 848 * 6: MOD7
849 * 7: MOD8
850 * 8: MOD9
Edwin Chen 14.1 851
Edwin Chen 2.1 852 == 2.4 Payload Decoder file ==
853
854
855 In TTN, use can add a custom payload so it shows friendly reading
856
857 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
858
Saxer Lin 40.1 859 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 860
861
862
Edwin Chen 15.1 863 == 2.5 Frequency Plans ==
Edwin Chen 2.1 864
865
Edwin Chen 15.1 866 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 867
868 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
869
870
Edwin Chen 16.1 871 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 872
873 == 3.1 Configure Methods ==
874
875
Edwin Chen 16.1 876 SN50v3-LB supports below configure method:
Edwin Chen 2.1 877
878 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
879 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
880 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
881
882 == 3.2 General Commands ==
883
884
885 These commands are to configure:
886
887 * General system settings like: uplink interval.
888 * LoRaWAN protocol & radio related command.
889
890 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
891
892 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
893
894
Edwin Chen 16.1 895 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 896
897
898 These commands only valid for S31x-LB, as below:
899
900
901 === 3.3.1 Set Transmit Interval Time ===
902
903 Feature: Change LoRaWAN End Node Transmit Interval.
904
905 (% style="color:blue" %)**AT Command: AT+TDC**
906
907 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
908 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
909 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
910 30000
911 OK
912 the interval is 30000ms = 30s
913 )))
914 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
915 OK
916 Set transmit interval to 60000ms = 60 seconds
917 )))
918
919 (% style="color:blue" %)**Downlink Command: 0x01**
920
921 Format: Command Code (0x01) followed by 3 bytes time value.
922
923 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
924
925 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
926 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
927
Saxer Lin 40.1 928
Xiaoling 41.3 929
Edwin Chen 2.1 930 === 3.3.2 Get Device Status ===
931
Saxer Lin 40.1 932 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 933
934 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
935
936 Sensor will upload Device Status via FPORT=5. See payload section for detail.
937
938
Saxer Lin 36.1 939 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 940
941 Feature, Set Interrupt mode for GPIO_EXIT.
942
Saxer Lin 36.1 943 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 944
945 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
946 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 947 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 948 0
949 OK
950 the mode is 0 =Disable Interrupt
951 )))
Saxer Lin 36.1 952 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 953 Set Transmit Interval
954 0. (Disable Interrupt),
955 ~1. (Trigger by rising and falling edge)
956 2. (Trigger by falling edge)
957 3. (Trigger by rising edge)
958 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 959 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
960 Set Transmit Interval
Edwin Chen 2.1 961
Saxer Lin 36.1 962 trigger by rising edge.
963 )))|(% style="width:157px" %)OK
964 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
965
Edwin Chen 2.1 966 (% style="color:blue" %)**Downlink Command: 0x06**
967
968 Format: Command Code (0x06) followed by 3 bytes.
969
970 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
971
Saxer Lin 36.1 972 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
973 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
974 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
975 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 976
Saxer Lin 40.1 977
Xiaoling 41.3 978
Saxer Lin 36.1 979 === 3.3.4 Set Power Output Duration ===
980
981 Control the output duration 5V . Before each sampling, device will
982
983 ~1. first enable the power output to external sensor,
984
985 2. keep it on as per duration, read sensor value and construct uplink payload
986
987 3. final, close the power output.
988
989 (% style="color:blue" %)**AT Command: AT+5VT**
990
991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
992 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
993 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
994 500(default)
995
996 OK
997 )))
998 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
999 Close after a delay of 1000 milliseconds.
1000 )))|(% style="width:157px" %)OK
1001
1002 (% style="color:blue" %)**Downlink Command: 0x07**
1003
1004 Format: Command Code (0x07) followed by 2 bytes.
1005
1006 The first and second bytes are the time to turn on.
1007
Saxer Lin 40.1 1008 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1009 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1010
Saxer Lin 40.1 1011
Xiaoling 41.3 1012
Saxer Lin 36.1 1013 === 3.3.5 Set Weighing parameters ===
1014
Saxer Lin 37.1 1015 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1016
1017 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 1021 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1022 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1023 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1024
1025 (% style="color:blue" %)**Downlink Command: 0x08**
1026
Saxer Lin 37.1 1027 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1028
Saxer Lin 37.1 1029 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1030
Saxer Lin 37.1 1031 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1032
Saxer Lin 37.1 1033 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1034 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1035 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1036
Saxer Lin 40.1 1037
Xiaoling 41.3 1038
Saxer Lin 36.1 1039 === 3.3.6 Set Digital pulse count value ===
1040
1041 Feature: Set the pulse count value.
1042
Saxer Lin 37.1 1043 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1044
Saxer Lin 36.1 1045 (% style="color:blue" %)**AT Command: AT+SETCNT**
1046
1047 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1048 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1049 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1050 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1051
1052 (% style="color:blue" %)**Downlink Command: 0x09**
1053
1054 Format: Command Code (0x09) followed by 5 bytes.
1055
1056 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1057
1058 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1059 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1060
Saxer Lin 40.1 1061
Xiaoling 41.3 1062
Saxer Lin 36.1 1063 === 3.3.7 Set Workmode ===
1064
Saxer Lin 37.1 1065 Feature: Switch working mode.
Saxer Lin 36.1 1066
1067 (% style="color:blue" %)**AT Command: AT+MOD**
1068
1069 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1070 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1071 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1072 OK
1073 )))
1074 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1075 OK
1076
1077 Attention:Take effect after ATZ
1078 )))
1079
1080 (% style="color:blue" %)**Downlink Command: 0x0A**
1081
1082 Format: Command Code (0x0A) followed by 1 bytes.
1083
1084 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1085 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1086
Saxer Lin 40.1 1087
Xiaoling 41.3 1088
Edwin Chen 2.1 1089 = 4. Battery & Power Consumption =
1090
1091
Edwin Chen 11.1 1092 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1093
1094 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1095
1096
1097 = 5. OTA Firmware update =
1098
1099
1100 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1101 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1102
1103 * Change Frequency band/ region.
1104 * Update with new features.
1105 * Fix bugs.
1106
1107 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1108
1109
1110 Methods to Update Firmware:
1111
1112 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1113 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1114
1115 = 6. FAQ =
1116
Edwin Chen 17.1 1117 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1118
Edwin Chen 17.1 1119 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1120 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1121
1122 = 7. Order Info =
1123
1124
Edwin Chen 10.1 1125 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1126
1127 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1128
Edwin Chen 2.1 1129 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1130 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1131 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1132 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1133 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1134 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1135 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1136 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1137
Edwin Chen 10.1 1138 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1139
Edwin Chen 10.1 1140 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1141 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1142 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1143 * (% style="color:red" %)**NH**(%%): No Hole
1144
Edwin Chen 2.1 1145 = 8. ​Packing Info =
1146
1147 (% style="color:#037691" %)**Package Includes**:
1148
Edwin Chen 10.1 1149 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1150
1151 (% style="color:#037691" %)**Dimension and weight**:
1152
1153 * Device Size: cm
1154 * Device Weight: g
1155 * Package Size / pcs : cm
1156 * Weight / pcs : g
1157
1158 = 9. Support =
1159
1160
1161 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1162 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]