Wiki source code of SN50v3-LB User Manual

Version 41.1 by Xiaoling on 2023/05/15 13:56

Hide last authors
Edwin Chen 4.1 1 [[image:image-20230511201248-1.png||height="403" width="489"]]
Edwin Chen 2.1 2
3
4
5 **Table of Contents:**
6
7 {{toc/}}
8
9
10
11
12
13
14 = 1. Introduction =
15
Edwin Chen 5.1 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 17
Edwin Chen 4.1 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 19
20
Edwin Chen 4.1 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Edwin Chen 2.1 22
23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 25
26
Edwin Chen 4.1 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 28
29
Edwin Chen 4.1 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 31
Edwin Chen 4.1 32
Edwin Chen 2.1 33 == 1.2 ​Features ==
34
35 * LoRaWAN 1.0.3 Class A
36 * Ultra-low power consumption
Edwin Chen 5.1 37 * Open-Source hardware/software
Edwin Chen 2.1 38 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
39 * Support Bluetooth v5.1 and LoRaWAN remote configure
40 * Support wireless OTA update firmware
41 * Uplink on periodically
42 * Downlink to change configure
43 * 8500mAh Battery for long term use
44
45 == 1.3 Specification ==
46
47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
Edwin Chen 5.1 52 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 53
Edwin Chen 5.1 54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
Edwin Chen 2.1 60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
Edwin Chen 5.1 110 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
Edwin Chen 6.1 122 == 1.7 Pin Definitions ==
Edwin Chen 2.1 123
124
Saxer Lin 36.1 125 [[image:image-20230513102034-2.png]]
Edwin Chen 2.1 126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
Edwin Chen 5.1 138 == Hole Option ==
139
140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141
142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
145
146
Edwin Chen 10.1 147 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 148
149 == 2.1 How it works ==
150
151
Edwin Chen 11.2 152 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 153
154
155 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
156
157
158 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
159
160 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161
162
Edwin Chen 11.2 163 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 164
Edwin Chen 11.2 165 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 166
Edwin Chen 11.2 167 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 168
169
170 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
171
172
173 (% style="color:blue" %)**Register the device**
174
175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
176
177
178 (% style="color:blue" %)**Add APP EUI and DEV EUI**
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
181
182
183 (% style="color:blue" %)**Add APP EUI in the application**
184
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
187
188
189 (% style="color:blue" %)**Add APP KEY**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
192
193
Edwin Chen 11.2 194 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 195
196
Edwin Chen 11.2 197 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 198
199 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200
201 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
202
203
204 == 2.3 ​Uplink Payload ==
205
206 === 2.3.1 Device Status, FPORT~=5 ===
207
208
Edwin Chen 11.2 209 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 210
211 The Payload format is as below.
212
213
214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
216 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
217 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218
219 Example parse in TTNv3
220
221
Edwin Chen 11.2 222 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
Edwin Chen 2.1 223
224 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
225
226 (% style="color:#037691" %)**Frequency Band**:
227
228 *0x01: EU868
229
230 *0x02: US915
231
232 *0x03: IN865
233
234 *0x04: AU915
235
236 *0x05: KZ865
237
238 *0x06: RU864
239
240 *0x07: AS923
241
242 *0x08: AS923-1
243
244 *0x09: AS923-2
245
246 *0x0a: AS923-3
247
248 *0x0b: CN470
249
250 *0x0c: EU433
251
252 *0x0d: KR920
253
254 *0x0e: MA869
255
256
257 (% style="color:#037691" %)**Sub-Band**:
258
259 AU915 and US915:value 0x00 ~~ 0x08
260
261 CN470: value 0x0B ~~ 0x0C
262
263 Other Bands: Always 0x00
264
265
266 (% style="color:#037691" %)**Battery Info**:
267
268 Check the battery voltage.
269
270 Ex1: 0x0B45 = 2885mV
271
272 Ex2: 0x0B49 = 2889mV
273
274
Edwin Chen 12.1 275 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 276
277
Edwin Chen 12.1 278 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
279
280 For example:
281
282 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283
284
Edwin Chen 13.1 285 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 286
287 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
Edwin Chen 13.1 288 1. All modes share the same Payload Explanation from HERE.
289 1. By default, the device will send an uplink message every 20 minutes.
Edwin Chen 12.1 290
Edwin Chen 13.1 291 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 292
293 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
294
Saxer Lin 40.1 295 (% style="width:1110px" %)
296 |**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
297 |**Value**|Bat|(% style="width:191px" %)(((
Saxer Lin 26.2 298 Temperature(DS18B20)
Edwin Chen 12.1 299
Saxer Lin 26.2 300 (PC13)
Saxer Lin 40.1 301 )))|(% style="width:78px" %)(((
Saxer Lin 26.2 302 ADC
303
304 (PA4)
305 )))|(% style="width:216px" %)(((
Saxer Lin 36.1 306 Digital in(PB15) &
Saxer Lin 26.2 307
Saxer Lin 36.1 308 Digital Interrupt(PA8)
309
Saxer Lin 26.2 310
Saxer Lin 40.1 311 )))|(% style="width:308px" %)(((
Saxer Lin 36.1 312 Temperature
Saxer Lin 26.2 313
Saxer Lin 36.1 314 (SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 315 )))|(% style="width:154px" %)(((
Saxer Lin 36.1 316 Humidity
317
318 (SHT20 or SHT31)
319 )))
320
Edwin Chen 12.1 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322
323
Edwin Chen 13.1 324 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325
Edwin Chen 12.1 326 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
327
Saxer Lin 40.1 328 (% style="width:1011px" %)
329 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
330 |**Value**|BAT|(% style="width:196px" %)(((
Edwin Chen 12.1 331 Temperature(DS18B20)
Saxer Lin 36.1 332
333 (PC13)
Saxer Lin 40.1 334 )))|(% style="width:87px" %)(((
Saxer Lin 36.1 335 ADC
336
337 (PA4)
Saxer Lin 40.1 338 )))|(% style="width:189px" %)(((
Saxer Lin 36.1 339 Digital in(PB15) &
340
341 Digital Interrupt(PA8)
Saxer Lin 40.1 342 )))|(% style="width:208px" %)(((
Edwin Chen 12.1 343 Distance measure by:
344 1) LIDAR-Lite V3HP
345 Or
346 2) Ultrasonic Sensor
Saxer Lin 40.1 347 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 348
349 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
350
351 **Connection of LIDAR-Lite V3HP:**
352
Saxer Lin 26.2 353 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 354
355 **Connection to Ultrasonic Sensor:**
356
Saxer Lin 36.1 357 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
358
Saxer Lin 26.2 359 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 360
361 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362
Saxer Lin 40.1 363 (% style="width:1113px" %)
364 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
365 |**Value**|BAT|(% style="width:183px" %)(((
Edwin Chen 12.1 366 Temperature(DS18B20)
Saxer Lin 36.1 367
368 (PC13)
Saxer Lin 40.1 369 )))|(% style="width:173px" %)(((
Saxer Lin 36.1 370 Digital in(PB15) &
371
372 Digital Interrupt(PA8)
Saxer Lin 40.1 373 )))|(% style="width:84px" %)(((
Saxer Lin 36.1 374 ADC
375
376 (PA4)
Saxer Lin 40.1 377 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 378 Distance measure by:1)TF-Mini plus LiDAR
379 Or 
380 2) TF-Luna LiDAR
Saxer Lin 40.1 381 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 382
383 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
384
385 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
386
Saxer Lin 36.1 387 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 388
Saxer Lin 26.2 389 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 390
391 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
392
Saxer Lin 36.1 393 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
Edwin Chen 12.1 394
Saxer Lin 36.1 395 [[image:image-20230513105207-4.png||height="469" width="802"]]
Edwin Chen 12.1 396
397
Edwin Chen 13.1 398 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
399
Edwin Chen 12.1 400 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
401
Saxer Lin 36.1 402 (% style="width:1031px" %)
Edwin Chen 12.1 403 |=(((
404 **Size(bytes)**
Saxer Lin 36.1 405 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
Saxer Lin 26.2 406 |**Value**|(% style="width:68px" %)(((
Saxer Lin 36.1 407 ADC1
Saxer Lin 26.2 408
Saxer Lin 36.1 409 (PA4)
Saxer Lin 26.2 410 )))|(% style="width:75px" %)(((
411 ADC2
412
Saxer Lin 36.1 413 (PA5)
414 )))|(((
415 ADC3
Edwin Chen 12.1 416
Saxer Lin 36.1 417 (PA8)
418 )))|(((
419 Digital Interrupt(PB15)
420 )))|(% style="width:304px" %)(((
421 Temperature
Edwin Chen 12.1 422
Saxer Lin 36.1 423 (SHT20 or SHT31 or BH1750 Illumination Sensor)
424 )))|(% style="width:163px" %)(((
425 Humidity
Edwin Chen 12.1 426
Saxer Lin 36.1 427 (SHT20 or SHT31)
428 )))|(% style="width:53px" %)Bat
429
430 [[image:image-20230513110214-6.png]]
431
432
Edwin Chen 13.1 433 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
434
Edwin Chen 12.1 435
Saxer Lin 26.2 436 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 437
Saxer Lin 26.2 438 (% style="width:1017px" %)
439 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
440 |**Value**|BAT|(% style="width:186px" %)(((
441 Temperature1(DS18B20)
442 (PC13)
443 )))|(% style="width:82px" %)(((
444 ADC
Edwin Chen 12.1 445
Saxer Lin 26.2 446 (PA4)
447 )))|(% style="width:210px" %)(((
Saxer Lin 36.1 448 Digital in(PB15) &
Edwin Chen 12.1 449
Saxer Lin 36.1 450 Digital Interrupt(PA8) 
Saxer Lin 26.2 451 )))|(% style="width:191px" %)Temperature2(DS18B20)
452 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
453 (PB8)
Edwin Chen 12.1 454
455 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
456
Saxer Lin 39.2 457 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 458
Saxer Lin 39.1 459
Edwin Chen 13.1 460 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
461
Saxer Lin 26.2 462 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 463
464 Each HX711 need to be calibrated before used. User need to do below two steps:
465
466 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
467 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
468 1. (((
Saxer Lin 26.2 469 Weight has 4 bytes, the unit is g.
Edwin Chen 12.1 470 )))
471
472 For example:
473
Saxer Lin 26.2 474 **AT+GETSENSORVALUE =0**
Edwin Chen 12.1 475
476 Response:  Weight is 401 g
477
478 Check the response of this command and adjust the value to match the real value for thing.
479
Saxer Lin 40.1 480 (% style="width:767px" %)
Edwin Chen 12.1 481 |=(((
482 **Size(bytes)**
Saxer Lin 40.1 483 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
484 |**Value**|BAT|(% style="width:193px" %)(((
Saxer Lin 36.1 485 Temperature(DS18B20)
Edwin Chen 12.1 486
Saxer Lin 26.2 487 (PC13)
488
489
Saxer Lin 40.1 490 )))|(% style="width:85px" %)(((
Saxer Lin 36.1 491 ADC
Saxer Lin 26.2 492
493 (PA4)
Saxer Lin 40.1 494 )))|(% style="width:186px" %)(((
Saxer Lin 36.1 495 Digital in(PB15) &
Saxer Lin 26.2 496
Saxer Lin 36.1 497 Digital Interrupt(PA8)
Saxer Lin 40.1 498 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 499
Edwin Chen 12.1 500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
501
502
Edwin Chen 13.1 503 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
504
Edwin Chen 12.1 505 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
506
507 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
508
Saxer Lin 26.2 509 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 510
Saxer Lin 36.1 511 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
Edwin Chen 12.1 512
Saxer Lin 36.1 513 (% style="width:961px" %)
514 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
515 |**Value**|BAT|(% style="width:256px" %)(((
516 Temperature(DS18B20)
Edwin Chen 12.1 517
Saxer Lin 36.1 518 (PC13)
519 )))|(% style="width:108px" %)(((
520 ADC
521
522 (PA4)
523 )))|(% style="width:126px" %)(((
524 Digital in
525
526 (PB15)
527 )))|(% style="width:145px" %)(((
528 Count
529
530 (PA8)
531 )))
532
Edwin Chen 12.1 533 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
534
535
Edwin Chen 13.1 536 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
537
Saxer Lin 40.1 538 (% style="width:1108px" %)
Edwin Chen 12.1 539 |=(((
540 **Size(bytes)**
Saxer Lin 40.1 541 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
542 |**Value**|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 543 Temperature(DS18B20)
Edwin Chen 12.1 544
Saxer Lin 36.1 545 (PC13)
Saxer Lin 40.1 546 )))|(% style="width:83px" %)(((
Saxer Lin 36.1 547 ADC
548
549 (PA5)
Saxer Lin 40.1 550 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 551 Digital Interrupt1(PA8)
Saxer Lin 40.1 552 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 553
554 [[image:image-20230513111203-7.png||height="324" width="975"]]
555
Edwin Chen 13.1 556 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
557
Saxer Lin 40.1 558 (% style="width:922px" %)
Edwin Chen 12.1 559 |=(((
560 **Size(bytes)**
Saxer Lin 40.1 561 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
Saxer Lin 36.1 562 |**Value**|BAT|(% style="width:207px" %)(((
563 Temperature(DS18B20)
564
565 (PC13)
566 )))|(% style="width:94px" %)(((
567 ADC1
568
569 (PA4)
570 )))|(% style="width:198px" %)(((
571 Digital Interrupt(PB15)
572 )))|(% style="width:84px" %)(((
573 ADC2
574
575 (PA5)
Saxer Lin 40.1 576 )))|(% style="width:82px" %)(((
Saxer Lin 36.1 577 ADC3
578
579 (PA8)
Edwin Chen 12.1 580 )))
581
Saxer Lin 36.1 582 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 583
584
Edwin Chen 13.1 585 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
586
Saxer Lin 36.1 587 (% style="width:1010px" %)
Edwin Chen 12.1 588 |=(((
589 **Size(bytes)**
Saxer Lin 36.1 590 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
Edwin Chen 12.1 591 |**Value**|BAT|(((
Saxer Lin 36.1 592 Temperature1(DS18B20)
593
594 (PC13)
Edwin Chen 12.1 595 )))|(((
Saxer Lin 36.1 596 Temperature2(DS18B20)
597
598 (PB9)
Edwin Chen 12.1 599 )))|(((
Saxer Lin 36.1 600 Digital Interrupt
601
602 (PB15)
603 )))|(% style="width:193px" %)(((
604 Temperature3(DS18B20)
605
606 (PB8)
607 )))|(% style="width:78px" %)(((
608 Count1
609
610 (PA8)
611 )))|(% style="width:78px" %)(((
612 Count2
613
614 (PA4)
Edwin Chen 12.1 615 )))
616
Saxer Lin 36.1 617 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 618
619 **The newly added AT command is issued correspondingly:**
620
Saxer Lin 36.1 621 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
Edwin Chen 12.1 622
Saxer Lin 36.1 623 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
Edwin Chen 12.1 624
Saxer Lin 36.1 625 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
Edwin Chen 12.1 626
627 **AT+SETCNT=aa,bb** 
628
Saxer Lin 36.1 629 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 630
Saxer Lin 36.1 631 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 632
633
Edwin Chen 14.1 634
635 === 2.3.3  ​Decode payload ===
636
Edwin Chen 12.1 637 While using TTN V3 network, you can add the payload format to decode the payload.
638
639 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
640
641 The payload decoder function for TTN V3 are here:
642
Edwin Chen 14.1 643 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 644
645
Edwin Chen 14.1 646 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 647
Edwin Chen 14.1 648 Check the battery voltage for SN50v3.
Edwin Chen 2.1 649
650 Ex1: 0x0B45 = 2885mV
651
652 Ex2: 0x0B49 = 2889mV
653
654
Edwin Chen 14.1 655 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 656
Edwin Chen 14.1 657 If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 658
Edwin Chen 14.1 659 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
660
661 **Connection:**
662
Saxer Lin 26.2 663 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 664
Edwin Chen 2.1 665 **Example**:
666
667 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
668
669 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
670
671 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
672
673
Edwin Chen 14.1 674 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 675
Saxer Lin 26.2 676 The digital input for pin PB15,
Edwin Chen 2.1 677
Saxer Lin 26.2 678 * When PB15 is high, the bit 1 of payload byte 6 is 1.
679 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 680
Saxer Lin 26.2 681 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
682 (((
Saxer Lin 36.1 683 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
684
685 **Note:**The maximum voltage input supports 3.6V.
Saxer Lin 26.2 686 )))
687
Edwin Chen 14.1 688 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 689
Saxer Lin 36.1 690 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 691
Saxer Lin 36.1 692 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 693
Saxer Lin 26.2 694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 695
Saxer Lin 36.1 696 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
Edwin Chen 14.1 697
698 ==== 2.3.3.5 Digital Interrupt ====
699
Saxer Lin 36.1 700 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
Edwin Chen 14.1 701
702 **~ Interrupt connection method:**
703
Saxer Lin 36.1 704 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 705
706 **Example to use with door sensor :**
707
708 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
709
710 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
711
Saxer Lin 36.1 712 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 713
714 **~ Below is the installation example:**
715
Saxer Lin 36.1 716 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
Edwin Chen 14.1 717
718 * (((
Saxer Lin 36.1 719 One pin to SN50_v3's PA8 pin
Edwin Chen 14.1 720 )))
721 * (((
Saxer Lin 36.1 722 The other pin to SN50_v3's VDD pin
Edwin Chen 14.1 723 )))
724
Saxer Lin 36.1 725 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 726
727 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
728
Saxer Lin 36.1 729 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 730
731 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
732
733 The above photos shows the two parts of the magnetic switch fitted to a door.
734
735 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
736
737 The command is:
738
Saxer Lin 36.1 739 **AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 740
741 Below shows some screen captures in TTN V3:
742
743 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
744
745 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
746
747 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
748
749
Saxer Lin 26.2 750 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 751
Saxer Lin 26.2 752 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 753
Saxer Lin 40.1 754 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 755
Saxer Lin 40.1 756 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
Edwin Chen 14.1 757
758 Below is the connection to SHT20/ SHT31. The connection is as below:
759
760
Saxer Lin 40.1 761 [[image:image-20230513103633-3.png||height="448" width="716"]]
Saxer Lin 36.1 762
Edwin Chen 14.1 763 The device will be able to get the I2C sensor data now and upload to IoT Server.
764
765 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
766
767 Convert the read byte to decimal and divide it by ten.
768
Edwin Chen 2.1 769 **Example:**
770
Edwin Chen 14.1 771 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 772
Edwin Chen 14.1 773 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 774
Edwin Chen 14.1 775 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 776
777
Edwin Chen 14.1 778 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 779
Edwin Chen 14.1 780 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
781
782
783 ==== 2.3.3.8 Ultrasonic Sensor ====
784
Saxer Lin 26.2 785 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 786
Saxer Lin 36.1 787 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 788
Saxer Lin 36.1 789 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
790
Edwin Chen 14.1 791 The picture below shows the connection:
792
Saxer Lin 36.1 793 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 794
Saxer Lin 36.1 795 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 796
797 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
798
799 **Example:**
800
801 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
802
803
804
805 ==== 2.3.3.9  Battery Output - BAT pin ====
806
807 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
808
809
810 ==== 2.3.3.10  +5V Output ====
811
812 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
813
814 The 5V output time can be controlled by AT Command.
815
816 **AT+5VT=1000**
817
818 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
819
820 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
821
822
823
824 ==== 2.3.3.11  BH1750 Illumination Sensor ====
825
826 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
827
Saxer Lin 40.1 828 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 829
Saxer Lin 40.1 830 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 831
832
833 ==== 2.3.3.12  Working MOD ====
834
835 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
836
837 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
838
839 Case 7^^th^^ Byte >> 2 & 0x1f:
840
841 * 0: MOD1
842 * 1: MOD2
843 * 2: MOD3
844 * 3: MOD4
845 * 4: MOD5
846 * 5: MOD6
Saxer Lin 36.1 847 * 6: MOD7
848 * 7: MOD8
849 * 8: MOD9
Edwin Chen 14.1 850
Edwin Chen 2.1 851 == 2.4 Payload Decoder file ==
852
853
854 In TTN, use can add a custom payload so it shows friendly reading
855
856 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
857
Saxer Lin 40.1 858 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 859
Saxer Lin 40.1 860
Edwin Chen 2.1 861
Saxer Lin 40.1 862
Edwin Chen 2.1 863
Edwin Chen 15.1 864 == 2.5 Frequency Plans ==
Edwin Chen 2.1 865
866
Edwin Chen 15.1 867 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 868
869 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
870
871
Edwin Chen 16.1 872 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 873
874 == 3.1 Configure Methods ==
875
876
Edwin Chen 16.1 877 SN50v3-LB supports below configure method:
Edwin Chen 2.1 878
879 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
880 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
881 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
882
883 == 3.2 General Commands ==
884
885
886 These commands are to configure:
887
888 * General system settings like: uplink interval.
889 * LoRaWAN protocol & radio related command.
890
891 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
892
893 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
894
895
Edwin Chen 16.1 896 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 897
898
899 These commands only valid for S31x-LB, as below:
900
901
902 === 3.3.1 Set Transmit Interval Time ===
903
904 Feature: Change LoRaWAN End Node Transmit Interval.
905
906 (% style="color:blue" %)**AT Command: AT+TDC**
907
908 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
909 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
910 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
911 30000
912 OK
913 the interval is 30000ms = 30s
914 )))
915 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
916 OK
917 Set transmit interval to 60000ms = 60 seconds
918 )))
919
920 (% style="color:blue" %)**Downlink Command: 0x01**
921
922 Format: Command Code (0x01) followed by 3 bytes time value.
923
924 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
925
926 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
927 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
928
Saxer Lin 40.1 929 (% class="wikigeneratedid" %)
930 === ===
931
Edwin Chen 2.1 932 === 3.3.2 Get Device Status ===
933
Saxer Lin 40.1 934 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 935
936 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
937
938 Sensor will upload Device Status via FPORT=5. See payload section for detail.
939
940
Saxer Lin 36.1 941 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 942
943 Feature, Set Interrupt mode for GPIO_EXIT.
944
Saxer Lin 36.1 945 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 946
947 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
948 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 36.1 949 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 950 0
951 OK
952 the mode is 0 =Disable Interrupt
953 )))
Saxer Lin 36.1 954 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 955 Set Transmit Interval
956 0. (Disable Interrupt),
957 ~1. (Trigger by rising and falling edge)
958 2. (Trigger by falling edge)
959 3. (Trigger by rising edge)
960 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 961 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
962 Set Transmit Interval
Edwin Chen 2.1 963
Saxer Lin 36.1 964 trigger by rising edge.
965 )))|(% style="width:157px" %)OK
966 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
967
Edwin Chen 2.1 968 (% style="color:blue" %)**Downlink Command: 0x06**
969
970 Format: Command Code (0x06) followed by 3 bytes.
971
972 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
973
Saxer Lin 36.1 974 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
975 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
976 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
977 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 978
Saxer Lin 40.1 979 (% class="wikigeneratedid" %)
980 === ===
981
Saxer Lin 36.1 982 === 3.3.4 Set Power Output Duration ===
983
984 Control the output duration 5V . Before each sampling, device will
985
986 ~1. first enable the power output to external sensor,
987
988 2. keep it on as per duration, read sensor value and construct uplink payload
989
990 3. final, close the power output.
991
992 (% style="color:blue" %)**AT Command: AT+5VT**
993
994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
996 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
997 500(default)
998
999 OK
1000 )))
1001 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1002 Close after a delay of 1000 milliseconds.
1003 )))|(% style="width:157px" %)OK
1004
1005 (% style="color:blue" %)**Downlink Command: 0x07**
1006
1007 Format: Command Code (0x07) followed by 2 bytes.
1008
1009 The first and second bytes are the time to turn on.
1010
Saxer Lin 40.1 1011 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1012 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1013
Saxer Lin 40.1 1014 (% class="wikigeneratedid" %)
1015 === ===
1016
Saxer Lin 36.1 1017 === 3.3.5 Set Weighing parameters ===
1018
Saxer Lin 37.1 1019 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1020
1021 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1022
1023 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1024 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
Saxer Lin 37.1 1025 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1026 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1027 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1028
1029 (% style="color:blue" %)**Downlink Command: 0x08**
1030
Saxer Lin 37.1 1031 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1032
Saxer Lin 37.1 1033 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1034
Saxer Lin 37.1 1035 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1036
Saxer Lin 37.1 1037 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1038 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1039 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1040
Saxer Lin 40.1 1041 (% class="wikigeneratedid" %)
1042 === ===
1043
Saxer Lin 36.1 1044 === 3.3.6 Set Digital pulse count value ===
1045
1046 Feature: Set the pulse count value.
1047
Saxer Lin 37.1 1048 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1049
Saxer Lin 36.1 1050 (% style="color:blue" %)**AT Command: AT+SETCNT**
1051
1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1054 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1055 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1056
1057 (% style="color:blue" %)**Downlink Command: 0x09**
1058
1059 Format: Command Code (0x09) followed by 5 bytes.
1060
1061 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1062
1063 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1064 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1065
Saxer Lin 40.1 1066 (% class="wikigeneratedid" %)
1067 === ===
1068
Saxer Lin 36.1 1069 === 3.3.7 Set Workmode ===
1070
Saxer Lin 37.1 1071 Feature: Switch working mode.
Saxer Lin 36.1 1072
1073 (% style="color:blue" %)**AT Command: AT+MOD**
1074
1075 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1076 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1077 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1078 OK
1079 )))
1080 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1081 OK
1082
1083 Attention:Take effect after ATZ
1084 )))
1085
1086 (% style="color:blue" %)**Downlink Command: 0x0A**
1087
1088 Format: Command Code (0x0A) followed by 1 bytes.
1089
1090 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1091 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1092
Saxer Lin 40.1 1093 (% class="wikigeneratedid" %)
1094 = =
1095
Edwin Chen 2.1 1096 = 4. Battery & Power Consumption =
1097
1098
Edwin Chen 11.1 1099 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1100
1101 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1102
1103
1104 = 5. OTA Firmware update =
1105
1106
1107 (% class="wikigeneratedid" %)
Edwin Chen 11.1 1108 User can change firmware SN50v3-LB to:
Edwin Chen 2.1 1109
1110 * Change Frequency band/ region.
1111 * Update with new features.
1112 * Fix bugs.
1113
1114 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1115
1116
1117 Methods to Update Firmware:
1118
1119 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1120 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1121
1122 = 6. FAQ =
1123
Edwin Chen 17.1 1124 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1125
Edwin Chen 17.1 1126 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1127 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1128
1129 = 7. Order Info =
1130
1131
Edwin Chen 10.1 1132 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1133
1134 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1135
Edwin Chen 2.1 1136 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1137 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1138 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1139 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1140 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1141 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1142 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1143 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1144
Edwin Chen 10.1 1145 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1146
Edwin Chen 10.1 1147 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1148 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1149 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1150 * (% style="color:red" %)**NH**(%%): No Hole
1151
Edwin Chen 2.1 1152 = 8. ​Packing Info =
1153
1154 (% style="color:#037691" %)**Package Includes**:
1155
Edwin Chen 10.1 1156 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1157
1158 (% style="color:#037691" %)**Dimension and weight**:
1159
1160 * Device Size: cm
1161 * Device Weight: g
1162 * Package Size / pcs : cm
1163 * Weight / pcs : g
1164
1165 = 9. Support =
1166
1167
1168 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1169 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]