Version 139.1 by Xiaoling on 2025/06/10 09:27

Hide last authors
Xiaoling 87.2 1
2
Xiaoling 137.1 3 [[image:image-20240103095714-2.png||data-xwiki-image-style-alignment="center"]]
Edwin Chen 2.1 4
5
6
Xiaoling 87.2 7
8
9
Xiaoling 79.3 10 **Table of Contents:**
Edwin Chen 2.1 11
12 {{toc/}}
13
14
15
16
17
18
19 = 1. Introduction =
20
Xiaoling 87.3 21 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
Edwin Chen 2.1 22
Xiaoling 43.2 23
Xiaoling 99.2 24 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 25
Xiaoling 87.3 26 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 27
Xiaoling 87.3 28 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
Edwin Chen 2.1 29
Xiaoling 87.3 30 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 31
Xiaoling 87.3 32 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 33
34 == 1.2 ​Features ==
35
Xiaoling 43.44 36
Edwin Chen 2.1 37 * LoRaWAN 1.0.3 Class A
38 * Ultra-low power consumption
Edwin Chen 5.1 39 * Open-Source hardware/software
Edwin Chen 2.1 40 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
41 * Support Bluetooth v5.1 and LoRaWAN remote configure
42 * Support wireless OTA update firmware
43 * Uplink on periodically
44 * Downlink to change configure
Xiaoling 87.26 45 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
Xiaoling 99.2 46 * Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
Edwin Chen 2.1 47
48 == 1.3 Specification ==
49
Xiaoling 43.4 50
Edwin Chen 2.1 51 (% style="color:#037691" %)**Common DC Characteristics:**
52
Xiaoling 87.28 53 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
Edwin Chen 2.1 54 * Operating Temperature: -40 ~~ 85°C
55
Edwin Chen 5.1 56 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 57
Edwin Chen 5.1 58 * Battery output (2.6v ~~ 3.6v depends on battery)
59 * +5v controllable output
60 * 3 x Interrupt or Digital IN/OUT pins
61 * 3 x one-wire interfaces
62 * 1 x UART Interface
63 * 1 x I2C Interface
Edwin Chen 2.1 64
65 (% style="color:#037691" %)**LoRa Spec:**
66
67 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
68 * Max +22 dBm constant RF output vs.
69 * RX sensitivity: down to -139 dBm.
70 * Excellent blocking immunity
71
72 (% style="color:#037691" %)**Battery:**
73
74 * Li/SOCI2 un-chargeable battery
75 * Capacity: 8500mAh
76 * Self-Discharge: <1% / Year @ 25°C
77 * Max continuously current: 130mA
78 * Max boost current: 2A, 1 second
79
80 (% style="color:#037691" %)**Power Consumption**
81
82 * Sleep Mode: 5uA @ 3.3v
83 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
84
85 == 1.4 Sleep mode and working mode ==
86
Xiaoling 43.4 87
Edwin Chen 2.1 88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
Xiaoling 124.2 96 [[image:image-20250415113729-1.jpeg]]
Edwin Chen 2.1 97
Xiaoling 87.41 98 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.31 99 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
Xiaoling 137.1 100 |[[image:1749518618870-272.png]] 1~~3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
Edwin Chen 2.1 101 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
102 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
103 )))
Xiaoling 137.1 104 |[[image:1749518621646-995.png]] >3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
Edwin Chen 2.1 105 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
106 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
107 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
108 )))
Xiaoling 133.2 109 |[[image:image-20250609112212-4.png||height="31" width="25"]] x5|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
Edwin Chen 2.1 110
111 == 1.6 BLE connection ==
112
113
Xiaoling 87.4 114 SN50v3-LB/LS supports BLE remote configure.
Edwin Chen 2.1 115
116
117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
118
119 * Press button to send an uplink
120 * Press button to active device.
121 * Device Power on or reset.
122
123 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
124
125
Edwin Chen 6.1 126 == 1.7 Pin Definitions ==
Edwin Chen 2.1 127
128
Saxer Lin 49.1 129 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 130
131
132 == 1.8 Mechanical ==
133
Edwin Chen 85.1 134 === 1.8.1 for LB version ===
Edwin Chen 2.1 135
136
Xiaoling 99.1 137 [[image:image-20240924112806-1.png||height="548" width="894"]]
Edwin Chen 2.1 138
Edwin Chen 84.1 139
Edwin Chen 2.1 140
Edwin Chen 85.1 141 === 1.8.2 for LS version ===
Edwin Chen 2.1 142
Edwin Chen 84.1 143 [[image:image-20231231203439-3.png||height="385" width="886"]]
144
145
Saxer Lin 44.5 146 == 1.9 Hole Option ==
Edwin Chen 5.1 147
Xiaoling 43.4 148
Xiaoling 87.4 149 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
Edwin Chen 5.1 150
Xiaoling 113.2 151 [[image:image-20250329085729-1.jpeg]]
Edwin Chen 5.1 152
Xiaoling 113.2 153 [[image:image-20250329085744-2.jpeg]]
Edwin Chen 5.1 154
155
Xiaoling 87.4 156 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
Edwin Chen 2.1 157
158 == 2.1 How it works ==
159
160
Xiaoling 87.4 161 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 162
163
164 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
165
166
167 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
168
Xiaoling 44.3 169 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 170
Xiaoling 113.2 171 [[image:image-20250329090241-3.png]]
Edwin Chen 2.1 172
Xiaoling 87.4 173 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
Edwin Chen 2.1 174
Xiaoling 87.4 175 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 176
Xiaoling 113.2 177 [[image:image-20250329090300-4.jpeg]]
Edwin Chen 2.1 178
179
180 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
181
Xiaoling 125.2 182 **Create the application.**
Edwin Chen 2.1 183
Xiaoling 125.2 184 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
Edwin Chen 2.1 185
Xiaoling 125.2 186 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
Edwin Chen 2.1 187
188
Xiaoling 125.2 189 **Add devices to the created Application.**
Edwin Chen 2.1 190
Xiaoling 125.2 191 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
Edwin Chen 2.1 192
Xiaoling 125.2 193 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
Edwin Chen 2.1 194
195
Xiaoling 125.2 196 **Enter end device specifics manually.**
Edwin Chen 2.1 197
Xiaoling 125.2 198 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
Edwin Chen 2.1 199
200
Xiaoling 125.2 201 **Add DevEUI and AppKey.**
Edwin Chen 2.1 202
Xiaoling 125.2 203 **Customize a platform ID for the device.**
Edwin Chen 2.1 204
Xiaoling 125.2 205 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
Edwin Chen 2.1 206
Xiaoling 125.2 207
208 (% style="color:blue" %)**Step 2: **(%%)Add decoder.
209
210 In TTN, user can add a custom payload so it shows friendly reading.
211
212 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
213
214 Below is TTN screen shot:
215
216 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
217
218 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
219
220
221 (% style="color:blue" %)**Step 3:**(%%) Activate SN50v3-LB/LS
222
Xiaoling 87.4 223 Press the button for 5 seconds to activate the SN50v3-LB/LS.
Edwin Chen 2.1 224
225 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
226
227 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
228
229
230 == 2.3 ​Uplink Payload ==
231
232 === 2.3.1 Device Status, FPORT~=5 ===
233
234
Xiaoling 87.4 235 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 236
237 The Payload format is as below.
238
239
Xiaoling 87.41 240 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.24 241 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
Edwin Chen 2.1 242 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 243 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 244
245 Example parse in TTNv3
246
247
Xiaoling 87.4 248 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
Edwin Chen 2.1 249
250 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
251
252 (% style="color:#037691" %)**Frequency Band**:
253
Xiaoling 53.2 254 0x01: EU868
Edwin Chen 2.1 255
Xiaoling 53.2 256 0x02: US915
Edwin Chen 2.1 257
Xiaoling 53.2 258 0x03: IN865
Edwin Chen 2.1 259
Xiaoling 53.2 260 0x04: AU915
Edwin Chen 2.1 261
Xiaoling 53.2 262 0x05: KZ865
Edwin Chen 2.1 263
Xiaoling 53.2 264 0x06: RU864
Edwin Chen 2.1 265
Xiaoling 53.2 266 0x07: AS923
Edwin Chen 2.1 267
Xiaoling 53.2 268 0x08: AS923-1
Edwin Chen 2.1 269
Xiaoling 53.2 270 0x09: AS923-2
Edwin Chen 2.1 271
Xiaoling 53.2 272 0x0a: AS923-3
Edwin Chen 2.1 273
Xiaoling 53.2 274 0x0b: CN470
Edwin Chen 2.1 275
Xiaoling 53.2 276 0x0c: EU433
Edwin Chen 2.1 277
Xiaoling 53.2 278 0x0d: KR920
Edwin Chen 2.1 279
Xiaoling 53.2 280 0x0e: MA869
Edwin Chen 2.1 281
282
283 (% style="color:#037691" %)**Sub-Band**:
284
285 AU915 and US915:value 0x00 ~~ 0x08
286
287 CN470: value 0x0B ~~ 0x0C
288
289 Other Bands: Always 0x00
290
291
292 (% style="color:#037691" %)**Battery Info**:
293
294 Check the battery voltage.
295
296 Ex1: 0x0B45 = 2885mV
297
298 Ex2: 0x0B49 = 2889mV
299
300
Edwin Chen 12.1 301 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 302
303
Xiaoling 87.4 304 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
Edwin Chen 12.1 305
306 For example:
307
Xiaoling 44.2 308 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 309
310
Edwin Chen 13.1 311 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 312
Xiaoling 87.4 313 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 314
Xiaoling 44.2 315 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 316
Xiaoling 44.2 317 3. By default, the device will send an uplink message every 20 minutes.
318
319
Edwin Chen 13.1 320 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 321
Xiaoling 43.5 322
Edwin Chen 12.1 323 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
324
Xiaoling 87.32 325 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
326 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
Xiaoling 45.4 327 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 328 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 329 )))|(% style="width:78px" %)(((
Xiaoling 43.12 330 ADC(PA4)
Saxer Lin 26.2 331 )))|(% style="width:216px" %)(((
Xiaoling 43.13 332 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 333 )))|(% style="width:308px" %)(((
Xiaoling 43.12 334 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 335 )))|(% style="width:154px" %)(((
Xiaoling 43.12 336 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 337 )))
338
Edwin Chen 12.1 339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
340
341
Edwin Chen 13.1 342 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
343
Xiaoling 43.45 344
Edwin Chen 12.1 345 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
346
Xiaoling 87.34 347 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.33 348 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
Xiaoling 45.4 349 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 350 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 351 )))|(% style="width:87px" %)(((
Xiaoling 43.16 352 ADC(PA4)
Saxer Lin 40.1 353 )))|(% style="width:189px" %)(((
Xiaoling 43.16 354 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 355 )))|(% style="width:208px" %)(((
Xiaoling 53.2 356 Distance measure by: 1) LIDAR-Lite V3HP
357 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 358 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 359
360 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
361
Xiaoling 43.45 362
Xiaoling 43.17 363 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 364
Saxer Lin 26.2 365 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 366
Xiaoling 43.45 367
Xiaoling 43.17 368 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 369
Ellie Zhang 44.1 370 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 371
Saxer Lin 26.2 372 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 373
Xiaoling 43.45 374
Edwin Chen 12.1 375 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
376
Xiaoling 87.34 377 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
378 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
Xiaoling 45.5 379 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 380 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 381 )))|(% style="width:173px" %)(((
Xiaoling 43.19 382 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 383 )))|(% style="width:84px" %)(((
Xiaoling 43.19 384 ADC(PA4)
Saxer Lin 40.1 385 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 386 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 387 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 388 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 389
390 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
391
Xiaoling 43.45 392
Edwin Chen 12.1 393 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
394
Ellie Zhang 44.1 395 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 396
Saxer Lin 26.2 397 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 398
Xiaoling 43.45 399
Edwin Chen 12.1 400 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
401
Ellie Zhang 44.1 402 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 403
Saxer Lin 52.1 404 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 405
406
Edwin Chen 13.1 407 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
408
Xiaoling 43.45 409
Edwin Chen 12.1 410 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
411
Xiaoling 87.35 412 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 413 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Xiaoling 43.25 414 **Size(bytes)**
Xiaoling 87.35 415 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
Xiaoling 45.4 416 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 417 ADC1(PA4)
Saxer Lin 26.2 418 )))|(% style="width:75px" %)(((
Xiaoling 43.23 419 ADC2(PA5)
Saxer Lin 36.1 420 )))|(((
Xiaoling 43.23 421 ADC3(PA8)
Saxer Lin 36.1 422 )))|(((
423 Digital Interrupt(PB15)
424 )))|(% style="width:304px" %)(((
Xiaoling 43.23 425 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 426 )))|(% style="width:163px" %)(((
Xiaoling 43.23 427 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 428 )))|(% style="width:53px" %)Bat
429
430 [[image:image-20230513110214-6.png]]
431
432
Edwin Chen 13.1 433 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
434
Edwin Chen 12.1 435
Saxer Lin 26.2 436 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 437
Xiaoling 87.36 438 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
439 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
Xiaoling 45.4 440 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 441 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 442 )))|(% style="width:82px" %)(((
Xiaoling 43.27 443 ADC(PA4)
Saxer Lin 26.2 444 )))|(% style="width:210px" %)(((
Xiaoling 43.27 445 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 446 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 447 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 448
449 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
450
Xiaoling 44.4 451
Saxer Lin 39.2 452 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 453
Saxer Lin 39.1 454
Edwin Chen 13.1 455 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
456
Xiaoling 43.45 457
Saxer Lin 26.2 458 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 459
460 Each HX711 need to be calibrated before used. User need to do below two steps:
461
Xiaoling 44.2 462 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
463 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 464 1. (((
Saxer Lin 26.2 465 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 466
467
468
Edwin Chen 12.1 469 )))
470
471 For example:
472
Xiaoling 44.2 473 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 474
475 Response:  Weight is 401 g
476
477 Check the response of this command and adjust the value to match the real value for thing.
478
Xiaoling 87.37 479 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 480 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 481 **Size(bytes)**
Xiaoling 87.37 482 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 483 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 484 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 485 )))|(% style="width:85px" %)(((
Xiaoling 43.31 486 ADC(PA4)
Saxer Lin 40.1 487 )))|(% style="width:186px" %)(((
Xiaoling 43.55 488 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 489 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 490
Edwin Chen 12.1 491 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
492
493
Edwin Chen 13.1 494 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
495
Xiaoling 43.45 496
Edwin Chen 12.1 497 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
498
499 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
500
Saxer Lin 26.2 501 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 502
Xiaoling 43.53 503
Xiaoling 43.45 504 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 505
Xiaoling 87.38 506 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
507 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 508 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 509 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 510 )))|(% style="width:108px" %)(((
Xiaoling 43.31 511 ADC(PA4)
Saxer Lin 36.1 512 )))|(% style="width:126px" %)(((
Xiaoling 43.31 513 Digital in(PB15)
Saxer Lin 36.1 514 )))|(% style="width:145px" %)(((
Xiaoling 43.31 515 Count(PA8)
Saxer Lin 36.1 516 )))
517
Edwin Chen 12.1 518 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
519
520
Edwin Chen 13.1 521 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
522
Xiaoling 43.45 523
Xiaoling 87.39 524 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 525 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 526 **Size(bytes)**
Xiaoling 87.39 527 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 528 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 529 Temperature(DS18B20)
530 (PC13)
Saxer Lin 40.1 531 )))|(% style="width:83px" %)(((
Xiaoling 43.35 532 ADC(PA5)
Saxer Lin 40.1 533 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 534 Digital Interrupt1(PA8)
Saxer Lin 40.1 535 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 536
537 [[image:image-20230513111203-7.png||height="324" width="975"]]
538
Xiaoling 43.45 539
Edwin Chen 13.1 540 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
541
Xiaoling 43.45 542
Xiaoling 87.39 543 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 544 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 545 **Size(bytes)**
Xiaoling 87.39 546 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 547 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 548 Temperature(DS18B20)
549 (PC13)
550 )))|(% style="width:94px" %)(((
Xiaoling 43.36 551 ADC1(PA4)
Saxer Lin 36.1 552 )))|(% style="width:198px" %)(((
553 Digital Interrupt(PB15)
554 )))|(% style="width:84px" %)(((
Xiaoling 43.36 555 ADC2(PA5)
Saxer Lin 40.1 556 )))|(% style="width:82px" %)(((
Xiaoling 43.36 557 ADC3(PA8)
Edwin Chen 12.1 558 )))
559
Saxer Lin 36.1 560 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 561
562
Edwin Chen 13.1 563 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
564
Xiaoling 43.45 565
Xiaoling 87.40 566 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 567 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 568 **Size(bytes)**
Xiaoling 87.40 569 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
Xiaoling 45.4 570 |Value|BAT|(((
Xiaoling 43.58 571 Temperature
572 (DS18B20)(PC13)
Edwin Chen 12.1 573 )))|(((
Xiaoling 43.58 574 Temperature2
575 (DS18B20)(PB9)
Edwin Chen 12.1 576 )))|(((
Saxer Lin 36.1 577 Digital Interrupt
578 (PB15)
579 )))|(% style="width:193px" %)(((
Xiaoling 43.58 580 Temperature3
581 (DS18B20)(PB8)
Saxer Lin 36.1 582 )))|(% style="width:78px" %)(((
Xiaoling 43.39 583 Count1(PA8)
Saxer Lin 36.1 584 )))|(% style="width:78px" %)(((
Xiaoling 43.39 585 Count2(PA4)
Edwin Chen 12.1 586 )))
587
Saxer Lin 36.1 588 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 589
Xiaoling 43.40 590 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 591
Xiaoling 43.44 592 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 593
Xiaoling 43.44 594 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 595
Xiaoling 43.44 596 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 597
598
Xiaoling 43.41 599 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
600
Saxer Lin 36.1 601 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 602
Saxer Lin 36.1 603 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 604
605
Xiaoling 87.10 606 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
Saxer Lin 65.1 607
Xiaoling 87.10 608
Mengting Qiu 74.8 609 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 610
Saxer Lin 65.1 611 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
612
Xiaoling 74.3 613 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 614
Saxer Lin 69.1 615
Saxer Lin 65.1 616 ===== 2.3.2.10.a  Uplink, PWM input capture =====
617
Xiaoling 74.3 618
Saxer Lin 65.1 619 [[image:image-20230817172209-2.png||height="439" width="683"]]
620
Xiaoling 87.40 621 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
Xiaoling 87.24 622 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
Saxer Lin 65.1 623 |Value|Bat|(% style="width:191px" %)(((
624 Temperature(DS18B20)(PC13)
625 )))|(% style="width:78px" %)(((
626 ADC(PA4)
627 )))|(% style="width:135px" %)(((
628 PWM_Setting
629 &Digital Interrupt(PA8)
630 )))|(% style="width:70px" %)(((
631 Pulse period
632 )))|(% style="width:89px" %)(((
633 Duration of high level
634 )))
635
636 [[image:image-20230817170702-1.png||height="161" width="1044"]]
637
638
Saxer Lin 72.1 639 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 640
Xiaoling 117.3 641 **Frequency:**
Saxer Lin 65.1 642
Saxer Lin 72.1 643 (% class="MsoNormal" %)
Xiaoling 117.3 644 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 645
Saxer Lin 72.1 646 (% class="MsoNormal" %)
Xiaoling 117.3 647 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 648
Xiaoling 74.4 649
Saxer Lin 72.1 650 (% class="MsoNormal" %)
Xiaoling 74.4 651 **Duty cycle:**
Saxer Lin 72.1 652
653 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
654
655 [[image:image-20230818092200-1.png||height="344" width="627"]]
656
Xiaoling 87.10 657
Mengting Qiu 77.1 658 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 659
Xiaoling 87.10 660
Mengting Qiu 77.1 661 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 662
Mengting Qiu 79.1 663 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 664
Mengting Qiu 79.1 665 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 666
Mengting Qiu 79.1 667 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 668
Mengting Qiu 79.1 669 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 670
Mengting Qiu 79.1 671 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 672
Mengting Qiu 79.1 673 aa is the time delay of the output, the unit is ms.
674
675 bb is the output frequency, the unit is HZ.
676
677 cc is the duty cycle of the output, the unit is %.
678
679
680 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
681
682 The oscilloscope displays as follows:
683
Xiaoling 87.10 684 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
Mengting Qiu 79.1 685
686
Mengting Qiu 75.1 687 ===== 2.3.2.10.c  Downlink, PWM output =====
688
689
Saxer Lin 65.1 690 [[image:image-20230817173800-3.png||height="412" width="685"]]
691
692 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
693
694 xx xx xx is the output frequency, the unit is HZ.
695
696 yy is the duty cycle of the output, the unit is %.
697
698 zz zz is the time delay of the output, the unit is ms.
699
700
701 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
702
703 The oscilloscope displays as follows:
704
Xiaoling 87.10 705 [[image:image-20230817173858-5.png||height="634" width="843"]]
Saxer Lin 65.1 706
707
Mengting Qiu 89.1 708
Mengting Qiu 102.1 709 ==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
Mengting Qiu 89.1 710
711
712 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
713
714 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
715 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
716 |Value|Bat|(% style="width:191px" %)(((
717 Temperature(DS18B20)(PC13)
718 )))|(% style="width:78px" %)(((
719 ADC(PA4)
720 )))|(% style="width:216px" %)(((
721 Digital in(PB15)&Digital Interrupt(PA8)
722 )))|(% style="width:308px" %)(((
Mengting Qiu 96.1 723 Temperature
724 (TEMP117)
Mengting Qiu 89.1 725 )))|(% style="width:154px" %)(((
Mengting Qiu 96.1 726 Reserved position, meaningless
727 (0x0000)
Mengting Qiu 89.1 728 )))
729
Mengting Qiu 96.1 730 [[image:image-20240717113113-1.png||height="352" width="793"]]
Mengting Qiu 89.1 731
Mengting Qiu 96.1 732 Connection:
Mengting Qiu 89.1 733
Mengting Qiu 96.1 734 [[image:image-20240717141528-2.jpeg||height="430" width="654"]]
Mengting Qiu 89.1 735
736
Mengting Qiu 102.1 737 ==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
Mengting Qiu 89.1 738
739
Mengting Qiu 96.1 740 This mode has total 11 bytes. As shown below:
741
742 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
743 |=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
744 |Value|BAT|(% style="width:86px" %)(((
Saxer Lin 97.1 745 Temperature_SHT31
Mengting Qiu 96.1 746 )))|(% style="width:86px" %)(((
Saxer Lin 97.1 747 Humidity_SHT31
Mengting Qiu 96.1 748 )))|(% style="width:86px" %)(((
749 Digital in(PB15)
750 )))|(% style="width:86px" %)(((
751 Count(PA8)
752 )))
753
754 [[image:image-20240717150948-5.png||height="389" width="979"]]
755
756 Wiring example:
757
758 [[image:image-20240717152224-6.jpeg||height="359" width="680"]]
759
760
Edwin Chen 14.1 761 === 2.3.3  ​Decode payload ===
762
Xiaoling 43.45 763
Edwin Chen 12.1 764 While using TTN V3 network, you can add the payload format to decode the payload.
765
766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
767
768 The payload decoder function for TTN V3 are here:
769
Xiaoling 87.4 770 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 771
772
Edwin Chen 14.1 773 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 774
Xiaoling 43.45 775
Xiaoling 87.4 776 Check the battery voltage for SN50v3-LB/LS.
Edwin Chen 2.1 777
778 Ex1: 0x0B45 = 2885mV
779
780 Ex2: 0x0B49 = 2889mV
781
782
Edwin Chen 14.1 783 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 784
Xiaoling 43.45 785
Saxer Lin 42.1 786 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 787
Xiaoling 43.45 788 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 789
Xiaoling 43.41 790 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 791
Saxer Lin 26.2 792 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 793
Xiaoling 43.46 794
Xiaoling 43.41 795 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 796
797 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
798
799 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
800
Xiaoling 117.4 801 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
Edwin Chen 2.1 802
803
Edwin Chen 14.1 804 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 805
Xiaoling 43.46 806
Saxer Lin 26.2 807 The digital input for pin PB15,
Edwin Chen 2.1 808
Saxer Lin 26.2 809 * When PB15 is high, the bit 1 of payload byte 6 is 1.
810 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 811
Saxer Lin 26.2 812 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
813 (((
Saxer Lin 36.1 814 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
815
Xiaoling 43.46 816 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
817
818
Saxer Lin 26.2 819 )))
820
Edwin Chen 14.1 821 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 822
Xiaoling 43.46 823
Saxer Lin 53.1 824 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 825
Saxer Lin 53.1 826 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 827
Saxer Lin 26.2 828 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 829
Xiaoling 44.2 830
Xiaoling 43.46 831 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 832
Saxer Lin 43.1 833
Saxer Lin 59.1 834 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
835
836 [[image:image-20230811113449-1.png||height="370" width="608"]]
837
Xiaoling 87.10 838
839
Edwin Chen 14.1 840 ==== 2.3.3.5 Digital Interrupt ====
841
Xiaoling 43.46 842
Xiaoling 87.4 843 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
Edwin Chen 14.1 844
Xiaoling 43.44 845 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 846
Saxer Lin 36.1 847 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 848
Xiaoling 43.46 849
Xiaoling 43.8 850 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 851
852 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
853
854 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
855
Xiaoling 87.4 856 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 857
858
Xiaoling 43.46 859 (% style="color:blue" %)**Below is the installation example:**
860
Xiaoling 87.4 861 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
Edwin Chen 14.1 862
863 * (((
Xiaoling 87.4 864 One pin to SN50v3-LB/LS's PA8 pin
Edwin Chen 14.1 865 )))
866 * (((
Xiaoling 87.4 867 The other pin to SN50v3-LB/LS's VDD pin
Edwin Chen 14.1 868 )))
869
Saxer Lin 36.1 870 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 871
Xiaoling 43.46 872 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 873
Saxer Lin 36.1 874 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 875
876 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
877
878 The above photos shows the two parts of the magnetic switch fitted to a door.
879
880 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
881
882 The command is:
883
Xiaoling 44.2 884 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 885
886 Below shows some screen captures in TTN V3:
887
888 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
889
Xiaoling 43.47 890
Mengting Qiu 122.1 891 (% style="color:blue" %)**Application in different modes:**
Edwin Chen 14.1 892
Mengting Qiu 122.1 893 * In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 894
Mengting Qiu 122.1 895 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
Edwin Chen 14.1 896
Mengting Qiu 122.1 897
898 * In **MOD=7**, there are three interrupt pins in effect.
899
Mengting Qiu 123.1 900 See the **[[AT+INTMODx>>||anchor="H3.3.3SetInterruptMode"]] **command explained to set the three pin interrupt modes.
Mengting Qiu 122.1 901
902 As you can see from the byte parsing table of pattern 7, the seventh byte of the original load is used to display the PA8 pin interrupt flag and status, the eighth byte of the original load is used to display the PA4 pin interrupt flag and status, and the ninth byte of the original load is used to display the PB15 pin interrupt flag and status.
903
904 [[image:image-20250402103902-1.png]]
905
906 TTN V3 decoder is as below:
907
908 [[image:image-20250402104508-2.png||height="255" width="579"]]
909
910 (% style="color:red" %)**Note: mode in decoding is sorted from 0, so it corresponds to the actual working mode AT+MOD=7.**
911
912
913 (% style="color:#037691" %)**Interrupt flag: **(%%)"EXTI1/2/3_Trigger", indicates whether the uplink packet is generated by an interrupt on the PA8/PA4/PB15 pin.
914
915
916 (% style="color:#037691" %)**Interrupt status: **(%%)"EXTI1/2/3_Status", Displays the status of the interrupt sensors connected to the PA4/PA8/PB15 interrupt pins when the packet is uplinked.
917
918
Saxer Lin 26.2 919 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 920
Xiaoling 43.47 921
Saxer Lin 26.2 922 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 923
Saxer Lin 40.1 924 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 925
Xiaoling 87.4 926 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
Edwin Chen 14.1 927
Xiaoling 44.2 928
Edwin Chen 14.1 929 Below is the connection to SHT20/ SHT31. The connection is as below:
930
Saxer Lin 52.1 931 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 932
Xiaoling 44.4 933
Edwin Chen 14.1 934 The device will be able to get the I2C sensor data now and upload to IoT Server.
935
936 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
937
938 Convert the read byte to decimal and divide it by ten.
939
Edwin Chen 2.1 940 **Example:**
941
Edwin Chen 14.1 942 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 943
Edwin Chen 14.1 944 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 945
Edwin Chen 14.1 946 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 947
948
Edwin Chen 14.1 949 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 950
Xiaoling 43.48 951
Xiaoling 43.42 952 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 953
954
955 ==== 2.3.3.8 Ultrasonic Sensor ====
956
Xiaoling 43.48 957
Saxer Lin 26.2 958 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 959
Xiaoling 87.4 960 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 961
Xiaoling 43.44 962 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 963
Edwin Chen 14.1 964 The picture below shows the connection:
965
Saxer Lin 36.1 966 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 967
Xiaoling 43.50 968
Xiaoling 87.4 969 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 970
971 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
972
973 **Example:**
974
975 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
976
977
978 ==== 2.3.3.9  Battery Output - BAT pin ====
979
Xiaoling 43.50 980
Xiaoling 87.4 981 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
Edwin Chen 14.1 982
983
984 ==== 2.3.3.10  +5V Output ====
985
Xiaoling 43.50 986
Xiaoling 87.4 987 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 988
989 The 5V output time can be controlled by AT Command.
990
Xiaoling 43.9 991 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 992
993 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
994
Xiaoling 44.4 995 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 996
997
998 ==== 2.3.3.11  BH1750 Illumination Sensor ====
999
Xiaoling 43.50 1000
Edwin Chen 14.1 1001 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
1002
Saxer Lin 40.1 1003 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 1004
Xiaoling 43.51 1005
Saxer Lin 40.1 1006 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 1007
1008
Saxer Lin 65.1 1009 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 1010
Xiaoling 43.51 1011
Saxer Lin 69.1 1012 * (((
1013 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
1014 )))
1015 * (((
1016 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
1017 )))
1018
1019 [[image:image-20230817183249-3.png||height="320" width="417"]]
1020
1021 * (((
1022 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
1023 )))
1024 * (((
Xiaoling 74.2 1025 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 1026 )))
1027 * (((
Mengting Qiu 76.1 1028 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 1029
Mengting Qiu 74.8 1030 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 1031
Xiaoling 87.4 1032 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 1033
Mengting Qiu 76.1 1034 b) If the output duration is more than 30 seconds, better to use external power source. 
Xiaoling 118.1 1035
1036
1037
Xiaoling 87.4 1038 )))
Mengting Qiu 74.8 1039
Saxer Lin 65.1 1040 ==== 2.3.3.13  Working MOD ====
1041
1042
Edwin Chen 14.1 1043 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1044
1045 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1046
1047 Case 7^^th^^ Byte >> 2 & 0x1f:
1048
1049 * 0: MOD1
1050 * 1: MOD2
1051 * 2: MOD3
1052 * 3: MOD4
1053 * 4: MOD5
1054 * 5: MOD6
Saxer Lin 36.1 1055 * 6: MOD7
1056 * 7: MOD8
1057 * 8: MOD9
Saxer Lin 65.1 1058 * 9: MOD10
Edwin Chen 14.1 1059
Edwin Chen 2.1 1060 == 2.4 Payload Decoder file ==
1061
1062
1063 In TTN, use can add a custom payload so it shows friendly reading
1064
1065 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1066
Saxer Lin 40.1 1067 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 1068
1069
Edwin Chen 15.1 1070 == 2.5 Frequency Plans ==
Edwin Chen 2.1 1071
1072
Xiaoling 87.30 1073 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
Edwin Chen 2.1 1074
1075 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1076
1077
Xiaoling 87.4 1078 = 3. Configure SN50v3-LB/LS =
Edwin Chen 2.1 1079
1080 == 3.1 Configure Methods ==
1081
1082
Xiaoling 87.4 1083 SN50v3-LB/LS supports below configure method:
Edwin Chen 2.1 1084
1085 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1086 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1087 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1088
1089 == 3.2 General Commands ==
1090
1091
1092 These commands are to configure:
1093
1094 * General system settings like: uplink interval.
1095 * LoRaWAN protocol & radio related command.
1096
1097 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1098
1099 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1100
1101
Xiaoling 87.4 1102 == 3.3 Commands special design for SN50v3-LB/LS ==
Edwin Chen 2.1 1103
1104
Xiaoling 87.4 1105 These commands only valid for SN50v3-LB/LS, as below:
Edwin Chen 2.1 1106
1107
1108 === 3.3.1 Set Transmit Interval Time ===
1109
Xiaoling 43.51 1110
Edwin Chen 2.1 1111 Feature: Change LoRaWAN End Node Transmit Interval.
1112
1113 (% style="color:blue" %)**AT Command: AT+TDC**
1114
1115 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1116 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 2.1 1117 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1118 30000
1119 OK
1120 the interval is 30000ms = 30s
1121 )))
1122 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1123 OK
1124 Set transmit interval to 60000ms = 60 seconds
1125 )))
1126
1127 (% style="color:blue" %)**Downlink Command: 0x01**
1128
1129 Format: Command Code (0x01) followed by 3 bytes time value.
1130
1131 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1132
1133 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1134 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1135
1136 === 3.3.2 Get Device Status ===
1137
Xiaoling 43.52 1138
Saxer Lin 40.1 1139 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1140
Xiaoling 44.4 1141 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1142
Xiaoling 44.4 1143 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1144
1145
Saxer Lin 36.1 1146 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1147
Xiaoling 43.52 1148
Mengting Qiu 109.1 1149 ==== 3.3.3.1 Before V1.3.4 firmware ====
Mengting Qiu 107.2 1150
Mengting Qiu 109.1 1151 (% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
Mengting Qiu 107.2 1152
Bei Jinggeng 107.1 1153 Feature, Set Interrupt mode for PA8, PA4, PB15.
Edwin Chen 2.1 1154
Mengting Qiu 103.1 1155 Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
Edwin Chen 2.1 1156
Mengting Qiu 108.1 1157 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
Saxer Lin 36.1 1158
Mengting Qiu 103.1 1159 (% style="color:#4472c4" %)**AT+INTMODx:**
Edwin Chen 2.1 1160
Bei Jinggeng 107.1 1161 * (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1162 * (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1163 * (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
Mengting Qiu 103.1 1164
Mengting Qiu 108.1 1165 **Parameter a setting:**
Mengting Qiu 103.1 1166
1167 * **0:** Disable Interrupt
1168 * **1:** Trigger by rising and falling edge
1169 * **2:** Trigger by falling edge
1170 * **3: **Trigger by rising edge
1171
1172 **Example:**
1173
Bei Jinggeng 107.1 1174 * AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1175 * AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1176 * AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
Mengting Qiu 103.1 1177
1178 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1179
Mengting Qiu 108.1 1180 Format: Command Code (0x06 00) followed by 2 bytes.
Edwin Chen 2.1 1181
Bei Jinggeng 107.1 1182 (% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
Edwin Chen 2.1 1183
Mengting Qiu 103.1 1184 (% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
Edwin Chen 2.1 1185
Mengting Qiu 103.1 1186 **Example:**
1187
1188 * Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1189 * Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1190 * Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1191
Mengting Qiu 109.1 1192 ==== 3.3.3.2 Since V1.3.4 firmware ====
Mengting Qiu 107.2 1193
Mengting Qiu 109.1 1194 (% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
Mengting Qiu 107.2 1195
Mengting Qiu 108.1 1196 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
Mengting Qiu 107.2 1197
Xiaoling 117.4 1198 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
1199 |=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 304px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
Mengting Qiu 108.1 1200 |(% style="width:116px" %)(((
1201
Mengting Qiu 107.2 1202
Mengting Qiu 108.1 1203 **x**
1204 )))|(% style="width:392px" %)(((
1205 1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
Mengting Qiu 107.2 1206
Mengting Qiu 108.1 1207 2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
Mengting Qiu 107.2 1208
Mengting Qiu 108.1 1209 3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1210 )))
1211 |(% style="width:116px" %)(((
1212
Mengting Qiu 107.2 1213
Mengting Qiu 108.1 1214 **a**
1215 )))|(% style="width:392px" %)(((
1216 **0:** Disable Interrupt
1217
1218 **1:** Trigger by rising and falling edge
1219
1220 **2:** Trigger by falling edge
1221
1222 **3: **Trigger by rising edge
1223 )))
1224 |(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1225 Set the delay time. (Default: 0)
1226
1227 **Value range: 0~~65535 ms**
1228 )))
1229
1230 **Example:**
1231
Xiaoling 119.1 1232 * AT+INTMOD1=0,0  ~/~/ Disable the PA8 pin interrupt function
1233 * AT+INTMOD2=2,1000  ~/~/ Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1234 * AT+INTMOD3=3,2500  ~/~/ Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
Mengting Qiu 108.1 1235
1236 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1237
1238 Format: Command Code (0x06 00) followed by 4 bytes.
1239
1240 (% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1241
1242 (% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1243
1244 (% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1245
1246 **Example:**
1247
Mengting Qiu 109.1 1248 * Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1249 * Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1250 * Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
Mengting Qiu 108.1 1251
Saxer Lin 36.1 1252 === 3.3.4 Set Power Output Duration ===
1253
Xiaoling 43.52 1254
Saxer Lin 36.1 1255 Control the output duration 5V . Before each sampling, device will
1256
1257 ~1. first enable the power output to external sensor,
1258
1259 2. keep it on as per duration, read sensor value and construct uplink payload
1260
1261 3. final, close the power output.
1262
1263 (% style="color:blue" %)**AT Command: AT+5VT**
1264
1265 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1266 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1267 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1268 500(default)
1269 OK
1270 )))
1271 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1272 Close after a delay of 1000 milliseconds.
1273 )))|(% style="width:157px" %)OK
1274
1275 (% style="color:blue" %)**Downlink Command: 0x07**
1276
1277 Format: Command Code (0x07) followed by 2 bytes.
1278
1279 The first and second bytes are the time to turn on.
1280
Saxer Lin 40.1 1281 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1282 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1283
1284 === 3.3.5 Set Weighing parameters ===
1285
Xiaoling 43.52 1286
Saxer Lin 37.1 1287 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1288
1289 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1290
1291 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1292 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 37.1 1293 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
Xiaoling 87.16 1294 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
Saxer Lin 37.1 1295 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1296
1297 (% style="color:blue" %)**Downlink Command: 0x08**
1298
Saxer Lin 37.1 1299 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1300
Saxer Lin 37.1 1301 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1302
Saxer Lin 37.1 1303 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1304
Saxer Lin 37.1 1305 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1306 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1307 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1308
Saxer Lin 36.1 1309 === 3.3.6 Set Digital pulse count value ===
1310
Xiaoling 43.52 1311
Saxer Lin 36.1 1312 Feature: Set the pulse count value.
1313
Saxer Lin 37.1 1314 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1315
Saxer Lin 36.1 1316 (% style="color:blue" %)**AT Command: AT+SETCNT**
1317
Xiaoling 87.41 1318 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1319 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1320 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1321 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1322
1323 (% style="color:blue" %)**Downlink Command: 0x09**
1324
1325 Format: Command Code (0x09) followed by 5 bytes.
1326
1327 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1328
1329 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1330 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1331
1332 === 3.3.7 Set Workmode ===
1333
Xiaoling 43.52 1334
Saxer Lin 37.1 1335 Feature: Switch working mode.
Saxer Lin 36.1 1336
1337 (% style="color:blue" %)**AT Command: AT+MOD**
1338
Xiaoling 87.41 1339 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1340 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1341 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1342 OK
1343 )))
1344 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1345 OK
1346 Attention:Take effect after ATZ
1347 )))
1348
1349 (% style="color:blue" %)**Downlink Command: 0x0A**
1350
1351 Format: Command Code (0x0A) followed by 1 bytes.
1352
1353 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1354 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1355
Saxer Lin 72.1 1356 === 3.3.8 PWM setting ===
1357
Xiaoling 74.5 1358
Xiaoling 87.24 1359 Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1360
1361 (% style="color:blue" %)**AT Command: AT+PWMSET**
1362
Xiaoling 87.41 1363 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.17 1364 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1365 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1366 0(default)
1367 OK
1368 )))
Mengting Qiu 77.1 1369 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1370 OK
1371
1372 )))
Mengting Qiu 77.1 1373 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1374
1375 (% style="color:blue" %)**Downlink Command: 0x0C**
1376
1377 Format: Command Code (0x0C) followed by 1 bytes.
1378
1379 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1380 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1381
Xiaoling 87.24 1382 **Feature: Set PWM output time, output frequency and output duty cycle.**
1383
Mengting Qiu 76.1 1384 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1385
Xiaoling 87.41 1386 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.21 1387 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1388 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1389 0,0,0(default)
1390 OK
1391 )))
Mengting Qiu 77.1 1392 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1393 OK
1394
1395 )))
Mengting Qiu 77.1 1396 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1397 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1398
Mengting Qiu 77.1 1399
1400 )))|(% style="width:137px" %)(((
1401 OK
1402 )))
1403
Xiaoling 87.41 1404 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 117.4 1405 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 243px; background-color:#4F81BD;color:white" %)**parameters**
Mengting Qiu 77.1 1406 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1407 AT+PWMOUT=a,b,c
1408
1409
1410 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1411 Set PWM output time, output frequency and output duty cycle.
1412
1413 (((
Mengting Qiu 77.1 1414
1415 )))
1416
1417 (((
1418
1419 )))
1420 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1421 a: Output time (unit: seconds)
Mengting Qiu 77.1 1422 The value ranges from 0 to 65535.
1423 When a=65535, PWM will always output.
1424 )))
1425 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1426 b: Output frequency (unit: HZ)
Bei Jinggeng 106.1 1427
1428 range 5~~100000HZ
Mengting Qiu 77.1 1429 )))
1430 |(% style="width:242px" %)(((
1431 c: Output duty cycle (unit: %)
1432 The value ranges from 0 to 100.
Mengting Qiu 76.1 1433 )))
1434
Bei Jinggeng 105.1 1435 (% style="color:blue" %)**Downlink Command: 0x0B**
Mengting Qiu 76.1 1436
Bei Jinggeng 105.1 1437 Format: Command Code (0x0B) followed by 6 bytes.
Mengting Qiu 76.1 1438
Bei Jinggeng 105.1 1439 0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
Mengting Qiu 76.1 1440
Bei Jinggeng 105.1 1441 Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1442
Bei Jinggeng 105.1 1443 * Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1444 * Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1445
Mengting Qiu 79.1 1446 = 4. Battery & Power Cons =
1447
1448
Xiaoling 87.6 1449 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1450
1451 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1452
1453
1454 = 5. OTA Firmware update =
1455
1456
1457 (% class="wikigeneratedid" %)
Xiaoling 87.4 1458 **User can change firmware SN50v3-LB/LS to:**
Edwin Chen 2.1 1459
1460 * Change Frequency band/ region.
1461 * Update with new features.
1462 * Fix bugs.
1463
Xiaoling 52.2 1464 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1465
Xiaoling 44.4 1466 **Methods to Update Firmware:**
Edwin Chen 2.1 1467
Xiaoling 53.3 1468 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1469 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1470
Bei Jinggeng 101.1 1471 = 6.  Developer Guide =
Edwin Chen 2.1 1472
Bei Jinggeng 101.1 1473 SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
Edwin Chen 2.1 1474
Bei Jinggeng 101.1 1475 * (((
1476 Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1477 )))
1478 * (((
1479 Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1480 )))
1481 * (((
1482 Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1483 )))
Xiaoling 43.52 1484
Bei Jinggeng 101.1 1485 **~1. If you want to change frequency, modify the Preprocessor Symbols.**
Edwin Chen 2.1 1486
Bei Jinggeng 101.1 1487 For example, change EU868 to US915
Xiaoling 55.2 1488
Bei Jinggeng 101.1 1489 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
Xiaoling 55.2 1490
Bei Jinggeng 101.1 1491 **2. Compile and build**
1492
1493 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1494
1495 = 7. FAQ =
1496
1497 == 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1498
1499
Edwin Chen 55.1 1500 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1501
1502
Bei Jinggeng 101.1 1503 == 7.2 How to put several sensors to a SN50v3-LB/LS? ==
Edwin Chen 57.1 1504
Xiaoling 57.2 1505
Xiaoling 87.4 1506 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
Edwin Chen 57.1 1507
1508 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1509
1510 [[image:image-20230810121434-1.png||height="242" width="656"]]
1511
1512
Bei Jinggeng 101.1 1513 = 8. Order Info =
Edwin Chen 2.1 1514
1515
Xiaoling 87.9 1516 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
Edwin Chen 2.1 1517
1518 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1519
Edwin Chen 2.1 1520 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1521 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1522 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1523 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1524 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1525 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1526 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1527 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1528
Edwin Chen 10.1 1529 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1530
Edwin Chen 10.1 1531 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1532 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1533 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1534 * (% style="color:red" %)**NH**(%%): No Hole
1535
Bei Jinggeng 101.1 1536 = 9. ​Packing Info =
Edwin Chen 2.1 1537
Xiaoling 43.52 1538
Edwin Chen 2.1 1539 (% style="color:#037691" %)**Package Includes**:
1540
Xiaoling 87.4 1541 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
Edwin Chen 2.1 1542
1543 (% style="color:#037691" %)**Dimension and weight**:
1544
Mengting Qiu 127.1 1545 (% style="color:blue" %)**Package Size / pcs :**
Edwin Chen 2.1 1546
Mengting Qiu 127.1 1547 * For SN50v3-LB: 140*80*50 mm
1548 * For SN50v3-LS: 160*105*45 mm
1549
1550 (% style="color:blue" %)**Weight / pcs :**(%%)** **
1551
1552 * For SN50v3-LB: 225 g
1553 * For SN50v3-LS: 290 g
1554
Bei Jinggeng 101.1 1555 = 10. Support =
Edwin Chen 2.1 1556
1557
1558 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1559
Xiaoling 41.4 1560 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]