Version 136.1 by Xiaoling on 2025/06/10 09:23

Hide last authors
Xiaoling 87.2 1
2
Xiaoling 41.2 3 (% style="text-align:center" %)
Xiaoling 87.2 4 [[image:image-20240103095714-2.png]]
Edwin Chen 2.1 5
6
7
Xiaoling 87.2 8
9
10
Xiaoling 79.3 11 **Table of Contents:**
Edwin Chen 2.1 12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
Xiaoling 87.3 22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
Edwin Chen 2.1 23
Xiaoling 43.2 24
Xiaoling 99.2 25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 26
Xiaoling 87.3 27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 28
Xiaoling 87.3 29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
Edwin Chen 2.1 30
Xiaoling 87.3 31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 32
Xiaoling 87.3 33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 34
35 == 1.2 ​Features ==
36
Xiaoling 43.44 37
Edwin Chen 2.1 38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
Edwin Chen 5.1 40 * Open-Source hardware/software
Edwin Chen 2.1 41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
Xiaoling 87.26 46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
Xiaoling 99.2 47 * Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
Edwin Chen 2.1 48
49 == 1.3 Specification ==
50
Xiaoling 43.4 51
Edwin Chen 2.1 52 (% style="color:#037691" %)**Common DC Characteristics:**
53
Xiaoling 87.28 54 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
Edwin Chen 2.1 55 * Operating Temperature: -40 ~~ 85°C
56
Edwin Chen 5.1 57 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 58
Edwin Chen 5.1 59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
Edwin Chen 2.1 65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
Xiaoling 43.4 88
Edwin Chen 2.1 89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
Xiaoling 124.2 97 [[image:image-20250415113729-1.jpeg]]
Edwin Chen 2.1 98
Xiaoling 87.41 99 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.31 100 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
Xiaoling 133.2 101 |[[image:image-20250609112206-2.png||height="31" width="25"]] [[image:image-20250609112308-5.png||height="26" width="26"]] 1~~3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
Edwin Chen 2.1 102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
Xiaoling 133.2 105 |[[image:image-20250609112209-3.png||height="31" width="25"]] [[image:image-20250609112311-6.png||height="26" width="26"]] >3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
Edwin Chen 2.1 106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
Xiaoling 133.2 110 |[[image:image-20250609112212-4.png||height="31" width="25"]] x5|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
Edwin Chen 2.1 111
112 == 1.6 BLE connection ==
113
114
Xiaoling 87.4 115 SN50v3-LB/LS supports BLE remote configure.
Edwin Chen 2.1 116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
Edwin Chen 6.1 127 == 1.7 Pin Definitions ==
Edwin Chen 2.1 128
129
Saxer Lin 49.1 130 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 131
132
133 == 1.8 Mechanical ==
134
Edwin Chen 85.1 135 === 1.8.1 for LB version ===
Edwin Chen 2.1 136
137
Xiaoling 99.1 138 [[image:image-20240924112806-1.png||height="548" width="894"]]
Edwin Chen 2.1 139
Edwin Chen 84.1 140
Edwin Chen 2.1 141
Edwin Chen 85.1 142 === 1.8.2 for LS version ===
Edwin Chen 2.1 143
Edwin Chen 84.1 144 [[image:image-20231231203439-3.png||height="385" width="886"]]
145
146
Saxer Lin 44.5 147 == 1.9 Hole Option ==
Edwin Chen 5.1 148
Xiaoling 43.4 149
Xiaoling 87.4 150 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
Edwin Chen 5.1 151
Xiaoling 113.2 152 [[image:image-20250329085729-1.jpeg]]
Edwin Chen 5.1 153
Xiaoling 113.2 154 [[image:image-20250329085744-2.jpeg]]
Edwin Chen 5.1 155
156
Xiaoling 87.4 157 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
Edwin Chen 2.1 158
159 == 2.1 How it works ==
160
161
Xiaoling 87.4 162 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 163
164
165 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
166
167
168 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169
Xiaoling 44.3 170 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 171
Xiaoling 113.2 172 [[image:image-20250329090241-3.png]]
Edwin Chen 2.1 173
Xiaoling 87.4 174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
Edwin Chen 2.1 175
Xiaoling 87.4 176 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 177
Xiaoling 113.2 178 [[image:image-20250329090300-4.jpeg]]
Edwin Chen 2.1 179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
Xiaoling 125.2 183 **Create the application.**
Edwin Chen 2.1 184
Xiaoling 125.2 185 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
Edwin Chen 2.1 186
Xiaoling 125.2 187 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
Edwin Chen 2.1 188
189
Xiaoling 125.2 190 **Add devices to the created Application.**
Edwin Chen 2.1 191
Xiaoling 125.2 192 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
Edwin Chen 2.1 193
Xiaoling 125.2 194 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
Edwin Chen 2.1 195
196
Xiaoling 125.2 197 **Enter end device specifics manually.**
Edwin Chen 2.1 198
Xiaoling 125.2 199 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
Edwin Chen 2.1 200
201
Xiaoling 125.2 202 **Add DevEUI and AppKey.**
Edwin Chen 2.1 203
Xiaoling 125.2 204 **Customize a platform ID for the device.**
Edwin Chen 2.1 205
Xiaoling 125.2 206 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
Edwin Chen 2.1 207
Xiaoling 125.2 208
209 (% style="color:blue" %)**Step 2: **(%%)Add decoder.
210
211 In TTN, user can add a custom payload so it shows friendly reading.
212
213 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
214
215 Below is TTN screen shot:
216
217 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
218
219 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
220
221
222 (% style="color:blue" %)**Step 3:**(%%) Activate SN50v3-LB/LS
223
Xiaoling 87.4 224 Press the button for 5 seconds to activate the SN50v3-LB/LS.
Edwin Chen 2.1 225
226 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
227
228 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
229
230
231 == 2.3 ​Uplink Payload ==
232
233 === 2.3.1 Device Status, FPORT~=5 ===
234
235
Xiaoling 87.4 236 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 237
238 The Payload format is as below.
239
240
Xiaoling 87.41 241 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.24 242 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
Edwin Chen 2.1 243 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 244 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 245
246 Example parse in TTNv3
247
248
Xiaoling 87.4 249 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
Edwin Chen 2.1 250
251 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
252
253 (% style="color:#037691" %)**Frequency Band**:
254
Xiaoling 53.2 255 0x01: EU868
Edwin Chen 2.1 256
Xiaoling 53.2 257 0x02: US915
Edwin Chen 2.1 258
Xiaoling 53.2 259 0x03: IN865
Edwin Chen 2.1 260
Xiaoling 53.2 261 0x04: AU915
Edwin Chen 2.1 262
Xiaoling 53.2 263 0x05: KZ865
Edwin Chen 2.1 264
Xiaoling 53.2 265 0x06: RU864
Edwin Chen 2.1 266
Xiaoling 53.2 267 0x07: AS923
Edwin Chen 2.1 268
Xiaoling 53.2 269 0x08: AS923-1
Edwin Chen 2.1 270
Xiaoling 53.2 271 0x09: AS923-2
Edwin Chen 2.1 272
Xiaoling 53.2 273 0x0a: AS923-3
Edwin Chen 2.1 274
Xiaoling 53.2 275 0x0b: CN470
Edwin Chen 2.1 276
Xiaoling 53.2 277 0x0c: EU433
Edwin Chen 2.1 278
Xiaoling 53.2 279 0x0d: KR920
Edwin Chen 2.1 280
Xiaoling 53.2 281 0x0e: MA869
Edwin Chen 2.1 282
283
284 (% style="color:#037691" %)**Sub-Band**:
285
286 AU915 and US915:value 0x00 ~~ 0x08
287
288 CN470: value 0x0B ~~ 0x0C
289
290 Other Bands: Always 0x00
291
292
293 (% style="color:#037691" %)**Battery Info**:
294
295 Check the battery voltage.
296
297 Ex1: 0x0B45 = 2885mV
298
299 Ex2: 0x0B49 = 2889mV
300
301
Edwin Chen 12.1 302 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 303
304
Xiaoling 87.4 305 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
Edwin Chen 12.1 306
307 For example:
308
Xiaoling 44.2 309 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 310
311
Edwin Chen 13.1 312 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 313
Xiaoling 87.4 314 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 315
Xiaoling 44.2 316 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 317
Xiaoling 44.2 318 3. By default, the device will send an uplink message every 20 minutes.
319
320
Edwin Chen 13.1 321 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 322
Xiaoling 43.5 323
Edwin Chen 12.1 324 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
325
Xiaoling 87.32 326 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
327 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
Xiaoling 45.4 328 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 329 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 330 )))|(% style="width:78px" %)(((
Xiaoling 43.12 331 ADC(PA4)
Saxer Lin 26.2 332 )))|(% style="width:216px" %)(((
Xiaoling 43.13 333 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 334 )))|(% style="width:308px" %)(((
Xiaoling 43.12 335 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 336 )))|(% style="width:154px" %)(((
Xiaoling 43.12 337 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 338 )))
339
Edwin Chen 12.1 340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
341
342
Edwin Chen 13.1 343 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
344
Xiaoling 43.45 345
Edwin Chen 12.1 346 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
347
Xiaoling 87.34 348 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.33 349 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
Xiaoling 45.4 350 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 351 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 352 )))|(% style="width:87px" %)(((
Xiaoling 43.16 353 ADC(PA4)
Saxer Lin 40.1 354 )))|(% style="width:189px" %)(((
Xiaoling 43.16 355 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 356 )))|(% style="width:208px" %)(((
Xiaoling 53.2 357 Distance measure by: 1) LIDAR-Lite V3HP
358 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 359 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 360
361 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
362
Xiaoling 43.45 363
Xiaoling 43.17 364 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 365
Saxer Lin 26.2 366 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 367
Xiaoling 43.45 368
Xiaoling 43.17 369 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 370
Ellie Zhang 44.1 371 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 372
Saxer Lin 26.2 373 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 374
Xiaoling 43.45 375
Edwin Chen 12.1 376 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
377
Xiaoling 87.34 378 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
379 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
Xiaoling 45.5 380 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 381 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 382 )))|(% style="width:173px" %)(((
Xiaoling 43.19 383 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 384 )))|(% style="width:84px" %)(((
Xiaoling 43.19 385 ADC(PA4)
Saxer Lin 40.1 386 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 387 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 388 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 389 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 390
391 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
392
Xiaoling 43.45 393
Edwin Chen 12.1 394 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
395
Ellie Zhang 44.1 396 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 397
Saxer Lin 26.2 398 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 399
Xiaoling 43.45 400
Edwin Chen 12.1 401 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
402
Ellie Zhang 44.1 403 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 404
Saxer Lin 52.1 405 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 406
407
Edwin Chen 13.1 408 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
409
Xiaoling 43.45 410
Edwin Chen 12.1 411 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
412
Xiaoling 87.35 413 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 414 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Xiaoling 43.25 415 **Size(bytes)**
Xiaoling 87.35 416 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
Xiaoling 45.4 417 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 418 ADC1(PA4)
Saxer Lin 26.2 419 )))|(% style="width:75px" %)(((
Xiaoling 43.23 420 ADC2(PA5)
Saxer Lin 36.1 421 )))|(((
Xiaoling 43.23 422 ADC3(PA8)
Saxer Lin 36.1 423 )))|(((
424 Digital Interrupt(PB15)
425 )))|(% style="width:304px" %)(((
Xiaoling 43.23 426 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 427 )))|(% style="width:163px" %)(((
Xiaoling 43.23 428 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 429 )))|(% style="width:53px" %)Bat
430
431 [[image:image-20230513110214-6.png]]
432
433
Edwin Chen 13.1 434 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
435
Edwin Chen 12.1 436
Saxer Lin 26.2 437 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 438
Xiaoling 87.36 439 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
440 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
Xiaoling 45.4 441 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 442 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 443 )))|(% style="width:82px" %)(((
Xiaoling 43.27 444 ADC(PA4)
Saxer Lin 26.2 445 )))|(% style="width:210px" %)(((
Xiaoling 43.27 446 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 447 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 448 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 449
450 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
451
Xiaoling 44.4 452
Saxer Lin 39.2 453 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 454
Saxer Lin 39.1 455
Edwin Chen 13.1 456 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
457
Xiaoling 43.45 458
Saxer Lin 26.2 459 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 460
461 Each HX711 need to be calibrated before used. User need to do below two steps:
462
Xiaoling 44.2 463 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
464 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 465 1. (((
Saxer Lin 26.2 466 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 467
468
469
Edwin Chen 12.1 470 )))
471
472 For example:
473
Xiaoling 44.2 474 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 475
476 Response:  Weight is 401 g
477
478 Check the response of this command and adjust the value to match the real value for thing.
479
Xiaoling 87.37 480 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 481 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 482 **Size(bytes)**
Xiaoling 87.37 483 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 484 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 485 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 486 )))|(% style="width:85px" %)(((
Xiaoling 43.31 487 ADC(PA4)
Saxer Lin 40.1 488 )))|(% style="width:186px" %)(((
Xiaoling 43.55 489 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 490 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 491
Edwin Chen 12.1 492 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
493
494
Edwin Chen 13.1 495 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
496
Xiaoling 43.45 497
Edwin Chen 12.1 498 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
499
500 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
501
Saxer Lin 26.2 502 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 503
Xiaoling 43.53 504
Xiaoling 43.45 505 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 506
Xiaoling 87.38 507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 509 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 510 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 511 )))|(% style="width:108px" %)(((
Xiaoling 43.31 512 ADC(PA4)
Saxer Lin 36.1 513 )))|(% style="width:126px" %)(((
Xiaoling 43.31 514 Digital in(PB15)
Saxer Lin 36.1 515 )))|(% style="width:145px" %)(((
Xiaoling 43.31 516 Count(PA8)
Saxer Lin 36.1 517 )))
518
Edwin Chen 12.1 519 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
520
521
Edwin Chen 13.1 522 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
523
Xiaoling 43.45 524
Xiaoling 87.39 525 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 526 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 527 **Size(bytes)**
Xiaoling 87.39 528 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 529 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 530 Temperature(DS18B20)
531 (PC13)
Saxer Lin 40.1 532 )))|(% style="width:83px" %)(((
Xiaoling 43.35 533 ADC(PA5)
Saxer Lin 40.1 534 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 535 Digital Interrupt1(PA8)
Saxer Lin 40.1 536 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 537
538 [[image:image-20230513111203-7.png||height="324" width="975"]]
539
Xiaoling 43.45 540
Edwin Chen 13.1 541 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
542
Xiaoling 43.45 543
Xiaoling 87.39 544 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 545 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 546 **Size(bytes)**
Xiaoling 87.39 547 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 548 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 549 Temperature(DS18B20)
550 (PC13)
551 )))|(% style="width:94px" %)(((
Xiaoling 43.36 552 ADC1(PA4)
Saxer Lin 36.1 553 )))|(% style="width:198px" %)(((
554 Digital Interrupt(PB15)
555 )))|(% style="width:84px" %)(((
Xiaoling 43.36 556 ADC2(PA5)
Saxer Lin 40.1 557 )))|(% style="width:82px" %)(((
Xiaoling 43.36 558 ADC3(PA8)
Edwin Chen 12.1 559 )))
560
Saxer Lin 36.1 561 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 562
563
Edwin Chen 13.1 564 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
565
Xiaoling 43.45 566
Xiaoling 87.40 567 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 568 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 569 **Size(bytes)**
Xiaoling 87.40 570 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
Xiaoling 45.4 571 |Value|BAT|(((
Xiaoling 43.58 572 Temperature
573 (DS18B20)(PC13)
Edwin Chen 12.1 574 )))|(((
Xiaoling 43.58 575 Temperature2
576 (DS18B20)(PB9)
Edwin Chen 12.1 577 )))|(((
Saxer Lin 36.1 578 Digital Interrupt
579 (PB15)
580 )))|(% style="width:193px" %)(((
Xiaoling 43.58 581 Temperature3
582 (DS18B20)(PB8)
Saxer Lin 36.1 583 )))|(% style="width:78px" %)(((
Xiaoling 43.39 584 Count1(PA8)
Saxer Lin 36.1 585 )))|(% style="width:78px" %)(((
Xiaoling 43.39 586 Count2(PA4)
Edwin Chen 12.1 587 )))
588
Saxer Lin 36.1 589 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 590
Xiaoling 43.40 591 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 592
Xiaoling 43.44 593 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 594
Xiaoling 43.44 595 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 596
Xiaoling 43.44 597 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 598
599
Xiaoling 43.41 600 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
601
Saxer Lin 36.1 602 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 603
Saxer Lin 36.1 604 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 605
606
Xiaoling 87.10 607 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
Saxer Lin 65.1 608
Xiaoling 87.10 609
Mengting Qiu 74.8 610 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 611
Saxer Lin 65.1 612 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
613
Xiaoling 74.3 614 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 615
Saxer Lin 69.1 616
Saxer Lin 65.1 617 ===== 2.3.2.10.a  Uplink, PWM input capture =====
618
Xiaoling 74.3 619
Saxer Lin 65.1 620 [[image:image-20230817172209-2.png||height="439" width="683"]]
621
Xiaoling 87.40 622 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
Xiaoling 87.24 623 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
Saxer Lin 65.1 624 |Value|Bat|(% style="width:191px" %)(((
625 Temperature(DS18B20)(PC13)
626 )))|(% style="width:78px" %)(((
627 ADC(PA4)
628 )))|(% style="width:135px" %)(((
629 PWM_Setting
630 &Digital Interrupt(PA8)
631 )))|(% style="width:70px" %)(((
632 Pulse period
633 )))|(% style="width:89px" %)(((
634 Duration of high level
635 )))
636
637 [[image:image-20230817170702-1.png||height="161" width="1044"]]
638
639
Saxer Lin 72.1 640 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 641
Xiaoling 117.3 642 **Frequency:**
Saxer Lin 65.1 643
Saxer Lin 72.1 644 (% class="MsoNormal" %)
Xiaoling 117.3 645 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 646
Saxer Lin 72.1 647 (% class="MsoNormal" %)
Xiaoling 117.3 648 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 649
Xiaoling 74.4 650
Saxer Lin 72.1 651 (% class="MsoNormal" %)
Xiaoling 74.4 652 **Duty cycle:**
Saxer Lin 72.1 653
654 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
655
656 [[image:image-20230818092200-1.png||height="344" width="627"]]
657
Xiaoling 87.10 658
Mengting Qiu 77.1 659 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 660
Xiaoling 87.10 661
Mengting Qiu 77.1 662 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 663
Mengting Qiu 79.1 664 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 665
Mengting Qiu 79.1 666 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 667
Mengting Qiu 79.1 668 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 669
Mengting Qiu 79.1 670 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 671
Mengting Qiu 79.1 672 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 673
Mengting Qiu 79.1 674 aa is the time delay of the output, the unit is ms.
675
676 bb is the output frequency, the unit is HZ.
677
678 cc is the duty cycle of the output, the unit is %.
679
680
681 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
682
683 The oscilloscope displays as follows:
684
Xiaoling 87.10 685 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
Mengting Qiu 79.1 686
687
Mengting Qiu 75.1 688 ===== 2.3.2.10.c  Downlink, PWM output =====
689
690
Saxer Lin 65.1 691 [[image:image-20230817173800-3.png||height="412" width="685"]]
692
693 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
694
695 xx xx xx is the output frequency, the unit is HZ.
696
697 yy is the duty cycle of the output, the unit is %.
698
699 zz zz is the time delay of the output, the unit is ms.
700
701
702 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
703
704 The oscilloscope displays as follows:
705
Xiaoling 87.10 706 [[image:image-20230817173858-5.png||height="634" width="843"]]
Saxer Lin 65.1 707
708
Mengting Qiu 89.1 709
Mengting Qiu 102.1 710 ==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
Mengting Qiu 89.1 711
712
713 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
714
715 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
716 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
717 |Value|Bat|(% style="width:191px" %)(((
718 Temperature(DS18B20)(PC13)
719 )))|(% style="width:78px" %)(((
720 ADC(PA4)
721 )))|(% style="width:216px" %)(((
722 Digital in(PB15)&Digital Interrupt(PA8)
723 )))|(% style="width:308px" %)(((
Mengting Qiu 96.1 724 Temperature
725 (TEMP117)
Mengting Qiu 89.1 726 )))|(% style="width:154px" %)(((
Mengting Qiu 96.1 727 Reserved position, meaningless
728 (0x0000)
Mengting Qiu 89.1 729 )))
730
Mengting Qiu 96.1 731 [[image:image-20240717113113-1.png||height="352" width="793"]]
Mengting Qiu 89.1 732
Mengting Qiu 96.1 733 Connection:
Mengting Qiu 89.1 734
Mengting Qiu 96.1 735 [[image:image-20240717141528-2.jpeg||height="430" width="654"]]
Mengting Qiu 89.1 736
737
Mengting Qiu 102.1 738 ==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
Mengting Qiu 89.1 739
740
Mengting Qiu 96.1 741 This mode has total 11 bytes. As shown below:
742
743 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
744 |=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
745 |Value|BAT|(% style="width:86px" %)(((
Saxer Lin 97.1 746 Temperature_SHT31
Mengting Qiu 96.1 747 )))|(% style="width:86px" %)(((
Saxer Lin 97.1 748 Humidity_SHT31
Mengting Qiu 96.1 749 )))|(% style="width:86px" %)(((
750 Digital in(PB15)
751 )))|(% style="width:86px" %)(((
752 Count(PA8)
753 )))
754
755 [[image:image-20240717150948-5.png||height="389" width="979"]]
756
757 Wiring example:
758
759 [[image:image-20240717152224-6.jpeg||height="359" width="680"]]
760
761
Edwin Chen 14.1 762 === 2.3.3  ​Decode payload ===
763
Xiaoling 43.45 764
Edwin Chen 12.1 765 While using TTN V3 network, you can add the payload format to decode the payload.
766
767 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
768
769 The payload decoder function for TTN V3 are here:
770
Xiaoling 87.4 771 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 772
773
Edwin Chen 14.1 774 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 775
Xiaoling 43.45 776
Xiaoling 87.4 777 Check the battery voltage for SN50v3-LB/LS.
Edwin Chen 2.1 778
779 Ex1: 0x0B45 = 2885mV
780
781 Ex2: 0x0B49 = 2889mV
782
783
Edwin Chen 14.1 784 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 785
Xiaoling 43.45 786
Saxer Lin 42.1 787 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 788
Xiaoling 43.45 789 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 790
Xiaoling 43.41 791 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 792
Saxer Lin 26.2 793 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 794
Xiaoling 43.46 795
Xiaoling 43.41 796 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 797
798 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
799
800 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
801
Xiaoling 117.4 802 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
Edwin Chen 2.1 803
804
Edwin Chen 14.1 805 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 806
Xiaoling 43.46 807
Saxer Lin 26.2 808 The digital input for pin PB15,
Edwin Chen 2.1 809
Saxer Lin 26.2 810 * When PB15 is high, the bit 1 of payload byte 6 is 1.
811 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 812
Saxer Lin 26.2 813 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
814 (((
Saxer Lin 36.1 815 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
816
Xiaoling 43.46 817 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
818
819
Saxer Lin 26.2 820 )))
821
Edwin Chen 14.1 822 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 823
Xiaoling 43.46 824
Saxer Lin 53.1 825 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 826
Saxer Lin 53.1 827 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 828
Saxer Lin 26.2 829 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 830
Xiaoling 44.2 831
Xiaoling 43.46 832 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 833
Saxer Lin 43.1 834
Saxer Lin 59.1 835 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
836
837 [[image:image-20230811113449-1.png||height="370" width="608"]]
838
Xiaoling 87.10 839
840
Edwin Chen 14.1 841 ==== 2.3.3.5 Digital Interrupt ====
842
Xiaoling 43.46 843
Xiaoling 87.4 844 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
Edwin Chen 14.1 845
Xiaoling 43.44 846 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 847
Saxer Lin 36.1 848 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 849
Xiaoling 43.46 850
Xiaoling 43.8 851 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 852
853 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
854
855 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
856
Xiaoling 87.4 857 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 858
859
Xiaoling 43.46 860 (% style="color:blue" %)**Below is the installation example:**
861
Xiaoling 87.4 862 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
Edwin Chen 14.1 863
864 * (((
Xiaoling 87.4 865 One pin to SN50v3-LB/LS's PA8 pin
Edwin Chen 14.1 866 )))
867 * (((
Xiaoling 87.4 868 The other pin to SN50v3-LB/LS's VDD pin
Edwin Chen 14.1 869 )))
870
Saxer Lin 36.1 871 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 872
Xiaoling 43.46 873 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 874
Saxer Lin 36.1 875 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 876
877 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
878
879 The above photos shows the two parts of the magnetic switch fitted to a door.
880
881 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
882
883 The command is:
884
Xiaoling 44.2 885 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 886
887 Below shows some screen captures in TTN V3:
888
889 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
890
Xiaoling 43.47 891
Mengting Qiu 122.1 892 (% style="color:blue" %)**Application in different modes:**
Edwin Chen 14.1 893
Mengting Qiu 122.1 894 * In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 895
Mengting Qiu 122.1 896 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
Edwin Chen 14.1 897
Mengting Qiu 122.1 898
899 * In **MOD=7**, there are three interrupt pins in effect.
900
Mengting Qiu 123.1 901 See the **[[AT+INTMODx>>||anchor="H3.3.3SetInterruptMode"]] **command explained to set the three pin interrupt modes.
Mengting Qiu 122.1 902
903 As you can see from the byte parsing table of pattern 7, the seventh byte of the original load is used to display the PA8 pin interrupt flag and status, the eighth byte of the original load is used to display the PA4 pin interrupt flag and status, and the ninth byte of the original load is used to display the PB15 pin interrupt flag and status.
904
905 [[image:image-20250402103902-1.png]]
906
907 TTN V3 decoder is as below:
908
909 [[image:image-20250402104508-2.png||height="255" width="579"]]
910
911 (% style="color:red" %)**Note: mode in decoding is sorted from 0, so it corresponds to the actual working mode AT+MOD=7.**
912
913
914 (% style="color:#037691" %)**Interrupt flag: **(%%)"EXTI1/2/3_Trigger", indicates whether the uplink packet is generated by an interrupt on the PA8/PA4/PB15 pin.
915
916
917 (% style="color:#037691" %)**Interrupt status: **(%%)"EXTI1/2/3_Status", Displays the status of the interrupt sensors connected to the PA4/PA8/PB15 interrupt pins when the packet is uplinked.
918
919
Saxer Lin 26.2 920 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 921
Xiaoling 43.47 922
Saxer Lin 26.2 923 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 924
Saxer Lin 40.1 925 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 926
Xiaoling 87.4 927 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
Edwin Chen 14.1 928
Xiaoling 44.2 929
Edwin Chen 14.1 930 Below is the connection to SHT20/ SHT31. The connection is as below:
931
Saxer Lin 52.1 932 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 933
Xiaoling 44.4 934
Edwin Chen 14.1 935 The device will be able to get the I2C sensor data now and upload to IoT Server.
936
937 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
938
939 Convert the read byte to decimal and divide it by ten.
940
Edwin Chen 2.1 941 **Example:**
942
Edwin Chen 14.1 943 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 944
Edwin Chen 14.1 945 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 946
Edwin Chen 14.1 947 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 948
949
Edwin Chen 14.1 950 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 951
Xiaoling 43.48 952
Xiaoling 43.42 953 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 954
955
956 ==== 2.3.3.8 Ultrasonic Sensor ====
957
Xiaoling 43.48 958
Saxer Lin 26.2 959 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 960
Xiaoling 87.4 961 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 962
Xiaoling 43.44 963 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 964
Edwin Chen 14.1 965 The picture below shows the connection:
966
Saxer Lin 36.1 967 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 968
Xiaoling 43.50 969
Xiaoling 87.4 970 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 971
972 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
973
974 **Example:**
975
976 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
977
978
979 ==== 2.3.3.9  Battery Output - BAT pin ====
980
Xiaoling 43.50 981
Xiaoling 87.4 982 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
Edwin Chen 14.1 983
984
985 ==== 2.3.3.10  +5V Output ====
986
Xiaoling 43.50 987
Xiaoling 87.4 988 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 989
990 The 5V output time can be controlled by AT Command.
991
Xiaoling 43.9 992 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 993
994 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
995
Xiaoling 44.4 996 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 997
998
999 ==== 2.3.3.11  BH1750 Illumination Sensor ====
1000
Xiaoling 43.50 1001
Edwin Chen 14.1 1002 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
1003
Saxer Lin 40.1 1004 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 1005
Xiaoling 43.51 1006
Saxer Lin 40.1 1007 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 1008
1009
Saxer Lin 65.1 1010 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 1011
Xiaoling 43.51 1012
Saxer Lin 69.1 1013 * (((
1014 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
1015 )))
1016 * (((
1017 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
1018 )))
1019
1020 [[image:image-20230817183249-3.png||height="320" width="417"]]
1021
1022 * (((
1023 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
1024 )))
1025 * (((
Xiaoling 74.2 1026 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 1027 )))
1028 * (((
Mengting Qiu 76.1 1029 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 1030
Mengting Qiu 74.8 1031 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 1032
Xiaoling 87.4 1033 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 1034
Mengting Qiu 76.1 1035 b) If the output duration is more than 30 seconds, better to use external power source. 
Xiaoling 118.1 1036
1037
1038
Xiaoling 87.4 1039 )))
Mengting Qiu 74.8 1040
Saxer Lin 65.1 1041 ==== 2.3.3.13  Working MOD ====
1042
1043
Edwin Chen 14.1 1044 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1045
1046 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1047
1048 Case 7^^th^^ Byte >> 2 & 0x1f:
1049
1050 * 0: MOD1
1051 * 1: MOD2
1052 * 2: MOD3
1053 * 3: MOD4
1054 * 4: MOD5
1055 * 5: MOD6
Saxer Lin 36.1 1056 * 6: MOD7
1057 * 7: MOD8
1058 * 8: MOD9
Saxer Lin 65.1 1059 * 9: MOD10
Edwin Chen 14.1 1060
Edwin Chen 2.1 1061 == 2.4 Payload Decoder file ==
1062
1063
1064 In TTN, use can add a custom payload so it shows friendly reading
1065
1066 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1067
Saxer Lin 40.1 1068 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 1069
1070
Edwin Chen 15.1 1071 == 2.5 Frequency Plans ==
Edwin Chen 2.1 1072
1073
Xiaoling 87.30 1074 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
Edwin Chen 2.1 1075
1076 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1077
1078
Xiaoling 87.4 1079 = 3. Configure SN50v3-LB/LS =
Edwin Chen 2.1 1080
1081 == 3.1 Configure Methods ==
1082
1083
Xiaoling 87.4 1084 SN50v3-LB/LS supports below configure method:
Edwin Chen 2.1 1085
1086 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1087 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1088 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1089
1090 == 3.2 General Commands ==
1091
1092
1093 These commands are to configure:
1094
1095 * General system settings like: uplink interval.
1096 * LoRaWAN protocol & radio related command.
1097
1098 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1099
1100 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1101
1102
Xiaoling 87.4 1103 == 3.3 Commands special design for SN50v3-LB/LS ==
Edwin Chen 2.1 1104
1105
Xiaoling 87.4 1106 These commands only valid for SN50v3-LB/LS, as below:
Edwin Chen 2.1 1107
1108
1109 === 3.3.1 Set Transmit Interval Time ===
1110
Xiaoling 43.51 1111
Edwin Chen 2.1 1112 Feature: Change LoRaWAN End Node Transmit Interval.
1113
1114 (% style="color:blue" %)**AT Command: AT+TDC**
1115
1116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1117 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 2.1 1118 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1119 30000
1120 OK
1121 the interval is 30000ms = 30s
1122 )))
1123 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1124 OK
1125 Set transmit interval to 60000ms = 60 seconds
1126 )))
1127
1128 (% style="color:blue" %)**Downlink Command: 0x01**
1129
1130 Format: Command Code (0x01) followed by 3 bytes time value.
1131
1132 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1133
1134 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1135 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1136
1137 === 3.3.2 Get Device Status ===
1138
Xiaoling 43.52 1139
Saxer Lin 40.1 1140 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1141
Xiaoling 44.4 1142 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1143
Xiaoling 44.4 1144 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1145
1146
Saxer Lin 36.1 1147 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1148
Xiaoling 43.52 1149
Mengting Qiu 109.1 1150 ==== 3.3.3.1 Before V1.3.4 firmware ====
Mengting Qiu 107.2 1151
Mengting Qiu 109.1 1152 (% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
Mengting Qiu 107.2 1153
Bei Jinggeng 107.1 1154 Feature, Set Interrupt mode for PA8, PA4, PB15.
Edwin Chen 2.1 1155
Mengting Qiu 103.1 1156 Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
Edwin Chen 2.1 1157
Mengting Qiu 108.1 1158 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
Saxer Lin 36.1 1159
Mengting Qiu 103.1 1160 (% style="color:#4472c4" %)**AT+INTMODx:**
Edwin Chen 2.1 1161
Bei Jinggeng 107.1 1162 * (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1163 * (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1164 * (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
Mengting Qiu 103.1 1165
Mengting Qiu 108.1 1166 **Parameter a setting:**
Mengting Qiu 103.1 1167
1168 * **0:** Disable Interrupt
1169 * **1:** Trigger by rising and falling edge
1170 * **2:** Trigger by falling edge
1171 * **3: **Trigger by rising edge
1172
1173 **Example:**
1174
Bei Jinggeng 107.1 1175 * AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1176 * AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1177 * AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
Mengting Qiu 103.1 1178
1179 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1180
Mengting Qiu 108.1 1181 Format: Command Code (0x06 00) followed by 2 bytes.
Edwin Chen 2.1 1182
Bei Jinggeng 107.1 1183 (% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
Edwin Chen 2.1 1184
Mengting Qiu 103.1 1185 (% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
Edwin Chen 2.1 1186
Mengting Qiu 103.1 1187 **Example:**
1188
1189 * Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1190 * Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1191 * Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1192
Mengting Qiu 109.1 1193 ==== 3.3.3.2 Since V1.3.4 firmware ====
Mengting Qiu 107.2 1194
Mengting Qiu 109.1 1195 (% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
Mengting Qiu 107.2 1196
Mengting Qiu 108.1 1197 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
Mengting Qiu 107.2 1198
Xiaoling 117.4 1199 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
1200 |=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 304px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
Mengting Qiu 108.1 1201 |(% style="width:116px" %)(((
1202
Mengting Qiu 107.2 1203
Mengting Qiu 108.1 1204 **x**
1205 )))|(% style="width:392px" %)(((
1206 1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
Mengting Qiu 107.2 1207
Mengting Qiu 108.1 1208 2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
Mengting Qiu 107.2 1209
Mengting Qiu 108.1 1210 3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1211 )))
1212 |(% style="width:116px" %)(((
1213
Mengting Qiu 107.2 1214
Mengting Qiu 108.1 1215 **a**
1216 )))|(% style="width:392px" %)(((
1217 **0:** Disable Interrupt
1218
1219 **1:** Trigger by rising and falling edge
1220
1221 **2:** Trigger by falling edge
1222
1223 **3: **Trigger by rising edge
1224 )))
1225 |(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1226 Set the delay time. (Default: 0)
1227
1228 **Value range: 0~~65535 ms**
1229 )))
1230
1231 **Example:**
1232
Xiaoling 119.1 1233 * AT+INTMOD1=0,0  ~/~/ Disable the PA8 pin interrupt function
1234 * AT+INTMOD2=2,1000  ~/~/ Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1235 * AT+INTMOD3=3,2500  ~/~/ Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
Mengting Qiu 108.1 1236
1237 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1238
1239 Format: Command Code (0x06 00) followed by 4 bytes.
1240
1241 (% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1242
1243 (% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1244
1245 (% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1246
1247 **Example:**
1248
Mengting Qiu 109.1 1249 * Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1250 * Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1251 * Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
Mengting Qiu 108.1 1252
Saxer Lin 36.1 1253 === 3.3.4 Set Power Output Duration ===
1254
Xiaoling 43.52 1255
Saxer Lin 36.1 1256 Control the output duration 5V . Before each sampling, device will
1257
1258 ~1. first enable the power output to external sensor,
1259
1260 2. keep it on as per duration, read sensor value and construct uplink payload
1261
1262 3. final, close the power output.
1263
1264 (% style="color:blue" %)**AT Command: AT+5VT**
1265
1266 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1267 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1268 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1269 500(default)
1270 OK
1271 )))
1272 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1273 Close after a delay of 1000 milliseconds.
1274 )))|(% style="width:157px" %)OK
1275
1276 (% style="color:blue" %)**Downlink Command: 0x07**
1277
1278 Format: Command Code (0x07) followed by 2 bytes.
1279
1280 The first and second bytes are the time to turn on.
1281
Saxer Lin 40.1 1282 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1283 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1284
1285 === 3.3.5 Set Weighing parameters ===
1286
Xiaoling 43.52 1287
Saxer Lin 37.1 1288 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1289
1290 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1291
1292 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1293 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 37.1 1294 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
Xiaoling 87.16 1295 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
Saxer Lin 37.1 1296 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1297
1298 (% style="color:blue" %)**Downlink Command: 0x08**
1299
Saxer Lin 37.1 1300 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1301
Saxer Lin 37.1 1302 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1303
Saxer Lin 37.1 1304 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1305
Saxer Lin 37.1 1306 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1307 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1308 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1309
Saxer Lin 36.1 1310 === 3.3.6 Set Digital pulse count value ===
1311
Xiaoling 43.52 1312
Saxer Lin 36.1 1313 Feature: Set the pulse count value.
1314
Saxer Lin 37.1 1315 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1316
Saxer Lin 36.1 1317 (% style="color:blue" %)**AT Command: AT+SETCNT**
1318
Xiaoling 87.41 1319 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1320 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1321 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1322 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1323
1324 (% style="color:blue" %)**Downlink Command: 0x09**
1325
1326 Format: Command Code (0x09) followed by 5 bytes.
1327
1328 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1329
1330 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1331 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1332
1333 === 3.3.7 Set Workmode ===
1334
Xiaoling 43.52 1335
Saxer Lin 37.1 1336 Feature: Switch working mode.
Saxer Lin 36.1 1337
1338 (% style="color:blue" %)**AT Command: AT+MOD**
1339
Xiaoling 87.41 1340 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1341 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1342 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1343 OK
1344 )))
1345 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1346 OK
1347 Attention:Take effect after ATZ
1348 )))
1349
1350 (% style="color:blue" %)**Downlink Command: 0x0A**
1351
1352 Format: Command Code (0x0A) followed by 1 bytes.
1353
1354 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1355 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1356
Saxer Lin 72.1 1357 === 3.3.8 PWM setting ===
1358
Xiaoling 74.5 1359
Xiaoling 87.24 1360 Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1361
1362 (% style="color:blue" %)**AT Command: AT+PWMSET**
1363
Xiaoling 87.41 1364 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.17 1365 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1366 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1367 0(default)
1368 OK
1369 )))
Mengting Qiu 77.1 1370 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1371 OK
1372
1373 )))
Mengting Qiu 77.1 1374 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1375
1376 (% style="color:blue" %)**Downlink Command: 0x0C**
1377
1378 Format: Command Code (0x0C) followed by 1 bytes.
1379
1380 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1381 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1382
Xiaoling 87.24 1383 **Feature: Set PWM output time, output frequency and output duty cycle.**
1384
Mengting Qiu 76.1 1385 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1386
Xiaoling 87.41 1387 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.21 1388 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1389 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1390 0,0,0(default)
1391 OK
1392 )))
Mengting Qiu 77.1 1393 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1394 OK
1395
1396 )))
Mengting Qiu 77.1 1397 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1398 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1399
Mengting Qiu 77.1 1400
1401 )))|(% style="width:137px" %)(((
1402 OK
1403 )))
1404
Xiaoling 87.41 1405 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 117.4 1406 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 243px; background-color:#4F81BD;color:white" %)**parameters**
Mengting Qiu 77.1 1407 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1408 AT+PWMOUT=a,b,c
1409
1410
1411 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1412 Set PWM output time, output frequency and output duty cycle.
1413
1414 (((
Mengting Qiu 77.1 1415
1416 )))
1417
1418 (((
1419
1420 )))
1421 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1422 a: Output time (unit: seconds)
Mengting Qiu 77.1 1423 The value ranges from 0 to 65535.
1424 When a=65535, PWM will always output.
1425 )))
1426 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1427 b: Output frequency (unit: HZ)
Bei Jinggeng 106.1 1428
1429 range 5~~100000HZ
Mengting Qiu 77.1 1430 )))
1431 |(% style="width:242px" %)(((
1432 c: Output duty cycle (unit: %)
1433 The value ranges from 0 to 100.
Mengting Qiu 76.1 1434 )))
1435
Bei Jinggeng 105.1 1436 (% style="color:blue" %)**Downlink Command: 0x0B**
Mengting Qiu 76.1 1437
Bei Jinggeng 105.1 1438 Format: Command Code (0x0B) followed by 6 bytes.
Mengting Qiu 76.1 1439
Bei Jinggeng 105.1 1440 0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
Mengting Qiu 76.1 1441
Bei Jinggeng 105.1 1442 Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1443
Bei Jinggeng 105.1 1444 * Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1445 * Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1446
Mengting Qiu 79.1 1447 = 4. Battery & Power Cons =
1448
1449
Xiaoling 87.6 1450 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1451
1452 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1453
1454
1455 = 5. OTA Firmware update =
1456
1457
1458 (% class="wikigeneratedid" %)
Xiaoling 87.4 1459 **User can change firmware SN50v3-LB/LS to:**
Edwin Chen 2.1 1460
1461 * Change Frequency band/ region.
1462 * Update with new features.
1463 * Fix bugs.
1464
Xiaoling 52.2 1465 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1466
Xiaoling 44.4 1467 **Methods to Update Firmware:**
Edwin Chen 2.1 1468
Xiaoling 53.3 1469 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1470 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1471
Bei Jinggeng 101.1 1472 = 6.  Developer Guide =
Edwin Chen 2.1 1473
Bei Jinggeng 101.1 1474 SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
Edwin Chen 2.1 1475
Bei Jinggeng 101.1 1476 * (((
1477 Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1478 )))
1479 * (((
1480 Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1481 )))
1482 * (((
1483 Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1484 )))
Xiaoling 43.52 1485
Bei Jinggeng 101.1 1486 **~1. If you want to change frequency, modify the Preprocessor Symbols.**
Edwin Chen 2.1 1487
Bei Jinggeng 101.1 1488 For example, change EU868 to US915
Xiaoling 55.2 1489
Bei Jinggeng 101.1 1490 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
Xiaoling 55.2 1491
Bei Jinggeng 101.1 1492 **2. Compile and build**
1493
1494 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1495
1496 = 7. FAQ =
1497
1498 == 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1499
1500
Edwin Chen 55.1 1501 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1502
1503
Bei Jinggeng 101.1 1504 == 7.2 How to put several sensors to a SN50v3-LB/LS? ==
Edwin Chen 57.1 1505
Xiaoling 57.2 1506
Xiaoling 87.4 1507 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
Edwin Chen 57.1 1508
1509 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1510
1511 [[image:image-20230810121434-1.png||height="242" width="656"]]
1512
1513
Bei Jinggeng 101.1 1514 = 8. Order Info =
Edwin Chen 2.1 1515
1516
Xiaoling 87.9 1517 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
Edwin Chen 2.1 1518
1519 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1520
Edwin Chen 2.1 1521 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1522 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1523 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1524 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1525 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1526 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1527 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1528 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1529
Edwin Chen 10.1 1530 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1531
Edwin Chen 10.1 1532 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1533 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1534 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1535 * (% style="color:red" %)**NH**(%%): No Hole
1536
Bei Jinggeng 101.1 1537 = 9. ​Packing Info =
Edwin Chen 2.1 1538
Xiaoling 43.52 1539
Edwin Chen 2.1 1540 (% style="color:#037691" %)**Package Includes**:
1541
Xiaoling 87.4 1542 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
Edwin Chen 2.1 1543
1544 (% style="color:#037691" %)**Dimension and weight**:
1545
Mengting Qiu 127.1 1546 (% style="color:blue" %)**Package Size / pcs :**
Edwin Chen 2.1 1547
Mengting Qiu 127.1 1548 * For SN50v3-LB: 140*80*50 mm
1549 * For SN50v3-LS: 160*105*45 mm
1550
1551 (% style="color:blue" %)**Weight / pcs :**(%%)** **
1552
1553 * For SN50v3-LB: 225 g
1554 * For SN50v3-LS: 290 g
1555
Bei Jinggeng 101.1 1556 = 10. Support =
Edwin Chen 2.1 1557
1558
1559 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1560
Xiaoling 41.4 1561 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]