Version 124.2 by Xiaoling on 2025/04/15 11:37

Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20240103095714-2.png]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23
24
25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26
27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28
29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30
31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
32
33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34
35 == 1.2 ​Features ==
36
37
38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
40 * Open-Source hardware/software
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 * Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
48
49 == 1.3 Specification ==
50
51
52 (% style="color:#037691" %)**Common DC Characteristics:**
53
54 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
55 * Operating Temperature: -40 ~~ 85°C
56
57 (% style="color:#037691" %)**I/O Interface:**
58
59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
88
89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
97 [[image:image-20250415113729-1.jpeg]]
98
99 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
115 SN50v3-LB/LS supports BLE remote configure.
116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
127 == 1.7 Pin Definitions ==
128
129
130 [[image:image-20230610163213-1.png||height="404" width="699"]]
131
132
133 == 1.8 Mechanical ==
134
135 === 1.8.1 for LB version ===
136
137
138 [[image:image-20240924112806-1.png||height="548" width="894"]]
139
140
141
142 === 1.8.2 for LS version ===
143
144 [[image:image-20231231203439-3.png||height="385" width="886"]]
145
146
147 == 1.9 Hole Option ==
148
149
150 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151
152 [[image:image-20250329085729-1.jpeg]]
153
154 [[image:image-20250329085744-2.jpeg]]
155
156
157 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
158
159 == 2.1 How it works ==
160
161
162 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163
164
165 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
166
167
168 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169
170 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171
172 [[image:image-20250329090241-3.png]]
173
174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
175
176 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
177
178 [[image:image-20250329090300-4.jpeg]]
179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
186 [[image:image-20250329090324-5.jpeg]]
187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
191 [[image:image-20250329090341-6.jpeg]]
192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
197 [[image:image-20250329090403-7.jpeg]]
198
199
200 (% style="color:blue" %)**Add APP KEY**
201
202 [[image:image-20250329090417-8.jpeg]]
203
204 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205
206 Press the button for 5 seconds to activate the SN50v3-LB/LS.
207
208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209
210 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
211
212
213 == 2.3 ​Uplink Payload ==
214
215 === 2.3.1 Device Status, FPORT~=5 ===
216
217
218 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
219
220 The Payload format is as below.
221
222
223 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
225 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
226 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
227
228 Example parse in TTNv3
229
230
231 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
232
233 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234
235 (% style="color:#037691" %)**Frequency Band**:
236
237 0x01: EU868
238
239 0x02: US915
240
241 0x03: IN865
242
243 0x04: AU915
244
245 0x05: KZ865
246
247 0x06: RU864
248
249 0x07: AS923
250
251 0x08: AS923-1
252
253 0x09: AS923-2
254
255 0x0a: AS923-3
256
257 0x0b: CN470
258
259 0x0c: EU433
260
261 0x0d: KR920
262
263 0x0e: MA869
264
265
266 (% style="color:#037691" %)**Sub-Band**:
267
268 AU915 and US915:value 0x00 ~~ 0x08
269
270 CN470: value 0x0B ~~ 0x0C
271
272 Other Bands: Always 0x00
273
274
275 (% style="color:#037691" %)**Battery Info**:
276
277 Check the battery voltage.
278
279 Ex1: 0x0B45 = 2885mV
280
281 Ex2: 0x0B49 = 2889mV
282
283
284 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
285
286
287 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
288
289 For example:
290
291 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
292
293
294 (% style="color:red" %) **Important Notice:**
295
296 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
297
298 2. All modes share the same Payload Explanation from HERE.
299
300 3. By default, the device will send an uplink message every 20 minutes.
301
302
303 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
304
305
306 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307
308 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
310 |Value|Bat|(% style="width:191px" %)(((
311 Temperature(DS18B20)(PC13)
312 )))|(% style="width:78px" %)(((
313 ADC(PA4)
314 )))|(% style="width:216px" %)(((
315 Digital in(PB15)&Digital Interrupt(PA8)
316 )))|(% style="width:308px" %)(((
317 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
318 )))|(% style="width:154px" %)(((
319 Humidity(SHT20 or SHT31)
320 )))
321
322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323
324
325 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326
327
328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329
330 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
332 |Value|BAT|(% style="width:196px" %)(((
333 Temperature(DS18B20)(PC13)
334 )))|(% style="width:87px" %)(((
335 ADC(PA4)
336 )))|(% style="width:189px" %)(((
337 Digital in(PB15) & Digital Interrupt(PA8)
338 )))|(% style="width:208px" %)(((
339 Distance measure by: 1) LIDAR-Lite V3HP
340 Or 2) Ultrasonic Sensor
341 )))|(% style="width:117px" %)Reserved
342
343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344
345
346 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
347
348 [[image:image-20230512173758-5.png||height="563" width="712"]]
349
350
351 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352
353 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
354
355 [[image:image-20230512173903-6.png||height="596" width="715"]]
356
357
358 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359
360 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
362 |Value|BAT|(% style="width:183px" %)(((
363 Temperature(DS18B20)(PC13)
364 )))|(% style="width:173px" %)(((
365 Digital in(PB15) & Digital Interrupt(PA8)
366 )))|(% style="width:84px" %)(((
367 ADC(PA4)
368 )))|(% style="width:323px" %)(((
369 Distance measure by:1)TF-Mini plus LiDAR
370 Or 2) TF-Luna LiDAR
371 )))|(% style="width:188px" %)Distance signal  strength
372
373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374
375
376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377
378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379
380 [[image:image-20230512180609-7.png||height="555" width="802"]]
381
382
383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384
385 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386
387 [[image:image-20230610170047-1.png||height="452" width="799"]]
388
389
390 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391
392
393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394
395 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
397 **Size(bytes)**
398 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
399 |Value|(% style="width:68px" %)(((
400 ADC1(PA4)
401 )))|(% style="width:75px" %)(((
402 ADC2(PA5)
403 )))|(((
404 ADC3(PA8)
405 )))|(((
406 Digital Interrupt(PB15)
407 )))|(% style="width:304px" %)(((
408 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 )))|(% style="width:163px" %)(((
410 Humidity(SHT20 or SHT31)
411 )))|(% style="width:53px" %)Bat
412
413 [[image:image-20230513110214-6.png]]
414
415
416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417
418
419 This mode has total 11 bytes. As shown below:
420
421 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
423 |Value|BAT|(% style="width:186px" %)(((
424 Temperature1(DS18B20)(PC13)
425 )))|(% style="width:82px" %)(((
426 ADC(PA4)
427 )))|(% style="width:210px" %)(((
428 Digital in(PB15) & Digital Interrupt(PA8) 
429 )))|(% style="width:191px" %)Temperature2(DS18B20)
430 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
434
435 [[image:image-20230513134006-1.png||height="559" width="736"]]
436
437
438 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439
440
441 [[image:image-20230512164658-2.png||height="532" width="729"]]
442
443 Each HX711 need to be calibrated before used. User need to do below two steps:
444
445 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
447 1. (((
448 Weight has 4 bytes, the unit is g.
449
450
451
452 )))
453
454 For example:
455
456 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
462 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
464 **Size(bytes)**
465 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
466 |Value|BAT|(% style="width:193px" %)(((
467 Temperature(DS18B20)(PC13)
468 )))|(% style="width:85px" %)(((
469 ADC(PA4)
470 )))|(% style="width:186px" %)(((
471 Digital in(PB15) & Digital Interrupt(PA8)
472 )))|(% style="width:100px" %)Weight
473
474 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475
476
477 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478
479
480 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481
482 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483
484 [[image:image-20230512181814-9.png||height="543" width="697"]]
485
486
487 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488
489 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
491 |Value|BAT|(% style="width:256px" %)(((
492 Temperature(DS18B20)(PC13)
493 )))|(% style="width:108px" %)(((
494 ADC(PA4)
495 )))|(% style="width:126px" %)(((
496 Digital in(PB15)
497 )))|(% style="width:145px" %)(((
498 Count(PA8)
499 )))
500
501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502
503
504 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505
506
507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
509 **Size(bytes)**
510 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
511 |Value|BAT|(% style="width:188px" %)(((
512 Temperature(DS18B20)
513 (PC13)
514 )))|(% style="width:83px" %)(((
515 ADC(PA5)
516 )))|(% style="width:184px" %)(((
517 Digital Interrupt1(PA8)
518 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
519
520 [[image:image-20230513111203-7.png||height="324" width="975"]]
521
522
523 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524
525
526 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
528 **Size(bytes)**
529 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
530 |Value|BAT|(% style="width:207px" %)(((
531 Temperature(DS18B20)
532 (PC13)
533 )))|(% style="width:94px" %)(((
534 ADC1(PA4)
535 )))|(% style="width:198px" %)(((
536 Digital Interrupt(PB15)
537 )))|(% style="width:84px" %)(((
538 ADC2(PA5)
539 )))|(% style="width:82px" %)(((
540 ADC3(PA8)
541 )))
542
543 [[image:image-20230513111231-8.png||height="335" width="900"]]
544
545
546 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547
548
549 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
551 **Size(bytes)**
552 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
553 |Value|BAT|(((
554 Temperature
555 (DS18B20)(PC13)
556 )))|(((
557 Temperature2
558 (DS18B20)(PB9)
559 )))|(((
560 Digital Interrupt
561 (PB15)
562 )))|(% style="width:193px" %)(((
563 Temperature3
564 (DS18B20)(PB8)
565 )))|(% style="width:78px" %)(((
566 Count1(PA8)
567 )))|(% style="width:78px" %)(((
568 Count2(PA4)
569 )))
570
571 [[image:image-20230513111255-9.png||height="341" width="899"]]
572
573 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
574
575 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
576
577 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
578
579 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
580
581
582 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
583
584 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
585
586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587
588
589 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590
591
592 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593
594 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595
596 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597
598
599 ===== 2.3.2.10.a  Uplink, PWM input capture =====
600
601
602 [[image:image-20230817172209-2.png||height="439" width="683"]]
603
604 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 |Value|Bat|(% style="width:191px" %)(((
607 Temperature(DS18B20)(PC13)
608 )))|(% style="width:78px" %)(((
609 ADC(PA4)
610 )))|(% style="width:135px" %)(((
611 PWM_Setting
612 &Digital Interrupt(PA8)
613 )))|(% style="width:70px" %)(((
614 Pulse period
615 )))|(% style="width:89px" %)(((
616 Duration of high level
617 )))
618
619 [[image:image-20230817170702-1.png||height="161" width="1044"]]
620
621
622 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623
624 **Frequency:**
625
626 (% class="MsoNormal" %)
627 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628
629 (% class="MsoNormal" %)
630 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631
632
633 (% class="MsoNormal" %)
634 **Duty cycle:**
635
636 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637
638 [[image:image-20230818092200-1.png||height="344" width="627"]]
639
640
641 ===== 2.3.2.10.b  Uplink, PWM output =====
642
643
644 [[image:image-20230817172209-2.png||height="439" width="683"]]
645
646 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647
648 a is the time delay of the output, the unit is ms.
649
650 b is the output frequency, the unit is HZ.
651
652 c is the duty cycle of the output, the unit is %.
653
654 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655
656 aa is the time delay of the output, the unit is ms.
657
658 bb is the output frequency, the unit is HZ.
659
660 cc is the duty cycle of the output, the unit is %.
661
662
663 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664
665 The oscilloscope displays as follows:
666
667 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668
669
670 ===== 2.3.2.10.c  Downlink, PWM output =====
671
672
673 [[image:image-20230817173800-3.png||height="412" width="685"]]
674
675 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676
677 xx xx xx is the output frequency, the unit is HZ.
678
679 yy is the duty cycle of the output, the unit is %.
680
681 zz zz is the time delay of the output, the unit is ms.
682
683
684 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685
686 The oscilloscope displays as follows:
687
688 [[image:image-20230817173858-5.png||height="634" width="843"]]
689
690
691
692 ==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
693
694
695 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696
697 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 |Value|Bat|(% style="width:191px" %)(((
700 Temperature(DS18B20)(PC13)
701 )))|(% style="width:78px" %)(((
702 ADC(PA4)
703 )))|(% style="width:216px" %)(((
704 Digital in(PB15)&Digital Interrupt(PA8)
705 )))|(% style="width:308px" %)(((
706 Temperature
707 (TEMP117)
708 )))|(% style="width:154px" %)(((
709 Reserved position, meaningless
710 (0x0000)
711 )))
712
713 [[image:image-20240717113113-1.png||height="352" width="793"]]
714
715 Connection:
716
717 [[image:image-20240717141528-2.jpeg||height="430" width="654"]]
718
719
720 ==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
721
722
723 This mode has total 11 bytes. As shown below:
724
725 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
726 |=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
727 |Value|BAT|(% style="width:86px" %)(((
728 Temperature_SHT31
729 )))|(% style="width:86px" %)(((
730 Humidity_SHT31
731 )))|(% style="width:86px" %)(((
732 Digital in(PB15)
733 )))|(% style="width:86px" %)(((
734 Count(PA8)
735 )))
736
737 [[image:image-20240717150948-5.png||height="389" width="979"]]
738
739 Wiring example:
740
741 [[image:image-20240717152224-6.jpeg||height="359" width="680"]]
742
743
744 === 2.3.3  ​Decode payload ===
745
746
747 While using TTN V3 network, you can add the payload format to decode the payload.
748
749 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
750
751 The payload decoder function for TTN V3 are here:
752
753 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
754
755
756 ==== 2.3.3.1 Battery Info ====
757
758
759 Check the battery voltage for SN50v3-LB/LS.
760
761 Ex1: 0x0B45 = 2885mV
762
763 Ex2: 0x0B49 = 2889mV
764
765
766 ==== 2.3.3.2  Temperature (DS18B20) ====
767
768
769 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
770
771 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
772
773 (% style="color:blue" %)**Connection:**
774
775 [[image:image-20230512180718-8.png||height="538" width="647"]]
776
777
778 (% style="color:blue" %)**Example**:
779
780 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
781
782 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
783
784 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
785
786
787 ==== 2.3.3.3 Digital Input ====
788
789
790 The digital input for pin PB15,
791
792 * When PB15 is high, the bit 1 of payload byte 6 is 1.
793 * When PB15 is low, the bit 1 of payload byte 6 is 0.
794
795 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
796 (((
797 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
798
799 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
800
801
802 )))
803
804 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
805
806
807 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
808
809 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
810
811 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
812
813
814 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
815
816
817 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
818
819 [[image:image-20230811113449-1.png||height="370" width="608"]]
820
821
822
823 ==== 2.3.3.5 Digital Interrupt ====
824
825
826 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
827
828 (% style="color:blue" %)** Interrupt connection method:**
829
830 [[image:image-20230513105351-5.png||height="147" width="485"]]
831
832
833 (% style="color:blue" %)**Example to use with door sensor :**
834
835 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
836
837 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
838
839 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
840
841
842 (% style="color:blue" %)**Below is the installation example:**
843
844 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
845
846 * (((
847 One pin to SN50v3-LB/LS's PA8 pin
848 )))
849 * (((
850 The other pin to SN50v3-LB/LS's VDD pin
851 )))
852
853 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
854
855 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
856
857 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
858
859 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
860
861 The above photos shows the two parts of the magnetic switch fitted to a door.
862
863 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
864
865 The command is:
866
867 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
868
869 Below shows some screen captures in TTN V3:
870
871 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
872
873
874 (% style="color:blue" %)**Application in different modes:**
875
876 * In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
877
878 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
879
880
881 * In **MOD=7**, there are three interrupt pins in effect.
882
883 See the **[[AT+INTMODx>>||anchor="H3.3.3SetInterruptMode"]] **command explained to set the three pin interrupt modes.
884
885 As you can see from the byte parsing table of pattern 7, the seventh byte of the original load is used to display the PA8 pin interrupt flag and status, the eighth byte of the original load is used to display the PA4 pin interrupt flag and status, and the ninth byte of the original load is used to display the PB15 pin interrupt flag and status.
886
887 [[image:image-20250402103902-1.png]]
888
889 TTN V3 decoder is as below:
890
891 [[image:image-20250402104508-2.png||height="255" width="579"]]
892
893 (% style="color:red" %)**Note: mode in decoding is sorted from 0, so it corresponds to the actual working mode AT+MOD=7.**
894
895
896 (% style="color:#037691" %)**Interrupt flag: **(%%)"EXTI1/2/3_Trigger", indicates whether the uplink packet is generated by an interrupt on the PA8/PA4/PB15 pin.
897
898
899 (% style="color:#037691" %)**Interrupt status: **(%%)"EXTI1/2/3_Status", Displays the status of the interrupt sensors connected to the PA4/PA8/PB15 interrupt pins when the packet is uplinked.
900
901
902 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
903
904
905 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
906
907 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
908
909 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
910
911
912 Below is the connection to SHT20/ SHT31. The connection is as below:
913
914 [[image:image-20230610170152-2.png||height="501" width="846"]]
915
916
917 The device will be able to get the I2C sensor data now and upload to IoT Server.
918
919 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
920
921 Convert the read byte to decimal and divide it by ten.
922
923 **Example:**
924
925 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
926
927 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
928
929 If you want to use other I2C device, please refer the SHT20 part source code as reference.
930
931
932 ==== 2.3.3.7  ​Distance Reading ====
933
934
935 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
936
937
938 ==== 2.3.3.8 Ultrasonic Sensor ====
939
940
941 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
942
943 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
944
945 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
946
947 The picture below shows the connection:
948
949 [[image:image-20230512173903-6.png||height="596" width="715"]]
950
951
952 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
953
954 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
955
956 **Example:**
957
958 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
959
960
961 ==== 2.3.3.9  Battery Output - BAT pin ====
962
963
964 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
965
966
967 ==== 2.3.3.10  +5V Output ====
968
969
970 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
971
972 The 5V output time can be controlled by AT Command.
973
974 (% style="color:blue" %)**AT+5VT=1000**
975
976 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
977
978 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
979
980
981 ==== 2.3.3.11  BH1750 Illumination Sensor ====
982
983
984 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
985
986 [[image:image-20230512172447-4.png||height="416" width="712"]]
987
988
989 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
990
991
992 ==== 2.3.3.12  PWM MOD ====
993
994
995 * (((
996 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
997 )))
998 * (((
999 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
1000 )))
1001
1002 [[image:image-20230817183249-3.png||height="320" width="417"]]
1003
1004 * (((
1005 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
1006 )))
1007 * (((
1008 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
1009 )))
1010 * (((
1011 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
1012
1013 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
1014
1015 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
1016
1017 b) If the output duration is more than 30 seconds, better to use external power source. 
1018
1019
1020
1021 )))
1022
1023 ==== 2.3.3.13  Working MOD ====
1024
1025
1026 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1027
1028 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1029
1030 Case 7^^th^^ Byte >> 2 & 0x1f:
1031
1032 * 0: MOD1
1033 * 1: MOD2
1034 * 2: MOD3
1035 * 3: MOD4
1036 * 4: MOD5
1037 * 5: MOD6
1038 * 6: MOD7
1039 * 7: MOD8
1040 * 8: MOD9
1041 * 9: MOD10
1042
1043 == 2.4 Payload Decoder file ==
1044
1045
1046 In TTN, use can add a custom payload so it shows friendly reading
1047
1048 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1049
1050 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
1051
1052
1053 == 2.5 Frequency Plans ==
1054
1055
1056 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
1057
1058 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1059
1060
1061 = 3. Configure SN50v3-LB/LS =
1062
1063 == 3.1 Configure Methods ==
1064
1065
1066 SN50v3-LB/LS supports below configure method:
1067
1068 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1069 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1070 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1071
1072 == 3.2 General Commands ==
1073
1074
1075 These commands are to configure:
1076
1077 * General system settings like: uplink interval.
1078 * LoRaWAN protocol & radio related command.
1079
1080 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1081
1082 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1083
1084
1085 == 3.3 Commands special design for SN50v3-LB/LS ==
1086
1087
1088 These commands only valid for SN50v3-LB/LS, as below:
1089
1090
1091 === 3.3.1 Set Transmit Interval Time ===
1092
1093
1094 Feature: Change LoRaWAN End Node Transmit Interval.
1095
1096 (% style="color:blue" %)**AT Command: AT+TDC**
1097
1098 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1099 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1100 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1101 30000
1102 OK
1103 the interval is 30000ms = 30s
1104 )))
1105 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1106 OK
1107 Set transmit interval to 60000ms = 60 seconds
1108 )))
1109
1110 (% style="color:blue" %)**Downlink Command: 0x01**
1111
1112 Format: Command Code (0x01) followed by 3 bytes time value.
1113
1114 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1115
1116 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1117 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1118
1119 === 3.3.2 Get Device Status ===
1120
1121
1122 Send a LoRaWAN downlink to ask the device to send its status.
1123
1124 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1125
1126 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1127
1128
1129 === 3.3.3 Set Interrupt Mode ===
1130
1131
1132 ==== 3.3.3.1 Before V1.3.4 firmware ====
1133
1134 (% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
1135
1136 Feature, Set Interrupt mode for PA8, PA4, PB15.
1137
1138 Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
1139
1140 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
1141
1142 (% style="color:#4472c4" %)**AT+INTMODx:**
1143
1144 * (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1145 * (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1146 * (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1147
1148 **Parameter a setting:**
1149
1150 * **0:** Disable Interrupt
1151 * **1:** Trigger by rising and falling edge
1152 * **2:** Trigger by falling edge
1153 * **3: **Trigger by rising edge
1154
1155 **Example:**
1156
1157 * AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1158 * AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1159 * AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
1160
1161 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1162
1163 Format: Command Code (0x06 00) followed by 2 bytes.
1164
1165 (% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1166
1167 (% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1168
1169 **Example:**
1170
1171 * Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1172 * Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1173 * Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1174
1175 ==== 3.3.3.2 Since V1.3.4 firmware ====
1176
1177 (% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
1178
1179 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
1180
1181 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
1182 |=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 304px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
1183 |(% style="width:116px" %)(((
1184
1185
1186 **x**
1187 )))|(% style="width:392px" %)(((
1188 1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1189
1190 2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1191
1192 3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1193 )))
1194 |(% style="width:116px" %)(((
1195
1196
1197 **a**
1198 )))|(% style="width:392px" %)(((
1199 **0:** Disable Interrupt
1200
1201 **1:** Trigger by rising and falling edge
1202
1203 **2:** Trigger by falling edge
1204
1205 **3: **Trigger by rising edge
1206 )))
1207 |(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1208 Set the delay time. (Default: 0)
1209
1210 **Value range: 0~~65535 ms**
1211 )))
1212
1213 **Example:**
1214
1215 * AT+INTMOD1=0,0  ~/~/ Disable the PA8 pin interrupt function
1216 * AT+INTMOD2=2,1000  ~/~/ Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1217 * AT+INTMOD3=3,2500  ~/~/ Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
1218
1219 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1220
1221 Format: Command Code (0x06 00) followed by 4 bytes.
1222
1223 (% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1224
1225 (% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1226
1227 (% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1228
1229 **Example:**
1230
1231 * Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1232 * Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1233 * Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
1234
1235 === 3.3.4 Set Power Output Duration ===
1236
1237
1238 Control the output duration 5V . Before each sampling, device will
1239
1240 ~1. first enable the power output to external sensor,
1241
1242 2. keep it on as per duration, read sensor value and construct uplink payload
1243
1244 3. final, close the power output.
1245
1246 (% style="color:blue" %)**AT Command: AT+5VT**
1247
1248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1249 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1250 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1251 500(default)
1252 OK
1253 )))
1254 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1255 Close after a delay of 1000 milliseconds.
1256 )))|(% style="width:157px" %)OK
1257
1258 (% style="color:blue" %)**Downlink Command: 0x07**
1259
1260 Format: Command Code (0x07) followed by 2 bytes.
1261
1262 The first and second bytes are the time to turn on.
1263
1264 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1265 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1266
1267 === 3.3.5 Set Weighing parameters ===
1268
1269
1270 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1271
1272 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1273
1274 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1275 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1276 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1277 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1278 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1279
1280 (% style="color:blue" %)**Downlink Command: 0x08**
1281
1282 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1283
1284 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1285
1286 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1287
1288 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1289 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1290 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1291
1292 === 3.3.6 Set Digital pulse count value ===
1293
1294
1295 Feature: Set the pulse count value.
1296
1297 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1298
1299 (% style="color:blue" %)**AT Command: AT+SETCNT**
1300
1301 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1302 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1303 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1304 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1305
1306 (% style="color:blue" %)**Downlink Command: 0x09**
1307
1308 Format: Command Code (0x09) followed by 5 bytes.
1309
1310 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1311
1312 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1313 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1314
1315 === 3.3.7 Set Workmode ===
1316
1317
1318 Feature: Switch working mode.
1319
1320 (% style="color:blue" %)**AT Command: AT+MOD**
1321
1322 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1323 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1324 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1325 OK
1326 )))
1327 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1328 OK
1329 Attention:Take effect after ATZ
1330 )))
1331
1332 (% style="color:blue" %)**Downlink Command: 0x0A**
1333
1334 Format: Command Code (0x0A) followed by 1 bytes.
1335
1336 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1337 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1338
1339 === 3.3.8 PWM setting ===
1340
1341
1342 Feature: Set the time acquisition unit for PWM input capture.
1343
1344 (% style="color:blue" %)**AT Command: AT+PWMSET**
1345
1346 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1347 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1348 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1349 0(default)
1350 OK
1351 )))
1352 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1353 OK
1354
1355 )))
1356 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1357
1358 (% style="color:blue" %)**Downlink Command: 0x0C**
1359
1360 Format: Command Code (0x0C) followed by 1 bytes.
1361
1362 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1363 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1364
1365 **Feature: Set PWM output time, output frequency and output duty cycle.**
1366
1367 (% style="color:blue" %)**AT Command: AT+PWMOUT**
1368
1369 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1370 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1371 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1372 0,0,0(default)
1373 OK
1374 )))
1375 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1376 OK
1377
1378 )))
1379 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1380 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1381
1382
1383 )))|(% style="width:137px" %)(((
1384 OK
1385 )))
1386
1387 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1388 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 243px; background-color:#4F81BD;color:white" %)**parameters**
1389 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1390 AT+PWMOUT=a,b,c
1391
1392
1393 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1394 Set PWM output time, output frequency and output duty cycle.
1395
1396 (((
1397
1398 )))
1399
1400 (((
1401
1402 )))
1403 )))|(% style="width:242px" %)(((
1404 a: Output time (unit: seconds)
1405 The value ranges from 0 to 65535.
1406 When a=65535, PWM will always output.
1407 )))
1408 |(% style="width:242px" %)(((
1409 b: Output frequency (unit: HZ)
1410
1411 range 5~~100000HZ
1412 )))
1413 |(% style="width:242px" %)(((
1414 c: Output duty cycle (unit: %)
1415 The value ranges from 0 to 100.
1416 )))
1417
1418 (% style="color:blue" %)**Downlink Command: 0x0B**
1419
1420 Format: Command Code (0x0B) followed by 6 bytes.
1421
1422 0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1423
1424 Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1425
1426 * Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1427 * Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1428
1429 = 4. Battery & Power Cons =
1430
1431
1432 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1433
1434 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1435
1436
1437 = 5. OTA Firmware update =
1438
1439
1440 (% class="wikigeneratedid" %)
1441 **User can change firmware SN50v3-LB/LS to:**
1442
1443 * Change Frequency band/ region.
1444 * Update with new features.
1445 * Fix bugs.
1446
1447 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1448
1449 **Methods to Update Firmware:**
1450
1451 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1452 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1453
1454 = 6.  Developer Guide =
1455
1456 SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1457
1458 * (((
1459 Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1460 )))
1461 * (((
1462 Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1463 )))
1464 * (((
1465 Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1466 )))
1467
1468 **~1. If you want to change frequency, modify the Preprocessor Symbols.**
1469
1470 For example, change EU868 to US915
1471
1472 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1473
1474 **2. Compile and build**
1475
1476 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1477
1478 = 7. FAQ =
1479
1480 == 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1481
1482
1483 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1484
1485
1486 == 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1487
1488
1489 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1490
1491 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1492
1493 [[image:image-20230810121434-1.png||height="242" width="656"]]
1494
1495
1496 = 8. Order Info =
1497
1498
1499 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1500
1501 (% style="color:red" %)**XX**(%%): The default frequency band
1502
1503 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1504 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1505 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1506 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1507 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1508 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1509 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1510 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1511
1512 (% style="color:red" %)**YY: ** (%%)Hole Option
1513
1514 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1515 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1516 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1517 * (% style="color:red" %)**NH**(%%): No Hole
1518
1519 = 9. ​Packing Info =
1520
1521
1522 (% style="color:#037691" %)**Package Includes**:
1523
1524 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1525
1526 (% style="color:#037691" %)**Dimension and weight**:
1527
1528 * Device Size: cm
1529 * Device Weight: g
1530 * Package Size / pcs : cm
1531 * Weight / pcs : g
1532
1533 = 10. Support =
1534
1535
1536 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1537
1538 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0