Version 123.1 by Mengting Qiu on 2025/04/02 11:20

Hide last authors
Xiaoling 87.2 1
2
Xiaoling 41.2 3 (% style="text-align:center" %)
Xiaoling 87.2 4 [[image:image-20240103095714-2.png]]
Edwin Chen 2.1 5
6
7
Xiaoling 87.2 8
9
10
Xiaoling 79.3 11 **Table of Contents:**
Edwin Chen 2.1 12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
Xiaoling 87.3 22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
Edwin Chen 2.1 23
Xiaoling 43.2 24
Xiaoling 99.2 25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 26
Xiaoling 87.3 27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 28
Xiaoling 87.3 29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
Edwin Chen 2.1 30
Xiaoling 87.3 31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 32
Xiaoling 87.3 33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 34
35 == 1.2 ​Features ==
36
Xiaoling 43.44 37
Edwin Chen 2.1 38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
Edwin Chen 5.1 40 * Open-Source hardware/software
Edwin Chen 2.1 41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
Xiaoling 87.26 46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
Xiaoling 99.2 47 * Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
Edwin Chen 2.1 48
49 == 1.3 Specification ==
50
Xiaoling 43.4 51
Edwin Chen 2.1 52 (% style="color:#037691" %)**Common DC Characteristics:**
53
Xiaoling 87.28 54 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
Edwin Chen 2.1 55 * Operating Temperature: -40 ~~ 85°C
56
Edwin Chen 5.1 57 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 58
Edwin Chen 5.1 59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
Edwin Chen 2.1 65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
Xiaoling 43.4 88
Edwin Chen 2.1 89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
Xiaoling 87.29 97 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
Edwin Chen 2.1 98
Xiaoling 87.41 99 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.31 100 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
Edwin Chen 2.1 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
Xiaoling 87.4 115 SN50v3-LB/LS supports BLE remote configure.
Edwin Chen 2.1 116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
Edwin Chen 6.1 127 == 1.7 Pin Definitions ==
Edwin Chen 2.1 128
129
Saxer Lin 49.1 130 [[image:image-20230610163213-1.png||height="404" width="699"]]
Edwin Chen 2.1 131
132
133 == 1.8 Mechanical ==
134
Edwin Chen 85.1 135 === 1.8.1 for LB version ===
Edwin Chen 2.1 136
137
Xiaoling 99.1 138 [[image:image-20240924112806-1.png||height="548" width="894"]]
Edwin Chen 2.1 139
Edwin Chen 84.1 140
Edwin Chen 2.1 141
Edwin Chen 85.1 142 === 1.8.2 for LS version ===
Edwin Chen 2.1 143
Edwin Chen 84.1 144 [[image:image-20231231203439-3.png||height="385" width="886"]]
145
146
Saxer Lin 44.5 147 == 1.9 Hole Option ==
Edwin Chen 5.1 148
Xiaoling 43.4 149
Xiaoling 87.4 150 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
Edwin Chen 5.1 151
Xiaoling 113.2 152 [[image:image-20250329085729-1.jpeg]]
Edwin Chen 5.1 153
Xiaoling 113.2 154 [[image:image-20250329085744-2.jpeg]]
Edwin Chen 5.1 155
156
Xiaoling 87.4 157 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
Edwin Chen 2.1 158
159 == 2.1 How it works ==
160
161
Xiaoling 87.4 162 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 163
164
165 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
166
167
168 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169
Xiaoling 44.3 170 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 171
Xiaoling 113.2 172 [[image:image-20250329090241-3.png]]
Edwin Chen 2.1 173
Xiaoling 87.4 174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
Edwin Chen 2.1 175
Xiaoling 87.4 176 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 177
Xiaoling 113.2 178 [[image:image-20250329090300-4.jpeg]]
Edwin Chen 2.1 179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
Xiaoling 117.2 186 [[image:image-20250329090324-5.jpeg]]
Edwin Chen 2.1 187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
Xiaoling 117.2 191 [[image:image-20250329090341-6.jpeg]]
Edwin Chen 2.1 192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
Xiaoling 117.2 197 [[image:image-20250329090403-7.jpeg]]
Edwin Chen 2.1 198
199
200 (% style="color:blue" %)**Add APP KEY**
201
Xiaoling 117.2 202 [[image:image-20250329090417-8.jpeg]]
Edwin Chen 2.1 203
Xiaoling 87.4 204 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
Edwin Chen 2.1 205
Xiaoling 87.4 206 Press the button for 5 seconds to activate the SN50v3-LB/LS.
Edwin Chen 2.1 207
208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209
210 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
211
212
213 == 2.3 ​Uplink Payload ==
214
215 === 2.3.1 Device Status, FPORT~=5 ===
216
217
Xiaoling 87.4 218 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 219
220 The Payload format is as below.
221
222
Xiaoling 87.41 223 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.24 224 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
Edwin Chen 2.1 225 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 226 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 227
228 Example parse in TTNv3
229
230
Xiaoling 87.4 231 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
Edwin Chen 2.1 232
233 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234
235 (% style="color:#037691" %)**Frequency Band**:
236
Xiaoling 53.2 237 0x01: EU868
Edwin Chen 2.1 238
Xiaoling 53.2 239 0x02: US915
Edwin Chen 2.1 240
Xiaoling 53.2 241 0x03: IN865
Edwin Chen 2.1 242
Xiaoling 53.2 243 0x04: AU915
Edwin Chen 2.1 244
Xiaoling 53.2 245 0x05: KZ865
Edwin Chen 2.1 246
Xiaoling 53.2 247 0x06: RU864
Edwin Chen 2.1 248
Xiaoling 53.2 249 0x07: AS923
Edwin Chen 2.1 250
Xiaoling 53.2 251 0x08: AS923-1
Edwin Chen 2.1 252
Xiaoling 53.2 253 0x09: AS923-2
Edwin Chen 2.1 254
Xiaoling 53.2 255 0x0a: AS923-3
Edwin Chen 2.1 256
Xiaoling 53.2 257 0x0b: CN470
Edwin Chen 2.1 258
Xiaoling 53.2 259 0x0c: EU433
Edwin Chen 2.1 260
Xiaoling 53.2 261 0x0d: KR920
Edwin Chen 2.1 262
Xiaoling 53.2 263 0x0e: MA869
Edwin Chen 2.1 264
265
266 (% style="color:#037691" %)**Sub-Band**:
267
268 AU915 and US915:value 0x00 ~~ 0x08
269
270 CN470: value 0x0B ~~ 0x0C
271
272 Other Bands: Always 0x00
273
274
275 (% style="color:#037691" %)**Battery Info**:
276
277 Check the battery voltage.
278
279 Ex1: 0x0B45 = 2885mV
280
281 Ex2: 0x0B49 = 2889mV
282
283
Edwin Chen 12.1 284 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 285
286
Xiaoling 87.4 287 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
Edwin Chen 12.1 288
289 For example:
290
Xiaoling 44.2 291 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 292
293
Edwin Chen 13.1 294 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 295
Xiaoling 87.4 296 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 297
Xiaoling 44.2 298 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 299
Xiaoling 44.2 300 3. By default, the device will send an uplink message every 20 minutes.
301
302
Edwin Chen 13.1 303 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 304
Xiaoling 43.5 305
Edwin Chen 12.1 306 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307
Xiaoling 87.32 308 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
Xiaoling 45.4 310 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 311 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 312 )))|(% style="width:78px" %)(((
Xiaoling 43.12 313 ADC(PA4)
Saxer Lin 26.2 314 )))|(% style="width:216px" %)(((
Xiaoling 43.13 315 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 316 )))|(% style="width:308px" %)(((
Xiaoling 43.12 317 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 318 )))|(% style="width:154px" %)(((
Xiaoling 43.12 319 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 320 )))
321
Edwin Chen 12.1 322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323
324
Edwin Chen 13.1 325 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326
Xiaoling 43.45 327
Edwin Chen 12.1 328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329
Xiaoling 87.34 330 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.33 331 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
Xiaoling 45.4 332 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 333 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 334 )))|(% style="width:87px" %)(((
Xiaoling 43.16 335 ADC(PA4)
Saxer Lin 40.1 336 )))|(% style="width:189px" %)(((
Xiaoling 43.16 337 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 338 )))|(% style="width:208px" %)(((
Xiaoling 53.2 339 Distance measure by: 1) LIDAR-Lite V3HP
340 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 341 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 342
343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344
Xiaoling 43.45 345
Xiaoling 43.17 346 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 347
Saxer Lin 26.2 348 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 349
Xiaoling 43.45 350
Xiaoling 43.17 351 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 352
Ellie Zhang 44.1 353 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 354
Saxer Lin 26.2 355 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 356
Xiaoling 43.45 357
Edwin Chen 12.1 358 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359
Xiaoling 87.34 360 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
Xiaoling 45.5 362 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 363 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 364 )))|(% style="width:173px" %)(((
Xiaoling 43.19 365 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 366 )))|(% style="width:84px" %)(((
Xiaoling 43.19 367 ADC(PA4)
Saxer Lin 40.1 368 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 369 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 370 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 371 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 372
373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374
Xiaoling 43.45 375
Edwin Chen 12.1 376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377
Ellie Zhang 44.1 378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 379
Saxer Lin 26.2 380 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 381
Xiaoling 43.45 382
Edwin Chen 12.1 383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384
Ellie Zhang 44.1 385 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 386
Saxer Lin 52.1 387 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 388
389
Edwin Chen 13.1 390 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391
Xiaoling 43.45 392
Edwin Chen 12.1 393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394
Xiaoling 87.35 395 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 396 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Xiaoling 43.25 397 **Size(bytes)**
Xiaoling 87.35 398 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
Xiaoling 45.4 399 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 400 ADC1(PA4)
Saxer Lin 26.2 401 )))|(% style="width:75px" %)(((
Xiaoling 43.23 402 ADC2(PA5)
Saxer Lin 36.1 403 )))|(((
Xiaoling 43.23 404 ADC3(PA8)
Saxer Lin 36.1 405 )))|(((
406 Digital Interrupt(PB15)
407 )))|(% style="width:304px" %)(((
Xiaoling 43.23 408 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 409 )))|(% style="width:163px" %)(((
Xiaoling 43.23 410 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 411 )))|(% style="width:53px" %)Bat
412
413 [[image:image-20230513110214-6.png]]
414
415
Edwin Chen 13.1 416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417
Edwin Chen 12.1 418
Saxer Lin 26.2 419 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 420
Xiaoling 87.36 421 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
Xiaoling 45.4 423 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 424 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 425 )))|(% style="width:82px" %)(((
Xiaoling 43.27 426 ADC(PA4)
Saxer Lin 26.2 427 )))|(% style="width:210px" %)(((
Xiaoling 43.27 428 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 429 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 430 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
Xiaoling 44.4 434
Saxer Lin 39.2 435 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 436
Saxer Lin 39.1 437
Edwin Chen 13.1 438 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439
Xiaoling 43.45 440
Saxer Lin 26.2 441 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 442
443 Each HX711 need to be calibrated before used. User need to do below two steps:
444
Xiaoling 44.2 445 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 447 1. (((
Saxer Lin 26.2 448 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 449
450
451
Edwin Chen 12.1 452 )))
453
454 For example:
455
Xiaoling 44.2 456 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
Xiaoling 87.37 462 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 463 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 464 **Size(bytes)**
Xiaoling 87.37 465 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 466 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 467 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 468 )))|(% style="width:85px" %)(((
Xiaoling 43.31 469 ADC(PA4)
Saxer Lin 40.1 470 )))|(% style="width:186px" %)(((
Xiaoling 43.55 471 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 472 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 473
Edwin Chen 12.1 474 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475
476
Edwin Chen 13.1 477 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478
Xiaoling 43.45 479
Edwin Chen 12.1 480 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481
482 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483
Saxer Lin 26.2 484 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 485
Xiaoling 43.53 486
Xiaoling 43.45 487 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 488
Xiaoling 87.38 489 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
Xiaoling 45.4 491 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 492 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 493 )))|(% style="width:108px" %)(((
Xiaoling 43.31 494 ADC(PA4)
Saxer Lin 36.1 495 )))|(% style="width:126px" %)(((
Xiaoling 43.31 496 Digital in(PB15)
Saxer Lin 36.1 497 )))|(% style="width:145px" %)(((
Xiaoling 43.31 498 Count(PA8)
Saxer Lin 36.1 499 )))
500
Edwin Chen 12.1 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502
503
Edwin Chen 13.1 504 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505
Xiaoling 43.45 506
Xiaoling 87.39 507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 508 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 509 **Size(bytes)**
Xiaoling 87.39 510 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 511 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 512 Temperature(DS18B20)
513 (PC13)
Saxer Lin 40.1 514 )))|(% style="width:83px" %)(((
Xiaoling 43.35 515 ADC(PA5)
Saxer Lin 40.1 516 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 517 Digital Interrupt1(PA8)
Saxer Lin 40.1 518 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 519
520 [[image:image-20230513111203-7.png||height="324" width="975"]]
521
Xiaoling 43.45 522
Edwin Chen 13.1 523 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524
Xiaoling 43.45 525
Xiaoling 87.39 526 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 527 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 528 **Size(bytes)**
Xiaoling 87.39 529 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
Xiaoling 45.4 530 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 531 Temperature(DS18B20)
532 (PC13)
533 )))|(% style="width:94px" %)(((
Xiaoling 43.36 534 ADC1(PA4)
Saxer Lin 36.1 535 )))|(% style="width:198px" %)(((
536 Digital Interrupt(PB15)
537 )))|(% style="width:84px" %)(((
Xiaoling 43.36 538 ADC2(PA5)
Saxer Lin 40.1 539 )))|(% style="width:82px" %)(((
Xiaoling 43.36 540 ADC3(PA8)
Edwin Chen 12.1 541 )))
542
Saxer Lin 36.1 543 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 544
545
Edwin Chen 13.1 546 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547
Xiaoling 43.45 548
Xiaoling 87.40 549 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
Xiaoling 87.11 550 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
Edwin Chen 12.1 551 **Size(bytes)**
Xiaoling 87.40 552 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
Xiaoling 45.4 553 |Value|BAT|(((
Xiaoling 43.58 554 Temperature
555 (DS18B20)(PC13)
Edwin Chen 12.1 556 )))|(((
Xiaoling 43.58 557 Temperature2
558 (DS18B20)(PB9)
Edwin Chen 12.1 559 )))|(((
Saxer Lin 36.1 560 Digital Interrupt
561 (PB15)
562 )))|(% style="width:193px" %)(((
Xiaoling 43.58 563 Temperature3
564 (DS18B20)(PB8)
Saxer Lin 36.1 565 )))|(% style="width:78px" %)(((
Xiaoling 43.39 566 Count1(PA8)
Saxer Lin 36.1 567 )))|(% style="width:78px" %)(((
Xiaoling 43.39 568 Count2(PA4)
Edwin Chen 12.1 569 )))
570
Saxer Lin 36.1 571 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 572
Xiaoling 43.40 573 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 574
Xiaoling 43.44 575 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 576
Xiaoling 43.44 577 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 578
Xiaoling 43.44 579 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 580
581
Xiaoling 43.41 582 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
583
Saxer Lin 36.1 584 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 585
Saxer Lin 36.1 586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 587
588
Xiaoling 87.10 589 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
Saxer Lin 65.1 590
Xiaoling 87.10 591
Mengting Qiu 74.8 592 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
Xiaoling 74.3 593
Saxer Lin 65.1 594 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595
Xiaoling 74.3 596 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 597
Saxer Lin 69.1 598
Saxer Lin 65.1 599 ===== 2.3.2.10.a  Uplink, PWM input capture =====
600
Xiaoling 74.3 601
Saxer Lin 65.1 602 [[image:image-20230817172209-2.png||height="439" width="683"]]
603
Xiaoling 87.40 604 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
Xiaoling 87.24 605 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
Saxer Lin 65.1 606 |Value|Bat|(% style="width:191px" %)(((
607 Temperature(DS18B20)(PC13)
608 )))|(% style="width:78px" %)(((
609 ADC(PA4)
610 )))|(% style="width:135px" %)(((
611 PWM_Setting
612 &Digital Interrupt(PA8)
613 )))|(% style="width:70px" %)(((
614 Pulse period
615 )))|(% style="width:89px" %)(((
616 Duration of high level
617 )))
618
619 [[image:image-20230817170702-1.png||height="161" width="1044"]]
620
621
Saxer Lin 72.1 622 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 623
Xiaoling 117.3 624 **Frequency:**
Saxer Lin 65.1 625
Saxer Lin 72.1 626 (% class="MsoNormal" %)
Xiaoling 117.3 627 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 628
Saxer Lin 72.1 629 (% class="MsoNormal" %)
Xiaoling 117.3 630 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 631
Xiaoling 74.4 632
Saxer Lin 72.1 633 (% class="MsoNormal" %)
Xiaoling 74.4 634 **Duty cycle:**
Saxer Lin 72.1 635
636 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637
638 [[image:image-20230818092200-1.png||height="344" width="627"]]
639
Xiaoling 87.10 640
Mengting Qiu 77.1 641 ===== 2.3.2.10.b  Uplink, PWM output =====
Saxer Lin 72.1 642
Xiaoling 87.10 643
Mengting Qiu 77.1 644 [[image:image-20230817172209-2.png||height="439" width="683"]]
Saxer Lin 65.1 645
Mengting Qiu 79.1 646 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
Xiaoling 74.3 647
Mengting Qiu 79.1 648 a is the time delay of the output, the unit is ms.
Mengting Qiu 75.1 649
Mengting Qiu 79.1 650 b is the output frequency, the unit is HZ.
Mengting Qiu 75.1 651
Mengting Qiu 79.1 652 c is the duty cycle of the output, the unit is %.
Mengting Qiu 75.1 653
Mengting Qiu 79.1 654 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
Mengting Qiu 75.1 655
Mengting Qiu 79.1 656 aa is the time delay of the output, the unit is ms.
657
658 bb is the output frequency, the unit is HZ.
659
660 cc is the duty cycle of the output, the unit is %.
661
662
663 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664
665 The oscilloscope displays as follows:
666
Xiaoling 87.10 667 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
Mengting Qiu 79.1 668
669
Mengting Qiu 75.1 670 ===== 2.3.2.10.c  Downlink, PWM output =====
671
672
Saxer Lin 65.1 673 [[image:image-20230817173800-3.png||height="412" width="685"]]
674
675 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676
677 xx xx xx is the output frequency, the unit is HZ.
678
679 yy is the duty cycle of the output, the unit is %.
680
681 zz zz is the time delay of the output, the unit is ms.
682
683
684 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685
686 The oscilloscope displays as follows:
687
Xiaoling 87.10 688 [[image:image-20230817173858-5.png||height="634" width="843"]]
Saxer Lin 65.1 689
690
Mengting Qiu 89.1 691
Mengting Qiu 102.1 692 ==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
Mengting Qiu 89.1 693
694
695 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696
697 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 |Value|Bat|(% style="width:191px" %)(((
700 Temperature(DS18B20)(PC13)
701 )))|(% style="width:78px" %)(((
702 ADC(PA4)
703 )))|(% style="width:216px" %)(((
704 Digital in(PB15)&Digital Interrupt(PA8)
705 )))|(% style="width:308px" %)(((
Mengting Qiu 96.1 706 Temperature
707 (TEMP117)
Mengting Qiu 89.1 708 )))|(% style="width:154px" %)(((
Mengting Qiu 96.1 709 Reserved position, meaningless
710 (0x0000)
Mengting Qiu 89.1 711 )))
712
Mengting Qiu 96.1 713 [[image:image-20240717113113-1.png||height="352" width="793"]]
Mengting Qiu 89.1 714
Mengting Qiu 96.1 715 Connection:
Mengting Qiu 89.1 716
Mengting Qiu 96.1 717 [[image:image-20240717141528-2.jpeg||height="430" width="654"]]
Mengting Qiu 89.1 718
719
Mengting Qiu 102.1 720 ==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
Mengting Qiu 89.1 721
722
Mengting Qiu 96.1 723 This mode has total 11 bytes. As shown below:
724
725 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
726 |=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
727 |Value|BAT|(% style="width:86px" %)(((
Saxer Lin 97.1 728 Temperature_SHT31
Mengting Qiu 96.1 729 )))|(% style="width:86px" %)(((
Saxer Lin 97.1 730 Humidity_SHT31
Mengting Qiu 96.1 731 )))|(% style="width:86px" %)(((
732 Digital in(PB15)
733 )))|(% style="width:86px" %)(((
734 Count(PA8)
735 )))
736
737 [[image:image-20240717150948-5.png||height="389" width="979"]]
738
739 Wiring example:
740
741 [[image:image-20240717152224-6.jpeg||height="359" width="680"]]
742
743
Edwin Chen 14.1 744 === 2.3.3  ​Decode payload ===
745
Xiaoling 43.45 746
Edwin Chen 12.1 747 While using TTN V3 network, you can add the payload format to decode the payload.
748
749 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
750
751 The payload decoder function for TTN V3 are here:
752
Xiaoling 87.4 753 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 754
755
Edwin Chen 14.1 756 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 757
Xiaoling 43.45 758
Xiaoling 87.4 759 Check the battery voltage for SN50v3-LB/LS.
Edwin Chen 2.1 760
761 Ex1: 0x0B45 = 2885mV
762
763 Ex2: 0x0B49 = 2889mV
764
765
Edwin Chen 14.1 766 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 767
Xiaoling 43.45 768
Saxer Lin 42.1 769 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 770
Xiaoling 43.45 771 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 772
Xiaoling 43.41 773 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 774
Saxer Lin 26.2 775 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 776
Xiaoling 43.46 777
Xiaoling 43.41 778 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 779
780 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
781
782 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
783
Xiaoling 117.4 784 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
Edwin Chen 2.1 785
786
Edwin Chen 14.1 787 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 788
Xiaoling 43.46 789
Saxer Lin 26.2 790 The digital input for pin PB15,
Edwin Chen 2.1 791
Saxer Lin 26.2 792 * When PB15 is high, the bit 1 of payload byte 6 is 1.
793 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 794
Saxer Lin 26.2 795 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
796 (((
Saxer Lin 36.1 797 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
798
Xiaoling 43.46 799 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
800
801
Saxer Lin 26.2 802 )))
803
Edwin Chen 14.1 804 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 805
Xiaoling 43.46 806
Saxer Lin 53.1 807 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 808
Saxer Lin 53.1 809 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 810
Saxer Lin 26.2 811 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 812
Xiaoling 44.2 813
Xiaoling 43.46 814 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 815
Saxer Lin 43.1 816
Saxer Lin 59.1 817 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
818
819 [[image:image-20230811113449-1.png||height="370" width="608"]]
820
Xiaoling 87.10 821
822
Edwin Chen 14.1 823 ==== 2.3.3.5 Digital Interrupt ====
824
Xiaoling 43.46 825
Xiaoling 87.4 826 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
Edwin Chen 14.1 827
Xiaoling 43.44 828 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 829
Saxer Lin 36.1 830 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 831
Xiaoling 43.46 832
Xiaoling 43.8 833 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 834
835 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
836
837 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
838
Xiaoling 87.4 839 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 840
841
Xiaoling 43.46 842 (% style="color:blue" %)**Below is the installation example:**
843
Xiaoling 87.4 844 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
Edwin Chen 14.1 845
846 * (((
Xiaoling 87.4 847 One pin to SN50v3-LB/LS's PA8 pin
Edwin Chen 14.1 848 )))
849 * (((
Xiaoling 87.4 850 The other pin to SN50v3-LB/LS's VDD pin
Edwin Chen 14.1 851 )))
852
Saxer Lin 36.1 853 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 854
Xiaoling 43.46 855 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 856
Saxer Lin 36.1 857 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 858
859 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
860
861 The above photos shows the two parts of the magnetic switch fitted to a door.
862
863 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
864
865 The command is:
866
Xiaoling 44.2 867 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 868
869 Below shows some screen captures in TTN V3:
870
871 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
872
Xiaoling 43.47 873
Mengting Qiu 122.1 874 (% style="color:blue" %)**Application in different modes:**
Edwin Chen 14.1 875
Mengting Qiu 122.1 876 * In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 877
Mengting Qiu 122.1 878 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
Edwin Chen 14.1 879
Mengting Qiu 122.1 880
881 * In **MOD=7**, there are three interrupt pins in effect.
882
Mengting Qiu 123.1 883 See the **[[AT+INTMODx>>||anchor="H3.3.3SetInterruptMode"]] **command explained to set the three pin interrupt modes.
Mengting Qiu 122.1 884
885 As you can see from the byte parsing table of pattern 7, the seventh byte of the original load is used to display the PA8 pin interrupt flag and status, the eighth byte of the original load is used to display the PA4 pin interrupt flag and status, and the ninth byte of the original load is used to display the PB15 pin interrupt flag and status.
886
887 [[image:image-20250402103902-1.png]]
888
889 TTN V3 decoder is as below:
890
891 [[image:image-20250402104508-2.png||height="255" width="579"]]
892
893 (% style="color:red" %)**Note: mode in decoding is sorted from 0, so it corresponds to the actual working mode AT+MOD=7.**
894
895
896 (% style="color:#037691" %)**Interrupt flag: **(%%)"EXTI1/2/3_Trigger", indicates whether the uplink packet is generated by an interrupt on the PA8/PA4/PB15 pin.
897
898
899 (% style="color:#037691" %)**Interrupt status: **(%%)"EXTI1/2/3_Status", Displays the status of the interrupt sensors connected to the PA4/PA8/PB15 interrupt pins when the packet is uplinked.
900
901
Saxer Lin 26.2 902 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 903
Xiaoling 43.47 904
Saxer Lin 26.2 905 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 906
Saxer Lin 40.1 907 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 908
Xiaoling 87.4 909 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
Edwin Chen 14.1 910
Xiaoling 44.2 911
Edwin Chen 14.1 912 Below is the connection to SHT20/ SHT31. The connection is as below:
913
Saxer Lin 52.1 914 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 915
Xiaoling 44.4 916
Edwin Chen 14.1 917 The device will be able to get the I2C sensor data now and upload to IoT Server.
918
919 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
920
921 Convert the read byte to decimal and divide it by ten.
922
Edwin Chen 2.1 923 **Example:**
924
Edwin Chen 14.1 925 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 926
Edwin Chen 14.1 927 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 928
Edwin Chen 14.1 929 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 930
931
Edwin Chen 14.1 932 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 933
Xiaoling 43.48 934
Xiaoling 43.42 935 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 936
937
938 ==== 2.3.3.8 Ultrasonic Sensor ====
939
Xiaoling 43.48 940
Saxer Lin 26.2 941 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 942
Xiaoling 87.4 943 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 944
Xiaoling 43.44 945 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 946
Edwin Chen 14.1 947 The picture below shows the connection:
948
Saxer Lin 36.1 949 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 950
Xiaoling 43.50 951
Xiaoling 87.4 952 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 953
954 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
955
956 **Example:**
957
958 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
959
960
961 ==== 2.3.3.9  Battery Output - BAT pin ====
962
Xiaoling 43.50 963
Xiaoling 87.4 964 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
Edwin Chen 14.1 965
966
967 ==== 2.3.3.10  +5V Output ====
968
Xiaoling 43.50 969
Xiaoling 87.4 970 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 971
972 The 5V output time can be controlled by AT Command.
973
Xiaoling 43.9 974 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 975
976 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
977
Xiaoling 44.4 978 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 979
980
981 ==== 2.3.3.11  BH1750 Illumination Sensor ====
982
Xiaoling 43.50 983
Edwin Chen 14.1 984 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
985
Saxer Lin 40.1 986 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 987
Xiaoling 43.51 988
Saxer Lin 40.1 989 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 990
991
Saxer Lin 65.1 992 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 993
Xiaoling 43.51 994
Saxer Lin 69.1 995 * (((
996 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
997 )))
998 * (((
999 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
1000 )))
1001
1002 [[image:image-20230817183249-3.png||height="320" width="417"]]
1003
1004 * (((
1005 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
1006 )))
1007 * (((
Xiaoling 74.2 1008 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Mengting Qiu 74.8 1009 )))
1010 * (((
Mengting Qiu 76.1 1011 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
Saxer Lin 70.1 1012
Mengting Qiu 74.8 1013 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
Xiaoling 74.5 1014
Xiaoling 87.4 1015 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
Mengting Qiu 74.8 1016
Mengting Qiu 76.1 1017 b) If the output duration is more than 30 seconds, better to use external power source. 
Xiaoling 118.1 1018
1019
1020
Xiaoling 87.4 1021 )))
Mengting Qiu 74.8 1022
Saxer Lin 65.1 1023 ==== 2.3.3.13  Working MOD ====
1024
1025
Edwin Chen 14.1 1026 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1027
1028 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1029
1030 Case 7^^th^^ Byte >> 2 & 0x1f:
1031
1032 * 0: MOD1
1033 * 1: MOD2
1034 * 2: MOD3
1035 * 3: MOD4
1036 * 4: MOD5
1037 * 5: MOD6
Saxer Lin 36.1 1038 * 6: MOD7
1039 * 7: MOD8
1040 * 8: MOD9
Saxer Lin 65.1 1041 * 9: MOD10
Edwin Chen 14.1 1042
Edwin Chen 2.1 1043 == 2.4 Payload Decoder file ==
1044
1045
1046 In TTN, use can add a custom payload so it shows friendly reading
1047
1048 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1049
Saxer Lin 40.1 1050 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 1051
1052
Edwin Chen 15.1 1053 == 2.5 Frequency Plans ==
Edwin Chen 2.1 1054
1055
Xiaoling 87.30 1056 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
Edwin Chen 2.1 1057
1058 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1059
1060
Xiaoling 87.4 1061 = 3. Configure SN50v3-LB/LS =
Edwin Chen 2.1 1062
1063 == 3.1 Configure Methods ==
1064
1065
Xiaoling 87.4 1066 SN50v3-LB/LS supports below configure method:
Edwin Chen 2.1 1067
1068 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1069 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1070 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1071
1072 == 3.2 General Commands ==
1073
1074
1075 These commands are to configure:
1076
1077 * General system settings like: uplink interval.
1078 * LoRaWAN protocol & radio related command.
1079
1080 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1081
1082 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1083
1084
Xiaoling 87.4 1085 == 3.3 Commands special design for SN50v3-LB/LS ==
Edwin Chen 2.1 1086
1087
Xiaoling 87.4 1088 These commands only valid for SN50v3-LB/LS, as below:
Edwin Chen 2.1 1089
1090
1091 === 3.3.1 Set Transmit Interval Time ===
1092
Xiaoling 43.51 1093
Edwin Chen 2.1 1094 Feature: Change LoRaWAN End Node Transmit Interval.
1095
1096 (% style="color:blue" %)**AT Command: AT+TDC**
1097
1098 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1099 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
Edwin Chen 2.1 1100 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1101 30000
1102 OK
1103 the interval is 30000ms = 30s
1104 )))
1105 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1106 OK
1107 Set transmit interval to 60000ms = 60 seconds
1108 )))
1109
1110 (% style="color:blue" %)**Downlink Command: 0x01**
1111
1112 Format: Command Code (0x01) followed by 3 bytes time value.
1113
1114 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1115
1116 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1117 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1118
1119 === 3.3.2 Get Device Status ===
1120
Xiaoling 43.52 1121
Saxer Lin 40.1 1122 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1123
Xiaoling 44.4 1124 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1125
Xiaoling 44.4 1126 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1127
1128
Saxer Lin 36.1 1129 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1130
Xiaoling 43.52 1131
Mengting Qiu 109.1 1132 ==== 3.3.3.1 Before V1.3.4 firmware ====
Mengting Qiu 107.2 1133
Mengting Qiu 109.1 1134 (% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
Mengting Qiu 107.2 1135
Bei Jinggeng 107.1 1136 Feature, Set Interrupt mode for PA8, PA4, PB15.
Edwin Chen 2.1 1137
Mengting Qiu 103.1 1138 Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
Edwin Chen 2.1 1139
Mengting Qiu 108.1 1140 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
Saxer Lin 36.1 1141
Mengting Qiu 103.1 1142 (% style="color:#4472c4" %)**AT+INTMODx:**
Edwin Chen 2.1 1143
Bei Jinggeng 107.1 1144 * (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1145 * (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1146 * (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
Mengting Qiu 103.1 1147
Mengting Qiu 108.1 1148 **Parameter a setting:**
Mengting Qiu 103.1 1149
1150 * **0:** Disable Interrupt
1151 * **1:** Trigger by rising and falling edge
1152 * **2:** Trigger by falling edge
1153 * **3: **Trigger by rising edge
1154
1155 **Example:**
1156
Bei Jinggeng 107.1 1157 * AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1158 * AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1159 * AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
Mengting Qiu 103.1 1160
1161 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1162
Mengting Qiu 108.1 1163 Format: Command Code (0x06 00) followed by 2 bytes.
Edwin Chen 2.1 1164
Bei Jinggeng 107.1 1165 (% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
Edwin Chen 2.1 1166
Mengting Qiu 103.1 1167 (% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
Edwin Chen 2.1 1168
Mengting Qiu 103.1 1169 **Example:**
1170
1171 * Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1172 * Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1173 * Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1174
Mengting Qiu 109.1 1175 ==== 3.3.3.2 Since V1.3.4 firmware ====
Mengting Qiu 107.2 1176
Mengting Qiu 109.1 1177 (% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
Mengting Qiu 107.2 1178
Mengting Qiu 108.1 1179 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
Mengting Qiu 107.2 1180
Xiaoling 117.4 1181 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
1182 |=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 304px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
Mengting Qiu 108.1 1183 |(% style="width:116px" %)(((
1184
Mengting Qiu 107.2 1185
Mengting Qiu 108.1 1186 **x**
1187 )))|(% style="width:392px" %)(((
1188 1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
Mengting Qiu 107.2 1189
Mengting Qiu 108.1 1190 2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
Mengting Qiu 107.2 1191
Mengting Qiu 108.1 1192 3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1193 )))
1194 |(% style="width:116px" %)(((
1195
Mengting Qiu 107.2 1196
Mengting Qiu 108.1 1197 **a**
1198 )))|(% style="width:392px" %)(((
1199 **0:** Disable Interrupt
1200
1201 **1:** Trigger by rising and falling edge
1202
1203 **2:** Trigger by falling edge
1204
1205 **3: **Trigger by rising edge
1206 )))
1207 |(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1208 Set the delay time. (Default: 0)
1209
1210 **Value range: 0~~65535 ms**
1211 )))
1212
1213 **Example:**
1214
Xiaoling 119.1 1215 * AT+INTMOD1=0,0  ~/~/ Disable the PA8 pin interrupt function
1216 * AT+INTMOD2=2,1000  ~/~/ Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1217 * AT+INTMOD3=3,2500  ~/~/ Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
Mengting Qiu 108.1 1218
1219 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1220
1221 Format: Command Code (0x06 00) followed by 4 bytes.
1222
1223 (% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1224
1225 (% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1226
1227 (% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1228
1229 **Example:**
1230
Mengting Qiu 109.1 1231 * Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1232 * Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1233 * Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
Mengting Qiu 108.1 1234
Saxer Lin 36.1 1235 === 3.3.4 Set Power Output Duration ===
1236
Xiaoling 43.52 1237
Saxer Lin 36.1 1238 Control the output duration 5V . Before each sampling, device will
1239
1240 ~1. first enable the power output to external sensor,
1241
1242 2. keep it on as per duration, read sensor value and construct uplink payload
1243
1244 3. final, close the power output.
1245
1246 (% style="color:blue" %)**AT Command: AT+5VT**
1247
1248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1249 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1250 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1251 500(default)
1252 OK
1253 )))
1254 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1255 Close after a delay of 1000 milliseconds.
1256 )))|(% style="width:157px" %)OK
1257
1258 (% style="color:blue" %)**Downlink Command: 0x07**
1259
1260 Format: Command Code (0x07) followed by 2 bytes.
1261
1262 The first and second bytes are the time to turn on.
1263
Saxer Lin 40.1 1264 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1265 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1266
1267 === 3.3.5 Set Weighing parameters ===
1268
Xiaoling 43.52 1269
Saxer Lin 37.1 1270 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1271
1272 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1273
1274 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1275 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 37.1 1276 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
Xiaoling 87.16 1277 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
Saxer Lin 37.1 1278 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1279
1280 (% style="color:blue" %)**Downlink Command: 0x08**
1281
Saxer Lin 37.1 1282 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1283
Saxer Lin 37.1 1284 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1285
Saxer Lin 37.1 1286 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1287
Saxer Lin 37.1 1288 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1289 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1290 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1291
Saxer Lin 36.1 1292 === 3.3.6 Set Digital pulse count value ===
1293
Xiaoling 43.52 1294
Saxer Lin 36.1 1295 Feature: Set the pulse count value.
1296
Saxer Lin 37.1 1297 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1298
Saxer Lin 36.1 1299 (% style="color:blue" %)**AT Command: AT+SETCNT**
1300
Xiaoling 87.41 1301 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1302 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1303 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1304 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1305
1306 (% style="color:blue" %)**Downlink Command: 0x09**
1307
1308 Format: Command Code (0x09) followed by 5 bytes.
1309
1310 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1311
1312 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1313 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1314
1315 === 3.3.7 Set Workmode ===
1316
Xiaoling 43.52 1317
Saxer Lin 37.1 1318 Feature: Switch working mode.
Saxer Lin 36.1 1319
1320 (% style="color:blue" %)**AT Command: AT+MOD**
1321
Xiaoling 87.41 1322 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.11 1323 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
Saxer Lin 36.1 1324 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1325 OK
1326 )))
1327 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1328 OK
1329 Attention:Take effect after ATZ
1330 )))
1331
1332 (% style="color:blue" %)**Downlink Command: 0x0A**
1333
1334 Format: Command Code (0x0A) followed by 1 bytes.
1335
1336 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1337 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1338
Saxer Lin 72.1 1339 === 3.3.8 PWM setting ===
1340
Xiaoling 74.5 1341
Xiaoling 87.24 1342 Feature: Set the time acquisition unit for PWM input capture.
Saxer Lin 72.1 1343
1344 (% style="color:blue" %)**AT Command: AT+PWMSET**
1345
Xiaoling 87.41 1346 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.17 1347 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1348 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
Saxer Lin 72.1 1349 0(default)
1350 OK
1351 )))
Mengting Qiu 77.1 1352 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
Saxer Lin 72.1 1353 OK
1354
1355 )))
Mengting Qiu 77.1 1356 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
Saxer Lin 72.1 1357
1358 (% style="color:blue" %)**Downlink Command: 0x0C**
1359
1360 Format: Command Code (0x0C) followed by 1 bytes.
1361
1362 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1363 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1364
Xiaoling 87.24 1365 **Feature: Set PWM output time, output frequency and output duty cycle.**
1366
Mengting Qiu 76.1 1367 (% style="color:blue" %)**AT Command: AT+PWMOUT**
Mengting Qiu 75.1 1368
Xiaoling 87.41 1369 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 87.21 1370 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
Mengting Qiu 77.1 1371 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
Mengting Qiu 76.1 1372 0,0,0(default)
1373 OK
1374 )))
Mengting Qiu 77.1 1375 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
Mengting Qiu 76.1 1376 OK
1377
1378 )))
Mengting Qiu 77.1 1379 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1380 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
Mengting Qiu 75.1 1381
Mengting Qiu 77.1 1382
1383 )))|(% style="width:137px" %)(((
1384 OK
1385 )))
1386
Xiaoling 87.41 1387 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 117.4 1388 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 243px; background-color:#4F81BD;color:white" %)**parameters**
Mengting Qiu 77.1 1389 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1390 AT+PWMOUT=a,b,c
1391
1392
1393 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
Mengting Qiu 79.1 1394 Set PWM output time, output frequency and output duty cycle.
1395
1396 (((
Mengting Qiu 77.1 1397
1398 )))
1399
1400 (((
1401
1402 )))
1403 )))|(% style="width:242px" %)(((
Mengting Qiu 76.1 1404 a: Output time (unit: seconds)
Mengting Qiu 77.1 1405 The value ranges from 0 to 65535.
1406 When a=65535, PWM will always output.
1407 )))
1408 |(% style="width:242px" %)(((
Mengting Qiu 76.1 1409 b: Output frequency (unit: HZ)
Bei Jinggeng 106.1 1410
1411 range 5~~100000HZ
Mengting Qiu 77.1 1412 )))
1413 |(% style="width:242px" %)(((
1414 c: Output duty cycle (unit: %)
1415 The value ranges from 0 to 100.
Mengting Qiu 76.1 1416 )))
1417
Bei Jinggeng 105.1 1418 (% style="color:blue" %)**Downlink Command: 0x0B**
Mengting Qiu 76.1 1419
Bei Jinggeng 105.1 1420 Format: Command Code (0x0B) followed by 6 bytes.
Mengting Qiu 76.1 1421
Bei Jinggeng 105.1 1422 0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
Mengting Qiu 76.1 1423
Bei Jinggeng 105.1 1424 Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
Mengting Qiu 76.1 1425
Bei Jinggeng 105.1 1426 * Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1427 * Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1428
Mengting Qiu 79.1 1429 = 4. Battery & Power Cons =
1430
1431
Xiaoling 87.6 1432 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1433
1434 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1435
1436
1437 = 5. OTA Firmware update =
1438
1439
1440 (% class="wikigeneratedid" %)
Xiaoling 87.4 1441 **User can change firmware SN50v3-LB/LS to:**
Edwin Chen 2.1 1442
1443 * Change Frequency band/ region.
1444 * Update with new features.
1445 * Fix bugs.
1446
Xiaoling 52.2 1447 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1448
Xiaoling 44.4 1449 **Methods to Update Firmware:**
Edwin Chen 2.1 1450
Xiaoling 53.3 1451 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1452 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1453
Bei Jinggeng 101.1 1454 = 6.  Developer Guide =
Edwin Chen 2.1 1455
Bei Jinggeng 101.1 1456 SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
Edwin Chen 2.1 1457
Bei Jinggeng 101.1 1458 * (((
1459 Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1460 )))
1461 * (((
1462 Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1463 )))
1464 * (((
1465 Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1466 )))
Xiaoling 43.52 1467
Bei Jinggeng 101.1 1468 **~1. If you want to change frequency, modify the Preprocessor Symbols.**
Edwin Chen 2.1 1469
Bei Jinggeng 101.1 1470 For example, change EU868 to US915
Xiaoling 55.2 1471
Bei Jinggeng 101.1 1472 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
Xiaoling 55.2 1473
Bei Jinggeng 101.1 1474 **2. Compile and build**
1475
1476 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1477
1478 = 7. FAQ =
1479
1480 == 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1481
1482
Edwin Chen 55.1 1483 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1484
1485
Bei Jinggeng 101.1 1486 == 7.2 How to put several sensors to a SN50v3-LB/LS? ==
Edwin Chen 57.1 1487
Xiaoling 57.2 1488
Xiaoling 87.4 1489 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
Edwin Chen 57.1 1490
1491 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1492
1493 [[image:image-20230810121434-1.png||height="242" width="656"]]
1494
1495
Bei Jinggeng 101.1 1496 = 8. Order Info =
Edwin Chen 2.1 1497
1498
Xiaoling 87.9 1499 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
Edwin Chen 2.1 1500
1501 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1502
Edwin Chen 2.1 1503 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1504 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1505 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1506 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1507 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1508 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1509 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1510 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1511
Edwin Chen 10.1 1512 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1513
Edwin Chen 10.1 1514 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1515 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1516 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1517 * (% style="color:red" %)**NH**(%%): No Hole
1518
Bei Jinggeng 101.1 1519 = 9. ​Packing Info =
Edwin Chen 2.1 1520
Xiaoling 43.52 1521
Edwin Chen 2.1 1522 (% style="color:#037691" %)**Package Includes**:
1523
Xiaoling 87.4 1524 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
Edwin Chen 2.1 1525
1526 (% style="color:#037691" %)**Dimension and weight**:
1527
1528 * Device Size: cm
1529 * Device Weight: g
1530 * Package Size / pcs : cm
1531 * Weight / pcs : g
1532
Bei Jinggeng 101.1 1533 = 10. Support =
Edwin Chen 2.1 1534
1535
1536 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1537
Xiaoling 41.4 1538 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]