<
From version < 99.1 >
edited by Xiaoling
on 2024/09/24 11:28
To version < 85.1 >
edited by Edwin Chen
on 2023/12/31 20:35
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,13 +3,8 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,18 +19,18 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
... ... @@ -43,8 +43,7 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
41 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
... ... @@ -51,7 +51,7 @@
51 51  
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
48 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -135,9 +135,10 @@
135 135  === 1.8.1 for LB version ===
136 136  
137 137  
138 -[[image:image-20240924112806-1.png||height="548" width="894"]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 140  
136 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
141 141  
142 142  === 1.8.2 for LS version ===
143 143  
... ... @@ -147,7 +147,7 @@
147 147  == 1.9 Hole Option ==
148 148  
149 149  
150 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 151  
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
153 153  
... ... @@ -154,12 +154,12 @@
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
155 155  
156 156  
157 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
153 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 158  
159 159  == 2.1 How it works ==
160 160  
161 161  
162 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 163  
164 164  
165 165  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -170,9 +170,9 @@
170 170  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 172  
173 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
169 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 174  
175 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
171 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 176  
177 177  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
178 178  
... ... @@ -200,10 +200,12 @@
200 200  
201 201  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
202 202  
203 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
204 204  
205 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
200 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 206  
202 +
203 +Press the button for 5 seconds to activate the SN50v3-LB.
204 +
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
209 209  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -214,13 +214,13 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
215 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
221 221  
222 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
223 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
220 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 225  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
... ... @@ -227,7 +227,7 @@
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
228 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
... ... @@ -283,7 +283,7 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
284 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287 287  
288 288  For example:
289 289  
... ... @@ -292,7 +292,7 @@
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
293 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
296 296  
297 297  2. All modes share the same Payload Explanation from HERE.
298 298  
... ... @@ -304,8 +304,8 @@
304 304  
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
308 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
305 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
309 309  |Value|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
... ... @@ -326,8 +326,8 @@
326 326  
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
330 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
327 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 331  |Value|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
... ... @@ -356,8 +356,8 @@
356 356  
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
360 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 361  |Value|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
... ... @@ -391,10 +391,10 @@
391 391  
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
395 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
392 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
395 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 398  |Value|(% style="width:68px" %)(((
399 399  ADC1(PA4)
400 400  )))|(% style="width:75px" %)(((
... ... @@ -417,8 +417,8 @@
417 417  
418 418  This mode has total 11 bytes. As shown below:
419 419  
420 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
421 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 422  |Value|BAT|(% style="width:186px" %)(((
423 423  Temperature1(DS18B20)(PC13)
424 424  )))|(% style="width:82px" %)(((
... ... @@ -458,10 +458,10 @@
458 458  
459 459  Check the response of this command and adjust the value to match the real value for thing.
460 460  
461 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
462 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
459 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
463 463  **Size(bytes)**
464 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
462 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 465  |Value|BAT|(% style="width:193px" %)(((
466 466  Temperature(DS18B20)(PC13)
467 467  )))|(% style="width:85px" %)(((
... ... @@ -485,8 +485,8 @@
485 485  
486 486  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 487  
488 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
489 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 490  |Value|BAT|(% style="width:256px" %)(((
491 491  Temperature(DS18B20)(PC13)
492 492  )))|(% style="width:108px" %)(((
... ... @@ -503,10 +503,10 @@
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
505 505  
506 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
507 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
508 508  **Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 510  |Value|BAT|(% style="width:188px" %)(((
511 511  Temperature(DS18B20)
512 512  (PC13)
... ... @@ -522,10 +522,10 @@
522 522  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 523  
524 524  
525 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
526 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 529  |Value|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
531 531  (PC13)
... ... @@ -545,10 +545,10 @@
545 545  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 546  
547 547  
548 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
549 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 552  |Value|BAT|(((
553 553  Temperature
554 554  (DS18B20)(PC13)
... ... @@ -585,9 +585,8 @@
585 585  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
588 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
586 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
589 589  
590 -
591 591  (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
592 592  
593 593  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
... ... @@ -600,8 +600,8 @@
600 600  
601 601  [[image:image-20230817172209-2.png||height="439" width="683"]]
602 602  
603 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
604 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
600 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
605 605  |Value|Bat|(% style="width:191px" %)(((
606 606  Temperature(DS18B20)(PC13)
607 607  )))|(% style="width:78px" %)(((
... ... @@ -636,10 +636,8 @@
636 636  
637 637  [[image:image-20230818092200-1.png||height="344" width="627"]]
638 638  
639 -
640 640  ===== 2.3.2.10.b  Uplink, PWM output =====
641 641  
642 -
643 643  [[image:image-20230817172209-2.png||height="439" width="683"]]
644 644  
645 645  (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
... ... @@ -663,7 +663,7 @@
663 663  
664 664  The oscilloscope displays as follows:
665 665  
666 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
661 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 667  
668 668  
669 669  ===== 2.3.2.10.c  Downlink, PWM output =====
... ... @@ -684,64 +684,9 @@
684 684  
685 685  The oscilloscope displays as follows:
686 686  
687 -[[image:image-20230817173858-5.png||height="634" width="843"]]
682 +[[image:image-20230817173858-5.png||height="694" width="921"]]
688 688  
689 689  
690 -
691 -==== 2.3.2.11  MOD~=11 (TEMP117) ====
692 -
693 -
694 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
695 -
696 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
697 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
698 -|Value|Bat|(% style="width:191px" %)(((
699 -Temperature(DS18B20)(PC13)
700 -)))|(% style="width:78px" %)(((
701 -ADC(PA4)
702 -)))|(% style="width:216px" %)(((
703 -Digital in(PB15)&Digital Interrupt(PA8)
704 -)))|(% style="width:308px" %)(((
705 -Temperature
706 -
707 -(TEMP117)
708 -)))|(% style="width:154px" %)(((
709 -Reserved position, meaningless
710 -
711 -(0x0000)
712 -)))
713 -
714 -[[image:image-20240717113113-1.png||height="352" width="793"]]
715 -
716 -Connection:
717 -
718 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
719 -
720 -
721 -==== 2.3.2.12  MOD~=12 (Count+SHT31) ====
722 -
723 -
724 -This mode has total 11 bytes. As shown below:
725 -
726 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
727 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
728 -|Value|BAT|(% style="width:86px" %)(((
729 - Temperature_SHT31
730 -)))|(% style="width:86px" %)(((
731 -Humidity_SHT31
732 -)))|(% style="width:86px" %)(((
733 - Digital in(PB15)
734 -)))|(% style="width:86px" %)(((
735 -Count(PA8)
736 -)))
737 -
738 -[[image:image-20240717150948-5.png||height="389" width="979"]]
739 -
740 -Wiring example:
741 -
742 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
743 -
744 -
745 745  === 2.3.3  ​Decode payload ===
746 746  
747 747  
... ... @@ -751,13 +751,13 @@
751 751  
752 752  The payload decoder function for TTN V3 are here:
753 753  
754 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
694 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
755 755  
756 756  
757 757  ==== 2.3.3.1 Battery Info ====
758 758  
759 759  
760 -Check the battery voltage for SN50v3-LB/LS.
700 +Check the battery voltage for SN50v3-LB.
761 761  
762 762  Ex1: 0x0B45 = 2885mV
763 763  
... ... @@ -819,12 +819,10 @@
819 819  
820 820  [[image:image-20230811113449-1.png||height="370" width="608"]]
821 821  
822 -
823 -
824 824  ==== 2.3.3.5 Digital Interrupt ====
825 825  
826 826  
827 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
765 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
828 828  
829 829  (% style="color:blue" %)** Interrupt connection method:**
830 830  
... ... @@ -837,18 +837,18 @@
837 837  
838 838  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
839 839  
840 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
778 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
841 841  
842 842  
843 843  (% style="color:blue" %)**Below is the installation example:**
844 844  
845 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
783 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
846 846  
847 847  * (((
848 -One pin to SN50v3-LB/LS's PA8 pin
786 +One pin to SN50v3-LB's PA8 pin
849 849  )))
850 850  * (((
851 -The other pin to SN50v3-LB/LS's VDD pin
789 +The other pin to SN50v3-LB's VDD pin
852 852  )))
853 853  
854 854  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -884,7 +884,7 @@
884 884  
885 885  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
886 886  
887 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
825 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
888 888  
889 889  
890 890  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -918,7 +918,7 @@
918 918  
919 919  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
920 920  
921 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
859 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
922 922  
923 923  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
924 924  
... ... @@ -927,7 +927,7 @@
927 927  [[image:image-20230512173903-6.png||height="596" width="715"]]
928 928  
929 929  
930 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
868 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
931 931  
932 932  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
933 933  
... ... @@ -939,13 +939,13 @@
939 939  ==== 2.3.3.9  Battery Output - BAT pin ====
940 940  
941 941  
942 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
880 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
943 943  
944 944  
945 945  ==== 2.3.3.10  +5V Output ====
946 946  
947 947  
948 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
886 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
949 949  
950 950  The 5V output time can be controlled by AT Command.
951 951  
... ... @@ -990,9 +990,12 @@
990 990  
991 991  For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
992 992  
993 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
931 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
994 994  
995 995  b) If the output duration is more than 30 seconds, better to use external power source. 
934 +
935 +
936 +
996 996  )))
997 997  
998 998  ==== 2.3.3.13  Working MOD ====
... ... @@ -1028,17 +1028,17 @@
1028 1028  == 2.5 Frequency Plans ==
1029 1029  
1030 1030  
1031 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
972 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1032 1032  
1033 1033  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1034 1034  
1035 1035  
1036 -= 3. Configure SN50v3-LB/LS =
977 += 3. Configure SN50v3-LB =
1037 1037  
1038 1038  == 3.1 Configure Methods ==
1039 1039  
1040 1040  
1041 -SN50v3-LB/LS supports below configure method:
982 +SN50v3-LB supports below configure method:
1042 1042  
1043 1043  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1044 1044  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1057,10 +1057,10 @@
1057 1057  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1058 1058  
1059 1059  
1060 -== 3.3 Commands special design for SN50v3-LB/LS ==
1001 +== 3.3 Commands special design for SN50v3-LB ==
1061 1061  
1062 1062  
1063 -These commands only valid for SN50v3-LB/LS, as below:
1004 +These commands only valid for SN50v3-LB, as below:
1064 1064  
1065 1065  
1066 1066  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1071,7 +1071,7 @@
1071 1071  (% style="color:blue" %)**AT Command: AT+TDC**
1072 1072  
1073 1073  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1074 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1015 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1075 1075  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1076 1076  30000
1077 1077  OK
... ... @@ -1106,10 +1106,10 @@
1106 1106  
1107 1107  Feature, Set Interrupt mode for GPIO_EXIT.
1108 1108  
1109 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1050 +(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1110 1110  
1111 1111  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1112 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1113 1113  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1114 1114  0
1115 1115  OK
... ... @@ -1153,7 +1153,7 @@
1153 1153  (% style="color:blue" %)**AT Command: AT+5VT**
1154 1154  
1155 1155  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1156 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1097 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1157 1157  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1158 1158  500(default)
1159 1159  OK
... ... @@ -1179,9 +1179,9 @@
1179 1179  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1180 1180  
1181 1181  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1182 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1123 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1183 1183  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1184 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1125 +|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1185 1185  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1186 1186  
1187 1187  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1205,8 +1205,8 @@
1205 1205  
1206 1206  (% style="color:blue" %)**AT Command: AT+SETCNT**
1207 1207  
1208 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1209 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1149 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1150 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1210 1210  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1211 1211  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1212 1212  
... ... @@ -1226,8 +1226,8 @@
1226 1226  
1227 1227  (% style="color:blue" %)**AT Command: AT+MOD**
1228 1228  
1229 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1230 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1170 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1231 1231  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1232 1232  OK
1233 1233  )))
... ... @@ -1243,17 +1243,19 @@
1243 1243  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1244 1244  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1245 1245  
1187 +(% id="H3.3.8PWMsetting" %)
1246 1246  === 3.3.8 PWM setting ===
1247 1247  
1248 1248  
1249 -Feature: Set the time acquisition unit for PWM input capture.
1191 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1250 1250  
1251 1251  (% style="color:blue" %)**AT Command: AT+PWMSET**
1252 1252  
1253 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1254 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1195 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1255 1255  |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1256 1256  0(default)
1199 +
1257 1257  OK
1258 1258  )))
1259 1259  |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
... ... @@ -1269,14 +1269,15 @@
1269 1269  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1270 1270  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1271 1271  
1272 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1215 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1273 1273  
1274 1274  (% style="color:blue" %)**AT Command: AT+PWMOUT**
1275 1275  
1276 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1277 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1219 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1278 1278  |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1279 1279  0,0,0(default)
1223 +
1280 1280  OK
1281 1281  )))
1282 1282  |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
... ... @@ -1291,8 +1291,8 @@
1291 1291  OK
1292 1292  )))
1293 1293  
1294 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1295 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1238 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1296 1296  |(% colspan="1" rowspan="3" style="width:155px" %)(((
1297 1297  AT+PWMOUT=a,b,c
1298 1298  
... ... @@ -1309,7 +1309,9 @@
1309 1309  )))
1310 1310  )))|(% style="width:242px" %)(((
1311 1311  a: Output time (unit: seconds)
1256 +
1312 1312  The value ranges from 0 to 65535.
1258 +
1313 1313  When a=65535, PWM will always output.
1314 1314  )))
1315 1315  |(% style="width:242px" %)(((
... ... @@ -1317,6 +1317,7 @@
1317 1317  )))
1318 1318  |(% style="width:242px" %)(((
1319 1319  c: Output duty cycle (unit: %)
1266 +
1320 1320  The value ranges from 0 to 100.
1321 1321  )))
1322 1322  
... ... @@ -1324,7 +1324,7 @@
1324 1324  
1325 1325  Format: Command Code (0x0B01) followed by 6 bytes.
1326 1326  
1327 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1274 +Downlink payload0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1328 1328  
1329 1329  * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1330 1330  * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
... ... @@ -1332,7 +1332,7 @@
1332 1332  = 4. Battery & Power Cons =
1333 1333  
1334 1334  
1335 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1282 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1336 1336  
1337 1337  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1338 1338  
... ... @@ -1341,7 +1341,7 @@
1341 1341  
1342 1342  
1343 1343  (% class="wikigeneratedid" %)
1344 -**User can change firmware SN50v3-LB/LS to:**
1291 +**User can change firmware SN50v3-LB to:**
1345 1345  
1346 1346  * Change Frequency band/ region.
1347 1347  * Update with new features.
... ... @@ -1356,22 +1356,22 @@
1356 1356  
1357 1357  = 6. FAQ =
1358 1358  
1359 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1306 +== 6.1 Where can i find source code of SN50v3-LB? ==
1360 1360  
1361 1361  
1362 1362  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1363 1363  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1364 1364  
1365 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1312 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1366 1366  
1367 1367  
1368 1368  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1369 1369  
1370 1370  
1371 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1318 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1372 1372  
1373 1373  
1374 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1321 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1375 1375  
1376 1376  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1377 1377  
... ... @@ -1381,7 +1381,7 @@
1381 1381  = 7. Order Info =
1382 1382  
1383 1383  
1384 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1331 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1385 1385  
1386 1386  (% style="color:red" %)**XX**(%%): The default frequency band
1387 1387  
... ... @@ -1406,7 +1406,7 @@
1406 1406  
1407 1407  (% style="color:#037691" %)**Package Includes**:
1408 1408  
1409 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1356 +* SN50v3-LB LoRaWAN Generic Node
1410 1410  
1411 1411  (% style="color:#037691" %)**Dimension and weight**:
1412 1412  
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0