Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
- image-20240717113113-1.png
- image-20240717141512-1.jpeg
- image-20240717141528-2.jpeg
- image-20240717145707-3.png
- image-20240717150334-4.png
- image-20240717150948-5.png
- image-20240717152224-6.jpeg
- image-20240924112806-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS--LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,15 +3,10 @@ 1 - 2 - 3 3 (% style="text-align:center" %) 4 -[[image:image-202 40103095714-2.png]]2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 5 5 6 6 7 7 6 +**Table of Contents:** 8 8 9 - 10 - 11 -**Table of Contents:** 12 - 13 13 {{toc/}} 14 14 15 15 ... ... @@ -19,19 +19,20 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is SN50v3-LB /LSLoRaWAN Generic Node ==17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 23 23 24 24 25 -(% style="color:blue" %)**SN50V3-LB /LS**(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAhLi/SOCl2 battery**(%%)or (% style="color:blue" %)**solar powered + li-on battery**(%%)for long term use.SN50V3-LB/LSis designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LSwireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 28 28 29 - SN50V3-LB/LS has a powerful(% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has(% style="color:blue" %)**multiplex I/O pins**(%%)to connect to different sensors.24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 30 30 31 - SN50V3-LB/LS has a(% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support(% style="color:blue" %)**OTA upgrade**(%%)via private LoRa protocol for easy maintaining.26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 32 32 33 -SN50V3-LB /LSis the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 30 + 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -43,8 +43,7 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 42 +* 8500mAh Battery for long term use 48 48 49 49 == 1.3 Specification == 50 50 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-inBattery , 2.5v ~~ 3.6v49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -94,10 +94,11 @@ 94 94 == 1.5 Button & LEDs == 95 95 96 96 97 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]92 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 98 98 99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 94 + 95 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 96 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 101 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 102 102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 103 103 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -112,7 +112,7 @@ 112 112 == 1.6 BLE connection == 113 113 114 114 115 -SN50v3-LB /LSsupports BLE remote configure.111 +SN50v3-LB supports BLE remote configure. 116 116 117 117 118 118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -132,22 +132,18 @@ 132 132 133 133 == 1.8 Mechanical == 134 134 135 -=== 1.8.1 for LB version === 136 136 132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 137 137 138 -[[image:i mage-20240924112806-1.png||height="548" width="894"]]134 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 139 136 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 141 141 142 -=== 1.8.2 for LS version === 143 - 144 -[[image:image-20231231203439-3.png||height="385" width="886"]] 145 - 146 - 147 147 == 1.9 Hole Option == 148 148 149 149 150 -SN50v3-LB /LShas different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:142 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 151 151 152 152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 153 153 ... ... @@ -154,12 +154,12 @@ 154 154 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 155 155 156 156 157 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =149 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 158 159 159 == 2.1 How it works == 160 160 161 161 162 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 163 163 164 164 165 165 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -170,9 +170,9 @@ 170 170 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 171 171 172 172 173 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.165 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 174 175 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:167 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 176 177 177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 178 178 ... ... @@ -200,10 +200,12 @@ 200 200 201 201 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 202 202 203 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 204 204 205 - Pressthebutton for5 secondstoactivatetheSN50v3-LB/LS.196 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 206 198 + 199 +Press the button for 5 seconds to activate the SN50v3-LB. 200 + 207 207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 208 208 209 209 After join success, it will start to upload messages to TTN and you can see the messages in the panel. ... ... @@ -214,13 +214,13 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB /LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 221 221 222 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)223 -|(% colspan="6" style="background-color:# 4f81bd; color:white" %)**Device Status (FPORT=5)**216 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 217 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 224 224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 225 225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 226 226 ... ... @@ -227,7 +227,7 @@ 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB /LS, this value is 0x1C224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 ... ... @@ -283,7 +283,7 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3-LB /LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LSto different working modes.280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 287 287 288 288 For example: 289 289 ... ... @@ -292,7 +292,7 @@ 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB /LStransmit in DR0 with 12 bytes payload.289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 296 296 297 297 2. All modes share the same Payload Explanation from HERE. 298 298 ... ... @@ -304,8 +304,8 @@ 304 304 305 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 306 306 307 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)308 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**301 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 309 |Value|Bat|(% style="width:191px" %)((( 310 310 Temperature(DS18B20)(PC13) 311 311 )))|(% style="width:78px" %)((( ... ... @@ -326,8 +326,8 @@ 326 326 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)330 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**323 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |Value|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( ... ... @@ -356,8 +356,8 @@ 356 356 357 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 358 358 359 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)360 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**353 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 354 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 361 |Value|BAT|(% style="width:183px" %)((( 362 362 Temperature(DS18B20)(PC13) 363 363 )))|(% style="width:173px" %)((( ... ... @@ -391,10 +391,10 @@ 391 391 392 392 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 393 393 394 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)395 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((388 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 389 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 396 396 **Size(bytes)** 397 -)))|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width:97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1391 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 398 |Value|(% style="width:68px" %)((( 399 399 ADC1(PA4) 400 400 )))|(% style="width:75px" %)((( ... ... @@ -417,8 +417,8 @@ 417 417 418 418 This mode has total 11 bytes. As shown below: 419 419 420 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)421 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**414 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 415 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 422 422 |Value|BAT|(% style="width:186px" %)((( 423 423 Temperature1(DS18B20)(PC13) 424 424 )))|(% style="width:82px" %)((( ... ... @@ -458,10 +458,10 @@ 458 458 459 459 Check the response of this command and adjust the value to match the real value for thing. 460 460 461 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)462 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((455 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 456 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 463 463 **Size(bytes)** 464 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:49px;background-color:#4F81BD;color:white" %)**4**458 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 465 465 |Value|BAT|(% style="width:193px" %)((( 466 466 Temperature(DS18B20)(PC13) 467 467 )))|(% style="width:85px" %)((( ... ... @@ -485,8 +485,8 @@ 485 485 486 486 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 487 487 488 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)489 -|=(% style="width: 60px;background-color:# 4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:77px;background-color:#4F81BD;color:white" %)**4**482 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 483 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 490 |Value|BAT|(% style="width:256px" %)((( 491 491 Temperature(DS18B20)(PC13) 492 492 )))|(% style="width:108px" %)((( ... ... @@ -503,10 +503,10 @@ 503 503 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 504 504 505 505 506 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)507 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((500 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 501 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 508 508 **Size(bytes)** 509 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2503 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 510 510 |Value|BAT|(% style="width:188px" %)((( 511 511 Temperature(DS18B20) 512 512 (PC13) ... ... @@ -522,10 +522,10 @@ 522 522 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 523 523 524 524 525 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)526 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((519 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 520 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 527 527 **Size(bytes)** 528 -)))|=(% style="width: 30px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:69px;background-color:#4F81BD;color:white" %)2522 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 529 |Value|BAT|(% style="width:207px" %)((( 530 530 Temperature(DS18B20) 531 531 (PC13) ... ... @@ -545,10 +545,10 @@ 545 545 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 546 546 547 547 548 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)549 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((542 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 543 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 550 550 **Size(bytes)** 551 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:59px;background-color:#4F81BD;color:white" %)4|=(% style="width:59px;background-color:#4F81BD;color:white" %)4545 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 552 552 |Value|BAT|((( 553 553 Temperature 554 554 (DS18B20)(PC13) ... ... @@ -585,23 +585,19 @@ 585 585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 586 586 587 587 588 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) (%style="display:none" %) (%%)====582 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 589 589 590 - 591 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 592 - 593 593 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 594 594 595 -[[It should be noted when using PWM mode.>> ||anchor="H2.3.3.12A0PWMMOD"]]586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 596 596 597 597 598 598 ===== 2.3.2.10.a Uplink, PWM input capture ===== 599 599 600 - 601 601 [[image:image-20230817172209-2.png||height="439" width="683"]] 602 602 603 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:515px" %)604 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**593 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 594 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 605 605 |Value|Bat|(% style="width:191px" %)((( 606 606 Temperature(DS18B20)(PC13) 607 607 )))|(% style="width:78px" %)((( ... ... @@ -608,6 +608,7 @@ 608 608 ADC(PA4) 609 609 )))|(% style="width:135px" %)((( 610 610 PWM_Setting 601 + 611 611 &Digital Interrupt(PA8) 612 612 )))|(% style="width:70px" %)((( 613 613 Pulse period ... ... @@ -620,55 +620,44 @@ 620 620 621 621 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 622 622 623 - **Frequency:**614 +Frequency: 624 624 625 625 (% class="MsoNormal" %) 626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);617 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,** 627 627 628 -(% class="MsoNormal" %) 629 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 619 +((( 630 630 631 631 622 +(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 623 +))) 624 + 632 632 (% class="MsoNormal" %) 633 - **Duty cycle:**626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,** 634 634 635 - Duty cycle= Duration of high level/ Pulse period*100 ~(%).628 +((( 636 636 637 -[[image:image-20230818092200-1.png||height="344" width="627"]] 638 638 631 +(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 632 +))) 639 639 640 -===== 2.3.2.10.b Uplink, PWM output ===== 634 +(% class="MsoNormal" %) 635 +Duty cycle: 641 641 637 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 642 642 643 - [[image:image-20230817172209-2.png||height="439"width="683"]]639 +(% class="MsoNormal" %) 644 644 645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 646 646 647 - a is the time delay of the output, the unit is ms.642 +((( 648 648 649 - b is the output frequency, the unit is HZ.644 +))) 650 650 651 -c is the duty cycle of the output, the unit is %. 652 652 653 - (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif"%)**Downlink**(%%): (% style="color:#037691"%)**0B 01 bb cc aa **647 +[[image:image-20230818092200-1.png||height="344" width="627"]] 654 654 655 -aa is the time delay of the output, the unit is ms. 656 656 657 -b bistheoutputfrequency, the unit is HZ.650 +===== 2.3.2.10.b Downlink, PWM output ===== 658 658 659 -cc is the duty cycle of the output, the unit is %. 660 - 661 - 662 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 663 - 664 -The oscilloscope displays as follows: 665 - 666 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 667 - 668 - 669 -===== 2.3.2.10.c Downlink, PWM output ===== 670 - 671 - 672 672 [[image:image-20230817173800-3.png||height="412" width="685"]] 673 673 674 674 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -684,64 +684,9 @@ 684 684 685 685 The oscilloscope displays as follows: 686 686 687 -[[image:image-20230817173858-5.png||height="6 34" width="843"]]667 +[[image:image-20230817173858-5.png||height="694" width="921"]] 688 688 689 689 690 - 691 -==== 2.3.2.11 MOD~=11 (TEMP117) ==== 692 - 693 - 694 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 695 - 696 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 697 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 698 -|Value|Bat|(% style="width:191px" %)((( 699 -Temperature(DS18B20)(PC13) 700 -)))|(% style="width:78px" %)((( 701 -ADC(PA4) 702 -)))|(% style="width:216px" %)((( 703 -Digital in(PB15)&Digital Interrupt(PA8) 704 -)))|(% style="width:308px" %)((( 705 -Temperature 706 - 707 -(TEMP117) 708 -)))|(% style="width:154px" %)((( 709 -Reserved position, meaningless 710 - 711 -(0x0000) 712 -))) 713 - 714 -[[image:image-20240717113113-1.png||height="352" width="793"]] 715 - 716 -Connection: 717 - 718 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]] 719 - 720 - 721 -==== 2.3.2.12 MOD~=12 (Count+SHT31) ==== 722 - 723 - 724 -This mode has total 11 bytes. As shown below: 725 - 726 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 727 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4** 728 -|Value|BAT|(% style="width:86px" %)((( 729 - Temperature_SHT31 730 -)))|(% style="width:86px" %)((( 731 -Humidity_SHT31 732 -)))|(% style="width:86px" %)((( 733 - Digital in(PB15) 734 -)))|(% style="width:86px" %)((( 735 -Count(PA8) 736 -))) 737 - 738 -[[image:image-20240717150948-5.png||height="389" width="979"]] 739 - 740 -Wiring example: 741 - 742 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]] 743 - 744 - 745 745 === 2.3.3 Decode payload === 746 746 747 747 ... ... @@ -751,13 +751,13 @@ 751 751 752 752 The payload decoder function for TTN V3 are here: 753 753 754 -SN50v3-LB /LSTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]679 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 755 755 756 756 757 757 ==== 2.3.3.1 Battery Info ==== 758 758 759 759 760 -Check the battery voltage for SN50v3-LB /LS.685 +Check the battery voltage for SN50v3-LB. 761 761 762 762 Ex1: 0x0B45 = 2885mV 763 763 ... ... @@ -819,12 +819,10 @@ 819 819 820 820 [[image:image-20230811113449-1.png||height="370" width="608"]] 821 821 822 - 823 - 824 824 ==== 2.3.3.5 Digital Interrupt ==== 825 825 826 826 827 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB /LSwill send a packet to the server.750 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 828 828 829 829 (% style="color:blue" %)** Interrupt connection method:** 830 830 ... ... @@ -837,18 +837,18 @@ 837 837 838 838 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 839 839 840 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB /LSinterrupt interface to detect the status for the door or window.763 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 841 841 842 842 843 843 (% style="color:blue" %)**Below is the installation example:** 844 844 845 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB /LSas follows:768 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 846 846 847 847 * ((( 848 -One pin to SN50v3-LB /LS's PA8 pin771 +One pin to SN50v3-LB's PA8 pin 849 849 ))) 850 850 * ((( 851 -The other pin to SN50v3-LB /LS's VDD pin774 +The other pin to SN50v3-LB's VDD pin 852 852 ))) 853 853 854 854 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -884,7 +884,7 @@ 884 884 885 885 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 886 886 887 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB /LSwill be a good reference.**810 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 888 888 889 889 890 890 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -918,7 +918,7 @@ 918 918 919 919 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 920 920 921 -The SN50v3-LB /LSdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.844 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 922 922 923 923 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 924 924 ... ... @@ -927,7 +927,7 @@ 927 927 [[image:image-20230512173903-6.png||height="596" width="715"]] 928 928 929 929 930 -Connect to the SN50v3-LB /LSand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).853 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 931 931 932 932 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 933 933 ... ... @@ -939,13 +939,13 @@ 939 939 ==== 2.3.3.9 Battery Output - BAT pin ==== 940 940 941 941 942 -The BAT pin of SN50v3-LB /LSis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LSwill run out very soon.865 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 943 943 944 944 945 945 ==== 2.3.3.10 +5V Output ==== 946 946 947 947 948 -SN50v3-LB /LSwill enable +5V output before all sampling and disable the +5v after all sampling.871 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 949 949 950 950 The 5V output time can be controlled by AT Command. 951 951 ... ... @@ -983,16 +983,9 @@ 983 983 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 984 984 ))) 985 985 * ((( 986 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 987 -))) 988 -* ((( 989 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 909 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 990 990 991 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 992 - 993 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 994 - 995 -b) If the output duration is more than 30 seconds, better to use external power source. 911 + 996 996 ))) 997 997 998 998 ==== 2.3.3.13 Working MOD ==== ... ... @@ -1028,17 +1028,17 @@ 1028 1028 == 2.5 Frequency Plans == 1029 1029 1030 1030 1031 -The SN50v3-LB /LSuses OTAA mode and below frequency plans by default.Eachfrequencybanduse different firmware,userupdatethefirmwareto the corresponding bandfor theircountry.947 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 1032 1032 1033 1033 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 1034 1034 1035 1035 1036 -= 3. Configure SN50v3-LB /LS=952 += 3. Configure SN50v3-LB = 1037 1037 1038 1038 == 3.1 Configure Methods == 1039 1039 1040 1040 1041 -SN50v3-LB /LSsupports below configure method:957 +SN50v3-LB supports below configure method: 1042 1042 1043 1043 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 1044 1044 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -1057,10 +1057,10 @@ 1057 1057 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1058 1058 1059 1059 1060 -== 3.3 Commands special design for SN50v3-LB /LS==976 +== 3.3 Commands special design for SN50v3-LB == 1061 1061 1062 1062 1063 -These commands only valid for SN50v3-LB /LS, as below:979 +These commands only valid for SN50v3-LB, as below: 1064 1064 1065 1065 1066 1066 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1071,7 +1071,7 @@ 1071 1071 (% style="color:blue" %)**AT Command: AT+TDC** 1072 1072 1073 1073 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1074 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**990 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 1075 1075 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1076 1076 30000 1077 1077 OK ... ... @@ -1106,10 +1106,10 @@ 1106 1106 1107 1107 Feature, Set Interrupt mode for GPIO_EXIT. 1108 1108 1109 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1025 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1110 1110 1111 1111 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1112 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1028 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1113 1113 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1114 1114 0 1115 1115 OK ... ... @@ -1153,7 +1153,7 @@ 1153 1153 (% style="color:blue" %)**AT Command: AT+5VT** 1154 1154 1155 1155 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1156 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1072 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1157 1157 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1158 1158 500(default) 1159 1159 OK ... ... @@ -1179,9 +1179,9 @@ 1179 1179 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1180 1180 1181 1181 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1182 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1098 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1183 1183 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1184 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1100 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1185 1185 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1186 1186 1187 1187 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1205,8 +1205,8 @@ 1205 1205 1206 1206 (% style="color:blue" %)**AT Command: AT+SETCNT** 1207 1207 1208 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1209 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1124 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1125 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1210 1210 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1211 1211 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1212 1212 ... ... @@ -1226,8 +1226,8 @@ 1226 1226 1227 1227 (% style="color:blue" %)**AT Command: AT+MOD** 1228 1228 1229 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1230 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1145 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1146 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1231 1231 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1232 1232 OK 1233 1233 ))) ... ... @@ -1243,24 +1243,26 @@ 1243 1243 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1244 1244 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1245 1245 1246 -=== 3.3.8 PWM setting === 1247 1247 1248 1248 1164 +=== 3.3.8 PWM setting === 1165 + 1249 1249 Feature: Set the time acquisition unit for PWM input capture. 1250 1250 1251 1251 (% style="color:blue" %)**AT Command: AT+PWMSET** 1252 1252 1253 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1254 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width:225px;4F81BD;color:white" %)**Function**|=(% style="width: 130px;4F81BD;color:white" %)**Response**1255 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 223px" %)0|(% style="width:130px" %)(((1170 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1256 1256 0(default) 1174 + 1257 1257 OK 1258 1258 ))) 1259 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)(((1177 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1260 1260 OK 1261 1261 1262 1262 ))) 1263 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK1181 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1264 1264 1265 1265 (% style="color:blue" %)**Downlink Command: 0x0C** 1266 1266 ... ... @@ -1269,71 +1269,12 @@ 1269 1269 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1270 1270 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1271 1271 1272 -**Feature: Set PWM output time, output frequency and output duty cycle.** 1273 1273 1274 - (%style="color:blue"%)**ATCommand:AT+PWMOUT**1191 += 4. Battery & Power Consumption = 1275 1275 1276 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1277 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1278 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1279 -0,0,0(default) 1280 -OK 1281 -))) 1282 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1283 -OK 1284 - 1285 -))) 1286 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1287 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1288 1288 1289 - 1290 -)))|(% style="width:137px" %)((( 1291 -OK 1292 -))) 1194 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1293 1293 1294 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1295 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1296 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1297 -AT+PWMOUT=a,b,c 1298 - 1299 - 1300 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1301 -Set PWM output time, output frequency and output duty cycle. 1302 - 1303 -((( 1304 - 1305 -))) 1306 - 1307 -((( 1308 - 1309 -))) 1310 -)))|(% style="width:242px" %)((( 1311 -a: Output time (unit: seconds) 1312 -The value ranges from 0 to 65535. 1313 -When a=65535, PWM will always output. 1314 -))) 1315 -|(% style="width:242px" %)((( 1316 -b: Output frequency (unit: HZ) 1317 -))) 1318 -|(% style="width:242px" %)((( 1319 -c: Output duty cycle (unit: %) 1320 -The value ranges from 0 to 100. 1321 -))) 1322 - 1323 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1324 - 1325 -Format: Command Code (0x0B01) followed by 6 bytes. 1326 - 1327 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1328 - 1329 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1330 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1331 - 1332 -= 4. Battery & Power Cons = 1333 - 1334 - 1335 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1336 - 1337 1337 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1338 1338 1339 1339 ... ... @@ -1341,7 +1341,7 @@ 1341 1341 1342 1342 1343 1343 (% class="wikigeneratedid" %) 1344 -**User can change firmware SN50v3-LB /LSto:**1203 +**User can change firmware SN50v3-LB to:** 1345 1345 1346 1346 * Change Frequency band/ region. 1347 1347 * Update with new features. ... ... @@ -1356,22 +1356,22 @@ 1356 1356 1357 1357 = 6. FAQ = 1358 1358 1359 -== 6.1 Where can i find source code of SN50v3-LB /LS? ==1218 +== 6.1 Where can i find source code of SN50v3-LB? == 1360 1360 1361 1361 1362 1362 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1363 1363 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1364 1364 1365 -== 6.2 How to generate PWM Output in SN50v3-LB /LS? ==1224 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1366 1366 1367 1367 1368 1368 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1369 1369 1370 1370 1371 -== 6.3 How to put several sensors to a SN50v3-LB /LS? ==1230 +== 6.3 How to put several sensors to a SN50v3-LB? == 1372 1372 1373 1373 1374 -When we want to put several sensors to A SN50v3-LB /LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.1233 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1375 1375 1376 1376 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1377 1377 ... ... @@ -1381,7 +1381,7 @@ 1381 1381 = 7. Order Info = 1382 1382 1383 1383 1384 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**1243 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1385 1385 1386 1386 (% style="color:red" %)**XX**(%%): The default frequency band 1387 1387 ... ... @@ -1406,7 +1406,7 @@ 1406 1406 1407 1407 (% style="color:#037691" %)**Package Includes**: 1408 1408 1409 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node1268 +* SN50v3-LB LoRaWAN Generic Node 1410 1410 1411 1411 (% style="color:#037691" %)**Dimension and weight**: 1412 1412
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content
- image-20240717113113-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.0 KB - Content
- image-20240717141512-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.8 KB - Content
- image-20240717141528-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -234.2 KB - Content
- image-20240717145707-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.8 KB - Content
- image-20240717150334-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20240717150948-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.3 KB - Content
- image-20240717152224-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -238.1 KB - Content
- image-20240924112806-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -140.2 KB - Content