Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
- image-20240717113113-1.png
- image-20240717141512-1.jpeg
- image-20240717141528-2.jpeg
- image-20240717145707-3.png
- image-20240717150334-4.png
- image-20240717150948-5.png
- image-20240717152224-6.jpeg
- image-20240924112806-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS--LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,15 +3,10 @@ 1 - 2 - 3 3 (% style="text-align:center" %) 4 -[[image:image-202 40103095714-2.png]]2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 5 5 6 6 7 7 6 +**Table of Contents:** 8 8 9 - 10 - 11 -**Table of Contents:** 12 - 13 13 {{toc/}} 14 14 15 15 ... ... @@ -19,19 +19,20 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is SN50v3-LB /LSLoRaWAN Generic Node ==17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 23 23 24 24 25 -(% style="color:blue" %)**SN50V3-LB /LS**(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAhLi/SOCl2 battery**(%%)or (% style="color:blue" %)**solar powered + li-on battery**(%%)for long term use.SN50V3-LB/LSis designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LSwireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 28 28 29 - SN50V3-LB/LS has a powerful(% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has(% style="color:blue" %)**multiplex I/O pins**(%%)to connect to different sensors.24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 30 30 31 - SN50V3-LB/LS has a(% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support(% style="color:blue" %)**OTA upgrade**(%%)via private LoRa protocol for easy maintaining.26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 32 32 33 -SN50V3-LB /LSis the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 30 + 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -43,15 +43,16 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 42 +* 8500mAh Battery for long term use 48 48 44 + 45 + 49 49 == 1.3 Specification == 50 50 51 51 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-inBattery , 2.5v ~~ 3.6v51 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -83,6 +83,8 @@ 83 83 * Sleep Mode: 5uA @ 3.3v 84 84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 85 85 83 + 84 + 86 86 == 1.4 Sleep mode and working mode == 87 87 88 88 ... ... @@ -94,10 +94,11 @@ 94 94 == 1.5 Button & LEDs == 95 95 96 96 97 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 98 98 99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 98 + 99 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 100 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 101 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 102 102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 103 103 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -109,10 +109,12 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 + 113 + 112 112 == 1.6 BLE connection == 113 113 114 114 115 -SN50v3-LB /LSsupports BLE remote configure.117 +SN50v3-LB supports BLE remote configure. 116 116 117 117 118 118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -132,23 +132,18 @@ 132 132 133 133 == 1.8 Mechanical == 134 134 135 -=== 1.8.1 for LB version === 136 136 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 137 137 138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]140 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 139 140 - 141 141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 142 142 143 -=== 1.8.2 for LS version === 144 144 145 -[[image:image-20231231203439-3.png||height="385" width="886"]] 146 - 147 - 148 148 == 1.9 Hole Option == 149 149 150 150 151 -SN50v3-LB /LShas different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:148 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 152 153 153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 154 154 ... ... @@ -155,12 +155,12 @@ 155 155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 156 156 157 157 158 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =155 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 159 160 160 == 2.1 How it works == 161 161 162 162 163 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 164 165 165 166 166 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -171,9 +171,9 @@ 171 171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 172 172 173 173 174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.171 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 175 176 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:173 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 177 178 178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 179 179 ... ... @@ -201,10 +201,12 @@ 201 201 202 202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 203 203 204 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 205 205 206 - Pressthebutton for5 secondstoactivatetheSN50v3-LB/LS.202 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 207 207 204 + 205 +Press the button for 5 seconds to activate the SN50v3-LB. 206 + 208 208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 209 209 210 210 After join success, it will start to upload messages to TTN and you can see the messages in the panel. ... ... @@ -215,13 +215,13 @@ 215 215 === 2.3.1 Device Status, FPORT~=5 === 216 216 217 217 218 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB /LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 219 219 220 220 The Payload format is as below. 221 221 222 222 223 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)224 -|(% colspan="6" style="background-color:# 4f81bd; color:white" %)**Device Status (FPORT=5)**222 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 223 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 225 225 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 226 226 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 227 227 ... ... @@ -228,7 +228,7 @@ 228 228 Example parse in TTNv3 229 229 230 230 231 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB /LS, this value is 0x1C230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 232 232 233 233 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 234 234 ... ... @@ -284,7 +284,7 @@ 284 284 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 285 285 286 286 287 -SN50v3-LB /LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LSto different working modes.286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 288 288 289 289 For example: 290 290 ... ... @@ -293,7 +293,7 @@ 293 293 294 294 (% style="color:red" %) **Important Notice:** 295 295 296 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB /LStransmit in DR0 with 12 bytes payload.295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 297 297 298 298 2. All modes share the same Payload Explanation from HERE. 299 299 ... ... @@ -305,8 +305,8 @@ 305 305 306 306 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 307 307 308 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)309 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**307 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 310 310 |Value|Bat|(% style="width:191px" %)((( 311 311 Temperature(DS18B20)(PC13) 312 312 )))|(% style="width:78px" %)((( ... ... @@ -327,8 +327,8 @@ 327 327 328 328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 329 329 330 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)331 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 332 332 |Value|BAT|(% style="width:196px" %)((( 333 333 Temperature(DS18B20)(PC13) 334 334 )))|(% style="width:87px" %)((( ... ... @@ -357,8 +357,8 @@ 357 357 358 358 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 359 359 360 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)361 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**359 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 360 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 362 362 |Value|BAT|(% style="width:183px" %)((( 363 363 Temperature(DS18B20)(PC13) 364 364 )))|(% style="width:173px" %)((( ... ... @@ -392,10 +392,10 @@ 392 392 393 393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 394 394 395 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)396 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((394 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 395 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 397 397 **Size(bytes)** 398 -)))|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width:97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 399 399 |Value|(% style="width:68px" %)((( 400 400 ADC1(PA4) 401 401 )))|(% style="width:75px" %)((( ... ... @@ -418,8 +418,8 @@ 418 418 419 419 This mode has total 11 bytes. As shown below: 420 420 421 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)422 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**420 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 421 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 423 423 |Value|BAT|(% style="width:186px" %)((( 424 424 Temperature1(DS18B20)(PC13) 425 425 )))|(% style="width:82px" %)((( ... ... @@ -459,10 +459,10 @@ 459 459 460 460 Check the response of this command and adjust the value to match the real value for thing. 461 461 462 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)463 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((461 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 462 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 464 464 **Size(bytes)** 465 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:49px;background-color:#4F81BD;color:white" %)**4**464 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 466 466 |Value|BAT|(% style="width:193px" %)((( 467 467 Temperature(DS18B20)(PC13) 468 468 )))|(% style="width:85px" %)((( ... ... @@ -486,8 +486,8 @@ 486 486 487 487 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 488 488 489 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)490 -|=(% style="width: 60px;background-color:# 4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:77px;background-color:#4F81BD;color:white" %)**4**488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 491 491 |Value|BAT|(% style="width:256px" %)((( 492 492 Temperature(DS18B20)(PC13) 493 493 )))|(% style="width:108px" %)((( ... ... @@ -504,10 +504,10 @@ 504 504 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 505 505 506 506 507 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)508 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 509 509 **Size(bytes)** 510 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 511 511 |Value|BAT|(% style="width:188px" %)((( 512 512 Temperature(DS18B20) 513 513 (PC13) ... ... @@ -523,10 +523,10 @@ 523 523 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 524 524 525 525 526 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)527 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 528 528 **Size(bytes)** 529 -)))|=(% style="width: 30px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:69px;background-color:#4F81BD;color:white" %)2528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 530 530 |Value|BAT|(% style="width:207px" %)((( 531 531 Temperature(DS18B20) 532 532 (PC13) ... ... @@ -546,10 +546,10 @@ 546 546 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 547 547 548 548 549 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)550 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 551 551 **Size(bytes)** 552 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:59px;background-color:#4F81BD;color:white" %)4|=(% style="width:59px;background-color:#4F81BD;color:white" %)4551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 553 553 |Value|BAT|((( 554 554 Temperature 555 555 (DS18B20)(PC13) ... ... @@ -586,11 +586,9 @@ 586 586 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 587 587 588 588 589 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) (%style="display:none" %) (%%)====588 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 590 590 591 591 592 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 593 - 594 594 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 595 595 596 596 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] ... ... @@ -601,8 +601,8 @@ 601 601 602 602 [[image:image-20230817172209-2.png||height="439" width="683"]] 603 603 604 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:515px" %)605 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**601 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 602 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 606 606 |Value|Bat|(% style="width:191px" %)((( 607 607 Temperature(DS18B20)(PC13) 608 608 )))|(% style="width:78px" %)((( ... ... @@ -609,6 +609,7 @@ 609 609 ADC(PA4) 610 610 )))|(% style="width:135px" %)((( 611 611 PWM_Setting 609 + 612 612 &Digital Interrupt(PA8) 613 613 )))|(% style="width:70px" %)((( 614 614 Pulse period ... ... @@ -638,38 +638,9 @@ 638 638 [[image:image-20230818092200-1.png||height="344" width="627"]] 639 639 640 640 641 -===== 2.3.2.10.b Uplink, PWM output =====639 +===== 2.3.2.10.b Downlink, PWM output ===== 642 642 643 643 644 -[[image:image-20230817172209-2.png||height="439" width="683"]] 645 - 646 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 647 - 648 -a is the time delay of the output, the unit is ms. 649 - 650 -b is the output frequency, the unit is HZ. 651 - 652 -c is the duty cycle of the output, the unit is %. 653 - 654 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 655 - 656 -aa is the time delay of the output, the unit is ms. 657 - 658 -bb is the output frequency, the unit is HZ. 659 - 660 -cc is the duty cycle of the output, the unit is %. 661 - 662 - 663 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 664 - 665 -The oscilloscope displays as follows: 666 - 667 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 668 - 669 - 670 -===== 2.3.2.10.c Downlink, PWM output ===== 671 - 672 - 673 673 [[image:image-20230817173800-3.png||height="412" width="685"]] 674 674 675 675 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -685,64 +685,9 @@ 685 685 686 686 The oscilloscope displays as follows: 687 687 688 -[[image:image-20230817173858-5.png||height="6 34" width="843"]]657 +[[image:image-20230817173858-5.png||height="694" width="921"]] 689 689 690 690 691 - 692 -==== 2.3.2.11 MOD~=11 (TEMP117) ==== 693 - 694 - 695 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 696 - 697 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 698 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 699 -|Value|Bat|(% style="width:191px" %)((( 700 -Temperature(DS18B20)(PC13) 701 -)))|(% style="width:78px" %)((( 702 -ADC(PA4) 703 -)))|(% style="width:216px" %)((( 704 -Digital in(PB15)&Digital Interrupt(PA8) 705 -)))|(% style="width:308px" %)((( 706 -Temperature 707 - 708 -(TEMP117) 709 -)))|(% style="width:154px" %)((( 710 -Reserved position, meaningless 711 - 712 -(0x0000) 713 -))) 714 - 715 -[[image:image-20240717113113-1.png||height="352" width="793"]] 716 - 717 -Connection: 718 - 719 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]] 720 - 721 - 722 -==== 2.3.2.12 MOD~=12 (Count+SHT31) ==== 723 - 724 - 725 -This mode has total 11 bytes. As shown below: 726 - 727 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 728 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4** 729 -|Value|BAT|(% style="width:86px" %)((( 730 - Temperature_SHT31 731 -)))|(% style="width:86px" %)((( 732 -Humidity_SHT31 733 -)))|(% style="width:86px" %)((( 734 - Digital in(PB15) 735 -)))|(% style="width:86px" %)((( 736 -Count(PA8) 737 -))) 738 - 739 -[[image:image-20240717150948-5.png||height="389" width="979"]] 740 - 741 -Wiring example: 742 - 743 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]] 744 - 745 - 746 746 === 2.3.3 Decode payload === 747 747 748 748 ... ... @@ -752,13 +752,13 @@ 752 752 753 753 The payload decoder function for TTN V3 are here: 754 754 755 -SN50v3-LB /LSTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]669 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 756 756 757 757 758 758 ==== 2.3.3.1 Battery Info ==== 759 759 760 760 761 -Check the battery voltage for SN50v3-LB /LS.675 +Check the battery voltage for SN50v3-LB. 762 762 763 763 Ex1: 0x0B45 = 2885mV 764 764 ... ... @@ -820,12 +820,10 @@ 820 820 821 821 [[image:image-20230811113449-1.png||height="370" width="608"]] 822 822 823 - 824 - 825 825 ==== 2.3.3.5 Digital Interrupt ==== 826 826 827 827 828 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB /LSwill send a packet to the server.740 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 829 829 830 830 (% style="color:blue" %)** Interrupt connection method:** 831 831 ... ... @@ -838,18 +838,18 @@ 838 838 839 839 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 840 840 841 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB /LSinterrupt interface to detect the status for the door or window.753 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 842 842 843 843 844 844 (% style="color:blue" %)**Below is the installation example:** 845 845 846 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB /LSas follows:758 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 847 847 848 848 * ((( 849 -One pin to SN50v3-LB /LS's PA8 pin761 +One pin to SN50v3-LB's PA8 pin 850 850 ))) 851 851 * ((( 852 -The other pin to SN50v3-LB /LS's VDD pin764 +The other pin to SN50v3-LB's VDD pin 853 853 ))) 854 854 855 855 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -885,7 +885,7 @@ 885 885 886 886 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 887 887 888 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB /LSwill be a good reference.**800 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 889 889 890 890 891 891 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -919,7 +919,7 @@ 919 919 920 920 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 921 921 922 -The SN50v3-LB /LSdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.834 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 923 923 924 924 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 925 925 ... ... @@ -928,7 +928,7 @@ 928 928 [[image:image-20230512173903-6.png||height="596" width="715"]] 929 929 930 930 931 -Connect to the SN50v3-LB /LSand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).843 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 932 932 933 933 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 934 934 ... ... @@ -940,13 +940,13 @@ 940 940 ==== 2.3.3.9 Battery Output - BAT pin ==== 941 941 942 942 943 -The BAT pin of SN50v3-LB /LSis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LSwill run out very soon.855 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 944 944 945 945 946 946 ==== 2.3.3.10 +5V Output ==== 947 947 948 948 949 -SN50v3-LB /LSwill enable +5V output before all sampling and disable the +5v after all sampling.861 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 950 950 951 951 The 5V output time can be controlled by AT Command. 952 952 ... ... @@ -985,15 +985,9 @@ 985 985 ))) 986 986 * ((( 987 987 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 988 -))) 989 -* ((( 990 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 991 991 992 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 993 993 994 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 995 - 996 -b) If the output duration is more than 30 seconds, better to use external power source. 902 + 997 997 ))) 998 998 999 999 ==== 2.3.3.13 Working MOD ==== ... ... @@ -1016,6 +1016,8 @@ 1016 1016 * 8: MOD9 1017 1017 * 9: MOD10 1018 1018 925 + 926 + 1019 1019 == 2.4 Payload Decoder file == 1020 1020 1021 1021 ... ... @@ -1029,22 +1029,24 @@ 1029 1029 == 2.5 Frequency Plans == 1030 1030 1031 1031 1032 -The SN50v3-LB /LSuses OTAA mode and below frequency plans by default.Eachfrequencybanduse different firmware,userupdatethefirmwareto the corresponding bandfor theircountry.940 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 1033 1033 1034 1034 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 1035 1035 1036 1036 1037 -= 3. Configure SN50v3-LB /LS=945 += 3. Configure SN50v3-LB = 1038 1038 1039 1039 == 3.1 Configure Methods == 1040 1040 1041 1041 1042 -SN50v3-LB /LSsupports below configure method:950 +SN50v3-LB supports below configure method: 1043 1043 1044 1044 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 1045 1045 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 1046 1046 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 1047 1047 956 + 957 + 1048 1048 == 3.2 General Commands == 1049 1049 1050 1050 ... ... @@ -1058,10 +1058,10 @@ 1058 1058 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1059 1059 1060 1060 1061 -== 3.3 Commands special design for SN50v3-LB /LS==971 +== 3.3 Commands special design for SN50v3-LB == 1062 1062 1063 1063 1064 -These commands only valid for SN50v3-LB /LS, as below:974 +These commands only valid for SN50v3-LB, as below: 1065 1065 1066 1066 1067 1067 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1072,7 +1072,7 @@ 1072 1072 (% style="color:blue" %)**AT Command: AT+TDC** 1073 1073 1074 1074 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1075 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**985 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 1076 1076 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1077 1077 30000 1078 1078 OK ... ... @@ -1092,6 +1092,8 @@ 1092 1092 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1093 1093 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1094 1094 1005 + 1006 + 1095 1095 === 3.3.2 Get Device Status === 1096 1096 1097 1097 ... ... @@ -1107,10 +1107,10 @@ 1107 1107 1108 1108 Feature, Set Interrupt mode for GPIO_EXIT. 1109 1109 1110 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1022 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1111 1111 1112 1112 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1113 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1025 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1114 1114 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1115 1115 0 1116 1116 OK ... ... @@ -1140,6 +1140,8 @@ 1140 1140 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1141 1141 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1142 1142 1055 + 1056 + 1143 1143 === 3.3.4 Set Power Output Duration === 1144 1144 1145 1145 ... ... @@ -1154,7 +1154,7 @@ 1154 1154 (% style="color:blue" %)**AT Command: AT+5VT** 1155 1155 1156 1156 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1157 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1071 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1158 1158 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1159 1159 500(default) 1160 1160 OK ... ... @@ -1172,6 +1172,8 @@ 1172 1172 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1173 1173 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1174 1174 1089 + 1090 + 1175 1175 === 3.3.5 Set Weighing parameters === 1176 1176 1177 1177 ... ... @@ -1180,9 +1180,9 @@ 1180 1180 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1181 1181 1182 1182 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1183 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1099 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1184 1184 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1185 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1101 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1186 1186 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1187 1187 1188 1188 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1197,6 +1197,8 @@ 1197 1197 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1198 1198 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1199 1199 1116 + 1117 + 1200 1200 === 3.3.6 Set Digital pulse count value === 1201 1201 1202 1202 ... ... @@ -1206,8 +1206,8 @@ 1206 1206 1207 1207 (% style="color:blue" %)**AT Command: AT+SETCNT** 1208 1208 1209 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1210 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1127 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1211 1211 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1212 1212 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1213 1213 ... ... @@ -1220,6 +1220,8 @@ 1220 1220 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1221 1221 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1222 1222 1141 + 1142 + 1223 1223 === 3.3.7 Set Workmode === 1224 1224 1225 1225 ... ... @@ -1227,8 +1227,8 @@ 1227 1227 1228 1228 (% style="color:blue" %)**AT Command: AT+MOD** 1229 1229 1230 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1231 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1150 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1151 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1232 1232 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1233 1233 OK 1234 1234 ))) ... ... @@ -1244,6 +1244,8 @@ 1244 1244 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1245 1245 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1246 1246 1167 + 1168 + 1247 1247 === 3.3.8 PWM setting === 1248 1248 1249 1249 ... ... @@ -1251,17 +1251,18 @@ 1251 1251 1252 1252 (% style="color:blue" %)**AT Command: AT+PWMSET** 1253 1253 1254 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1255 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width:225px;4F81BD;color:white" %)**Function**|=(% style="width: 130px;4F81BD;color:white" %)**Response**1256 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 223px" %)0|(% style="width:130px" %)(((1176 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1177 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1178 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1257 1257 0(default) 1180 + 1258 1258 OK 1259 1259 ))) 1260 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)(((1183 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1261 1261 OK 1262 1262 1263 1263 ))) 1264 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK1187 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1265 1265 1266 1266 (% style="color:blue" %)**Downlink Command: 0x0C** 1267 1267 ... ... @@ -1270,71 +1270,13 @@ 1270 1270 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1271 1271 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1272 1272 1273 -**Feature: Set PWM output time, output frequency and output duty cycle.** 1274 1274 1275 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1276 1276 1277 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1278 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1279 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1280 -0,0,0(default) 1281 -OK 1282 -))) 1283 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1284 -OK 1285 - 1286 -))) 1287 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1288 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1198 += 4. Battery & Power Consumption = 1289 1289 1290 - 1291 -)))|(% style="width:137px" %)((( 1292 -OK 1293 -))) 1294 1294 1295 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1296 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1297 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1298 -AT+PWMOUT=a,b,c 1201 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1299 1299 1300 - 1301 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1302 -Set PWM output time, output frequency and output duty cycle. 1303 - 1304 -((( 1305 - 1306 -))) 1307 - 1308 -((( 1309 - 1310 -))) 1311 -)))|(% style="width:242px" %)((( 1312 -a: Output time (unit: seconds) 1313 -The value ranges from 0 to 65535. 1314 -When a=65535, PWM will always output. 1315 -))) 1316 -|(% style="width:242px" %)((( 1317 -b: Output frequency (unit: HZ) 1318 -))) 1319 -|(% style="width:242px" %)((( 1320 -c: Output duty cycle (unit: %) 1321 -The value ranges from 0 to 100. 1322 -))) 1323 - 1324 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1325 - 1326 -Format: Command Code (0x0B01) followed by 6 bytes. 1327 - 1328 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1329 - 1330 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1331 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1332 - 1333 -= 4. Battery & Power Cons = 1334 - 1335 - 1336 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1337 - 1338 1338 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1339 1339 1340 1340 ... ... @@ -1342,7 +1342,7 @@ 1342 1342 1343 1343 1344 1344 (% class="wikigeneratedid" %) 1345 -**User can change firmware SN50v3-LB /LSto:**1210 +**User can change firmware SN50v3-LB to:** 1346 1346 1347 1347 * Change Frequency band/ region. 1348 1348 * Update with new features. ... ... @@ -1355,24 +1355,28 @@ 1355 1355 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1356 1356 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1357 1357 1223 + 1224 + 1358 1358 = 6. FAQ = 1359 1359 1360 -== 6.1 Where can i find source code of SN50v3-LB /LS? ==1227 +== 6.1 Where can i find source code of SN50v3-LB? == 1361 1361 1362 1362 1363 1363 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1364 1364 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1365 1365 1366 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1367 1367 1368 1368 1235 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1236 + 1237 + 1369 1369 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1370 1370 1371 1371 1372 -== 6.3 How to put several sensors to a SN50v3-LB /LS? ==1241 +== 6.3 How to put several sensors to a SN50v3-LB? == 1373 1373 1374 1374 1375 -When we want to put several sensors to A SN50v3-LB /LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.1244 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1376 1376 1377 1377 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1378 1378 ... ... @@ -1382,7 +1382,7 @@ 1382 1382 = 7. Order Info = 1383 1383 1384 1384 1385 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**1254 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1386 1386 1387 1387 (% style="color:red" %)**XX**(%%): The default frequency band 1388 1388 ... ... @@ -1402,12 +1402,14 @@ 1402 1402 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1403 1403 * (% style="color:red" %)**NH**(%%): No Hole 1404 1404 1274 + 1275 + 1405 1405 = 8. Packing Info = 1406 1406 1407 1407 1408 1408 (% style="color:#037691" %)**Package Includes**: 1409 1409 1410 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node1281 +* SN50v3-LB LoRaWAN Generic Node 1411 1411 1412 1412 (% style="color:#037691" %)**Dimension and weight**: 1413 1413 ... ... @@ -1416,6 +1416,8 @@ 1416 1416 * Package Size / pcs : cm 1417 1417 * Weight / pcs : g 1418 1418 1290 + 1291 + 1419 1419 = 9. Support = 1420 1420 1421 1421
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content
- image-20240717113113-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.0 KB - Content
- image-20240717141512-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.8 KB - Content
- image-20240717141528-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -234.2 KB - Content
- image-20240717145707-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.8 KB - Content
- image-20240717150334-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20240717150948-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.3 KB - Content
- image-20240717152224-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -238.1 KB - Content
- image-20240924112806-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -140.2 KB - Content