<
From version < 97.1 >
edited by Saxer Lin
on 2024/07/25 18:52
To version < 59.1 >
edited by Saxer Lin
on 2023/08/11 11:35
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,15 +3,10 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
6 +**Table of Contents:**
8 8  
9 -
10 -
11 -**Table of Contents:**
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -19,19 +19,20 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
30 +
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -43,15 +43,15 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
42 +* 8500mAh Battery for long term use
48 48  
44 +
49 49  == 1.3 Specification ==
50 50  
51 51  
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
50 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -83,6 +83,7 @@
83 83  * Sleep Mode: 5uA @ 3.3v
84 84  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85 85  
82 +
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 88  
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
94 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
96 +
97 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -109,10 +109,11 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
110 +
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
114 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -132,23 +132,18 @@
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
137 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
146 -
147 -
148 148  == 1.9 Hole Option ==
149 149  
150 150  
151 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 152  
153 153  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154 154  
... ... @@ -155,12 +155,12 @@
155 155  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156 156  
157 157  
158 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
152 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 159  
160 160  == 2.1 How it works ==
161 161  
162 162  
163 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 164  
165 165  
166 166  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -171,9 +171,9 @@
171 171  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 172  
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
168 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 175  
176 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
170 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 178  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
... ... @@ -201,10 +201,12 @@
201 201  
202 202  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203 203  
204 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205 205  
206 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
199 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
201 +
202 +Press the button for 5 seconds to activate the SN50v3-LB.
203 +
208 208  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209 209  
210 210  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -215,13 +215,13 @@
215 215  === 2.3.1 Device Status, FPORT~=5 ===
216 216  
217 217  
218 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
219 219  
220 220  The Payload format is as below.
221 221  
222 222  
223 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
219 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
225 225  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
226 226  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
227 227  
... ... @@ -228,7 +228,7 @@
228 228  Example parse in TTNv3
229 229  
230 230  
231 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
232 232  
233 233  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234 234  
... ... @@ -284,7 +284,7 @@
284 284  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
285 285  
286 286  
287 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
288 288  
289 289  For example:
290 290  
... ... @@ -293,7 +293,7 @@
293 293  
294 294  (% style="color:red" %) **Important Notice:**
295 295  
296 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
297 297  
298 298  2. All modes share the same Payload Explanation from HERE.
299 299  
... ... @@ -305,8 +305,8 @@
305 305  
306 306  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 307  
308 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
304 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
310 310  |Value|Bat|(% style="width:191px" %)(((
311 311  Temperature(DS18B20)(PC13)
312 312  )))|(% style="width:78px" %)(((
... ... @@ -327,8 +327,8 @@
327 327  
328 328  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329 329  
330 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
332 332  |Value|BAT|(% style="width:196px" %)(((
333 333  Temperature(DS18B20)(PC13)
334 334  )))|(% style="width:87px" %)(((
... ... @@ -357,8 +357,8 @@
357 357  
358 358  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 359  
360 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
362 362  |Value|BAT|(% style="width:183px" %)(((
363 363  Temperature(DS18B20)(PC13)
364 364  )))|(% style="width:173px" %)(((
... ... @@ -392,10 +392,10 @@
392 392  
393 393  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 394  
395 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 399  |Value|(% style="width:68px" %)(((
400 400  ADC1(PA4)
401 401  )))|(% style="width:75px" %)(((
... ... @@ -418,8 +418,8 @@
418 418  
419 419  This mode has total 11 bytes. As shown below:
420 420  
421 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
423 423  |Value|BAT|(% style="width:186px" %)(((
424 424  Temperature1(DS18B20)(PC13)
425 425  )))|(% style="width:82px" %)(((
... ... @@ -459,10 +459,10 @@
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
464 464  **Size(bytes)**
465 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
466 466  |Value|BAT|(% style="width:193px" %)(((
467 467  Temperature(DS18B20)(PC13)
468 468  )))|(% style="width:85px" %)(((
... ... @@ -474,6 +474,7 @@
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
476 476  
473 +
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 479  
... ... @@ -486,8 +486,8 @@
486 486  
487 487  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488 488  
489 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
491 491  |Value|BAT|(% style="width:256px" %)(((
492 492  Temperature(DS18B20)(PC13)
493 493  )))|(% style="width:108px" %)(((
... ... @@ -504,10 +504,10 @@
504 504  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 505  
506 506  
507 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
509 509  **Size(bytes)**
510 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
511 511  |Value|BAT|(% style="width:188px" %)(((
512 512  Temperature(DS18B20)
513 513  (PC13)
... ... @@ -523,10 +523,10 @@
523 523  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 524  
525 525  
526 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 530  |Value|BAT|(% style="width:207px" %)(((
531 531  Temperature(DS18B20)
532 532  (PC13)
... ... @@ -546,10 +546,10 @@
546 546  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547 547  
548 548  
549 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 553  |Value|BAT|(((
554 554  Temperature
555 555  (DS18B20)(PC13)
... ... @@ -586,163 +586,6 @@
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
589 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590 -
591 -
592 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593 -
594 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595 -
596 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597 -
598 -
599 -===== 2.3.2.10.a  Uplink, PWM input capture =====
600 -
601 -
602 -[[image:image-20230817172209-2.png||height="439" width="683"]]
603 -
604 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 -|Value|Bat|(% style="width:191px" %)(((
607 -Temperature(DS18B20)(PC13)
608 -)))|(% style="width:78px" %)(((
609 -ADC(PA4)
610 -)))|(% style="width:135px" %)(((
611 -PWM_Setting
612 -&Digital Interrupt(PA8)
613 -)))|(% style="width:70px" %)(((
614 -Pulse period
615 -)))|(% style="width:89px" %)(((
616 -Duration of high level
617 -)))
618 -
619 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
620 -
621 -
622 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623 -
624 -**Frequency:**
625 -
626 -(% class="MsoNormal" %)
627 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631 -
632 -
633 -(% class="MsoNormal" %)
634 -**Duty cycle:**
635 -
636 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637 -
638 -[[image:image-20230818092200-1.png||height="344" width="627"]]
639 -
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -
644 -[[image:image-20230817172209-2.png||height="439" width="683"]]
645 -
646 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 -
648 -a is the time delay of the output, the unit is ms.
649 -
650 -b is the output frequency, the unit is HZ.
651 -
652 -c is the duty cycle of the output, the unit is %.
653 -
654 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 -
656 -aa is the time delay of the output, the unit is ms.
657 -
658 -bb is the output frequency, the unit is HZ.
659 -
660 -cc is the duty cycle of the output, the unit is %.
661 -
662 -
663 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 -
665 -The oscilloscope displays as follows:
666 -
667 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668 -
669 -
670 -===== 2.3.2.10.c  Downlink, PWM output =====
671 -
672 -
673 -[[image:image-20230817173800-3.png||height="412" width="685"]]
674 -
675 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 -
677 - xx xx xx is the output frequency, the unit is HZ.
678 -
679 - yy is the duty cycle of the output, the unit is %.
680 -
681 - zz zz is the time delay of the output, the unit is ms.
682 -
683 -
684 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 -
686 -The oscilloscope displays as follows:
687 -
688 -[[image:image-20230817173858-5.png||height="634" width="843"]]
689 -
690 -
691 -
692 -==== 2.3.2.11  MOD~=11 (TEMP117) ====
693 -
694 -
695 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696 -
697 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 -|Value|Bat|(% style="width:191px" %)(((
700 -Temperature(DS18B20)(PC13)
701 -)))|(% style="width:78px" %)(((
702 -ADC(PA4)
703 -)))|(% style="width:216px" %)(((
704 -Digital in(PB15)&Digital Interrupt(PA8)
705 -)))|(% style="width:308px" %)(((
706 -Temperature
707 -
708 -(TEMP117)
709 -)))|(% style="width:154px" %)(((
710 -Reserved position, meaningless
711 -
712 -(0x0000)
713 -)))
714 -
715 -[[image:image-20240717113113-1.png||height="352" width="793"]]
716 -
717 -Connection:
718 -
719 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
720 -
721 -
722 -==== 2.3.2.12  MOD~=12 (Count+SHT31) ====
723 -
724 -
725 -This mode has total 11 bytes. As shown below:
726 -
727 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
728 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
729 -|Value|BAT|(% style="width:86px" %)(((
730 - Temperature_SHT31
731 -)))|(% style="width:86px" %)(((
732 -Humidity_SHT31
733 -)))|(% style="width:86px" %)(((
734 - Digital in(PB15)
735 -)))|(% style="width:86px" %)(((
736 -Count(PA8)
737 -)))
738 -
739 -[[image:image-20240717150948-5.png||height="389" width="979"]]
740 -
741 -Wiring example:
742 -
743 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
744 -
745 -
746 746  === 2.3.3  ​Decode payload ===
747 747  
748 748  
... ... @@ -752,13 +752,13 @@
752 752  
753 753  The payload decoder function for TTN V3 are here:
754 754  
755 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
756 756  
757 757  
758 758  ==== 2.3.3.1 Battery Info ====
759 759  
760 760  
761 -Check the battery voltage for SN50v3-LB/LS.
601 +Check the battery voltage for SN50v3-LB.
762 762  
763 763  Ex1: 0x0B45 = 2885mV
764 764  
... ... @@ -820,12 +820,10 @@
820 820  
821 821  [[image:image-20230811113449-1.png||height="370" width="608"]]
822 822  
823 -
824 -
825 825  ==== 2.3.3.5 Digital Interrupt ====
826 826  
827 827  
828 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
666 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
829 829  
830 830  (% style="color:blue" %)** Interrupt connection method:**
831 831  
... ... @@ -838,18 +838,18 @@
838 838  
839 839  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
840 840  
841 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
679 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
842 842  
843 843  
844 844  (% style="color:blue" %)**Below is the installation example:**
845 845  
846 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
684 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
847 847  
848 848  * (((
849 -One pin to SN50v3-LB/LS's PA8 pin
687 +One pin to SN50v3-LB's PA8 pin
850 850  )))
851 851  * (((
852 -The other pin to SN50v3-LB/LS's VDD pin
690 +The other pin to SN50v3-LB's VDD pin
853 853  )))
854 854  
855 855  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -885,7 +885,7 @@
885 885  
886 886  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
887 887  
888 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
726 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
889 889  
890 890  
891 891  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -919,7 +919,7 @@
919 919  
920 920  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
921 921  
922 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
923 923  
924 924  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
925 925  
... ... @@ -928,7 +928,7 @@
928 928  [[image:image-20230512173903-6.png||height="596" width="715"]]
929 929  
930 930  
931 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
932 932  
933 933  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
934 934  
... ... @@ -940,13 +940,13 @@
940 940  ==== 2.3.3.9  Battery Output - BAT pin ====
941 941  
942 942  
943 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
781 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
944 944  
945 945  
946 946  ==== 2.3.3.10  +5V Output ====
947 947  
948 948  
949 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
787 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
950 950  
951 951  The 5V output time can be controlled by AT Command.
952 952  
... ... @@ -968,37 +968,9 @@
968 968  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
969 969  
970 970  
971 -==== 2.3.3.12  PWM MOD ====
809 +==== 2.3.3.12  Working MOD ====
972 972  
973 973  
974 -* (((
975 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
976 -)))
977 -* (((
978 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
979 -)))
980 -
981 - [[image:image-20230817183249-3.png||height="320" width="417"]]
982 -
983 -* (((
984 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
985 -)))
986 -* (((
987 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
988 -)))
989 -* (((
990 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
991 -
992 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
993 -
994 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
995 -
996 -b) If the output duration is more than 30 seconds, better to use external power source. 
997 -)))
998 -
999 -==== 2.3.3.13  Working MOD ====
1000 -
1001 -
1002 1002  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1003 1003  
1004 1004  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -1014,8 +1014,8 @@
1014 1014  * 6: MOD7
1015 1015  * 7: MOD8
1016 1016  * 8: MOD9
1017 -* 9: MOD10
1018 1018  
828 +
1019 1019  == 2.4 Payload Decoder file ==
1020 1020  
1021 1021  
... ... @@ -1029,22 +1029,23 @@
1029 1029  == 2.5 Frequency Plans ==
1030 1030  
1031 1031  
1032 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
842 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1033 1033  
1034 1034  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1035 1035  
1036 1036  
1037 -= 3. Configure SN50v3-LB/LS =
847 += 3. Configure SN50v3-LB =
1038 1038  
1039 1039  == 3.1 Configure Methods ==
1040 1040  
1041 1041  
1042 -SN50v3-LB/LS supports below configure method:
852 +SN50v3-LB supports below configure method:
1043 1043  
1044 1044  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1045 1045  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1046 1046  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1047 1047  
858 +
1048 1048  == 3.2 General Commands ==
1049 1049  
1050 1050  
... ... @@ -1058,10 +1058,10 @@
1058 1058  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1059 1059  
1060 1060  
1061 -== 3.3 Commands special design for SN50v3-LB/LS ==
872 +== 3.3 Commands special design for SN50v3-LB ==
1062 1062  
1063 1063  
1064 -These commands only valid for SN50v3-LB/LS, as below:
875 +These commands only valid for SN50v3-LB, as below:
1065 1065  
1066 1066  
1067 1067  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1072,7 +1072,7 @@
1072 1072  (% style="color:blue" %)**AT Command: AT+TDC**
1073 1073  
1074 1074  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1075 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
886 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1076 1076  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1077 1077  30000
1078 1078  OK
... ... @@ -1092,6 +1092,7 @@
1092 1092  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1093 1093  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1094 1094  
906 +
1095 1095  === 3.3.2 Get Device Status ===
1096 1096  
1097 1097  
... ... @@ -1107,10 +1107,10 @@
1107 1107  
1108 1108  Feature, Set Interrupt mode for GPIO_EXIT.
1109 1109  
1110 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
922 +(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1111 1111  
1112 1112  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1113 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
925 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1114 1114  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1115 1115  0
1116 1116  OK
... ... @@ -1140,6 +1140,7 @@
1140 1140  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1141 1141  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1142 1142  
955 +
1143 1143  === 3.3.4 Set Power Output Duration ===
1144 1144  
1145 1145  
... ... @@ -1154,7 +1154,7 @@
1154 1154  (% style="color:blue" %)**AT Command: AT+5VT**
1155 1155  
1156 1156  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1157 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
970 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1158 1158  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1159 1159  500(default)
1160 1160  OK
... ... @@ -1172,6 +1172,7 @@
1172 1172  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1173 1173  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1174 1174  
988 +
1175 1175  === 3.3.5 Set Weighing parameters ===
1176 1176  
1177 1177  
... ... @@ -1180,9 +1180,9 @@
1180 1180  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1181 1181  
1182 1182  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1183 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
997 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1184 1184  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1185 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
999 +|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1186 1186  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1187 1187  
1188 1188  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1197,6 +1197,7 @@
1197 1197  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1198 1198  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1199 1199  
1014 +
1200 1200  === 3.3.6 Set Digital pulse count value ===
1201 1201  
1202 1202  
... ... @@ -1206,8 +1206,8 @@
1206 1206  
1207 1207  (% style="color:blue" %)**AT Command: AT+SETCNT**
1208 1208  
1209 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1210 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1024 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1025 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1211 1211  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1212 1212  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1213 1213  
... ... @@ -1220,6 +1220,7 @@
1220 1220  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1221 1221  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1222 1222  
1038 +
1223 1223  === 3.3.7 Set Workmode ===
1224 1224  
1225 1225  
... ... @@ -1227,8 +1227,8 @@
1227 1227  
1228 1228  (% style="color:blue" %)**AT Command: AT+MOD**
1229 1229  
1230 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1231 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1046 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1047 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1232 1232  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1233 1233  OK
1234 1234  )))
... ... @@ -1244,97 +1244,12 @@
1244 1244  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1245 1245  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1246 1246  
1247 -=== 3.3.8 PWM setting ===
1248 1248  
1064 += 4. Battery & Power Consumption =
1249 1249  
1250 -Feature: Set the time acquisition unit for PWM input capture.
1251 1251  
1252 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1067 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1253 1253  
1254 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1255 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1256 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1257 -0(default)
1258 -OK
1259 -)))
1260 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1261 -OK
1262 -
1263 -)))
1264 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1265 -
1266 -(% style="color:blue" %)**Downlink Command: 0x0C**
1267 -
1268 -Format: Command Code (0x0C) followed by 1 bytes.
1269 -
1270 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1271 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1272 -
1273 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1274 -
1275 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1276 -
1277 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1278 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1279 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1280 -0,0,0(default)
1281 -OK
1282 -)))
1283 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1284 -OK
1285 -
1286 -)))
1287 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1288 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1289 -
1290 -
1291 -)))|(% style="width:137px" %)(((
1292 -OK
1293 -)))
1294 -
1295 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1296 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1297 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1298 -AT+PWMOUT=a,b,c
1299 -
1300 -
1301 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1302 -Set PWM output time, output frequency and output duty cycle.
1303 -
1304 -(((
1305 -
1306 -)))
1307 -
1308 -(((
1309 -
1310 -)))
1311 -)))|(% style="width:242px" %)(((
1312 -a: Output time (unit: seconds)
1313 -The value ranges from 0 to 65535.
1314 -When a=65535, PWM will always output.
1315 -)))
1316 -|(% style="width:242px" %)(((
1317 -b: Output frequency (unit: HZ)
1318 -)))
1319 -|(% style="width:242px" %)(((
1320 -c: Output duty cycle (unit: %)
1321 -The value ranges from 0 to 100.
1322 -)))
1323 -
1324 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1325 -
1326 -Format: Command Code (0x0B01) followed by 6 bytes.
1327 -
1328 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1329 -
1330 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1331 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1332 -
1333 -= 4. Battery & Power Cons =
1334 -
1335 -
1336 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1337 -
1338 1338  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1339 1339  
1340 1340  
... ... @@ -1342,7 +1342,7 @@
1342 1342  
1343 1343  
1344 1344  (% class="wikigeneratedid" %)
1345 -**User can change firmware SN50v3-LB/LS to:**
1076 +**User can change firmware SN50v3-LB to:**
1346 1346  
1347 1347  * Change Frequency band/ region.
1348 1348  * Update with new features.
... ... @@ -1355,24 +1355,26 @@
1355 1355  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1356 1356  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1357 1357  
1089 +
1358 1358  = 6. FAQ =
1359 1359  
1360 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1092 +== 6.1 Where can i find source code of SN50v3-LB? ==
1361 1361  
1362 1362  
1363 1363  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1364 1364  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1365 1365  
1366 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1367 1367  
1099 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1368 1368  
1101 +
1369 1369  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1370 1370  
1371 1371  
1372 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1105 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1373 1373  
1374 1374  
1375 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1108 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1376 1376  
1377 1377  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1378 1378  
... ... @@ -1382,7 +1382,7 @@
1382 1382  = 7. Order Info =
1383 1383  
1384 1384  
1385 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1118 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1386 1386  
1387 1387  (% style="color:red" %)**XX**(%%): The default frequency band
1388 1388  
... ... @@ -1402,12 +1402,13 @@
1402 1402  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1403 1403  * (% style="color:red" %)**NH**(%%): No Hole
1404 1404  
1138 +
1405 1405  = 8. ​Packing Info =
1406 1406  
1407 1407  
1408 1408  (% style="color:#037691" %)**Package Includes**:
1409 1409  
1410 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1144 +* SN50v3-LB LoRaWAN Generic Node
1411 1411  
1412 1412  (% style="color:#037691" %)**Dimension and weight**:
1413 1413  
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0