Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 48 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
- image-20240717113113-1.png
- image-20240717141512-1.jpeg
- image-20240717141528-2.jpeg
- image-20240717145707-3.png
- image-20240717150334-4.png
- image-20240717150948-5.png
- image-20240717152224-6.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS-- LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Edwin - Content
-
... ... @@ -1,40 +1,37 @@ 1 - 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 2 2 3 -(% style="text-align:center" %) 4 -[[image:image-20240103095714-2.png]] 5 5 6 6 5 +**Table of Contents:** 7 7 7 +{{toc/}} 8 8 9 9 10 10 11 -**Table of Contents:** 12 12 13 -{{toc/}} 14 14 15 15 14 += 1. Introduction = 16 16 16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 18 18 19 19 20 -= 1 .Introduction=21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 21 21 22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 23 23 24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 24 24 25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LS wireless part**(%%)isbasedonSX1262allows the userto send data andreach extremely longanges atlow data-rates.Itprovidesultra-longrangespread spectrumcommunicationandhighinterferenceimmunitywhilstminimising currentconsumption.It targetsprofessionalwireless sensor network applicationssuchasirrigationsystems, smart metering, smart cities, and so on.27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 30 30 31 -SN50V3-LB /LShasa (% style="color:blue"%)**built-inBLE module**(%%),usercan configurethe sensorremotelyvia MobilePhone. Italsosupport(% style="color:blue" %)**OTAupgrade**(%%)viaprivate LoRa protocol for easy maintaining.30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 32 32 33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 35 35 == 1.2 Features == 36 36 37 - 38 38 * LoRaWAN 1.0.3 Class A 39 39 * Ultra-low power consumption 40 40 * Open-Source hardware/software ... ... @@ -43,15 +43,13 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 +* 8500mAh Battery for long term use 48 48 49 49 == 1.3 Specification == 50 50 51 - 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-inBattery , 2.5v ~~ 3.6v49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -85,7 +85,6 @@ 85 85 86 86 == 1.4 Sleep mode and working mode == 87 87 88 - 89 89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 90 90 91 91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -94,10 +94,11 @@ 94 94 == 1.5 Button & LEDs == 95 95 96 96 97 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 98 98 99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 93 + 94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 101 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 102 102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 103 103 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -112,7 +112,7 @@ 112 112 == 1.6 BLE connection == 113 113 114 114 115 -SN50v3-LB /LSsupports BLE remote configure.110 +SN50v3-LB supports BLE remote configure. 116 116 117 117 118 118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -127,40 +127,34 @@ 127 127 == 1.7 Pin Definitions == 128 128 129 129 130 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 131 131 132 132 133 133 == 1.8 Mechanical == 134 134 135 -=== 1.8.1 for LB version === 136 136 131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 137 137 138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 139 140 - 141 141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 142 142 143 -=== 1.8.2 for LS version === 144 144 145 - [[image:image-20231231203439-3.png||height="385" width="886"]]138 +== Hole Option == 146 146 140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 147 147 148 -== 1.9 Hole Option == 149 - 150 - 151 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 - 153 153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 154 154 155 155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 156 156 157 157 158 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =147 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 159 160 160 == 2.1 How it works == 161 161 162 162 163 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 164 165 165 166 166 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -168,12 +168,12 @@ 168 168 169 169 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 170 170 171 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 172 172 173 173 174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 175 176 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 177 178 178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 179 179 ... ... @@ -201,10 +201,12 @@ 201 201 202 202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 203 203 204 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 205 205 206 - Pressthebutton for5 secondstoactivatetheSN50v3-LB/LS.194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 207 207 196 + 197 +Press the button for 5 seconds to activate the SN50v3-LB. 198 + 208 208 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 209 209 210 210 After join success, it will start to upload messages to TTN and you can see the messages in the panel. ... ... @@ -215,52 +215,52 @@ 215 215 === 2.3.1 Device Status, FPORT~=5 === 216 216 217 217 218 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LB/LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 219 219 220 220 The Payload format is as below. 221 221 222 222 223 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)224 -|(% colspan="6" style="background-color:# 4f81bd; color:white" %)**Device Status (FPORT=5)**214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 225 225 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 226 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 227 227 228 228 Example parse in TTNv3 229 229 230 230 231 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB/LS, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 232 232 233 233 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 234 234 235 235 (% style="color:#037691" %)**Frequency Band**: 236 236 237 -0x01: EU868 228 +*0x01: EU868 238 238 239 -0x02: US915 230 +*0x02: US915 240 240 241 -0x03: IN865 232 +*0x03: IN865 242 242 243 -0x04: AU915 234 +*0x04: AU915 244 244 245 -0x05: KZ865 236 +*0x05: KZ865 246 246 247 -0x06: RU864 238 +*0x06: RU864 248 248 249 -0x07: AS923 240 +*0x07: AS923 250 250 251 -0x08: AS923-1 242 +*0x08: AS923-1 252 252 253 -0x09: AS923-2 244 +*0x09: AS923-2 254 254 255 -0x0a: AS923-3 246 +*0x0a: AS923-3 256 256 257 -0x0b: CN470 248 +*0x0b: CN470 258 258 259 -0x0c: EU433 250 +*0x0c: EU433 260 260 261 -0x0d: KR920 252 +*0x0d: KR920 262 262 263 -0x0e: MA869 254 +*0x0e: MA869 264 264 265 265 266 266 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -284,40 +284,25 @@ 284 284 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 285 285 286 286 287 -SN50v3 -LB/LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LB/LSto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 288 288 289 289 For example: 290 290 291 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 292 292 293 293 294 294 (% style="color:red" %) **Important Notice:** 295 295 296 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 297 297 298 -2. All modes share the same Payload Explanation from HERE. 299 - 300 -3. By default, the device will send an uplink message every 20 minutes. 301 - 302 - 303 303 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 304 304 305 - 306 306 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 307 307 308 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 309 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 310 -|Value|Bat|(% style="width:191px" %)((( 311 -Temperature(DS18B20)(PC13) 312 -)))|(% style="width:78px" %)((( 313 -ADC(PA4) 314 -)))|(% style="width:216px" %)((( 315 -Digital in(PB15)&Digital Interrupt(PA8) 316 -)))|(% style="width:308px" %)((( 317 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 318 -)))|(% style="width:154px" %)((( 319 -Humidity(SHT20 or SHT31) 320 -))) 295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 321 321 322 322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 323 323 ... ... @@ -324,152 +324,128 @@ 324 324 325 325 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 326 326 327 - 328 328 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 329 329 330 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 331 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 332 -|Value|BAT|(% style="width:196px" %)((( 333 -Temperature(DS18B20)(PC13) 334 -)))|(% style="width:87px" %)((( 335 -ADC(PA4) 336 -)))|(% style="width:189px" %)((( 337 -Digital in(PB15) & Digital Interrupt(PA8) 338 -)))|(% style="width:208px" %)((( 339 -Distance measure by: 1) LIDAR-Lite V3HP 340 -Or 2) Ultrasonic Sensor 341 -)))|(% style="width:117px" %)Reserved 305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 306 +|**Value**|BAT|((( 307 +Temperature(DS18B20) 308 +)))|ADC|Digital in & Digital Interrupt|((( 309 +Distance measure by: 310 +1) LIDAR-Lite V3HP 311 +Or 312 +2) Ultrasonic Sensor 313 +)))|Reserved 342 342 343 343 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 344 344 317 +**Connection of LIDAR-Lite V3HP:** 345 345 346 - (% style="color:blue"%)**ConnectionfLIDAR-LiteV3HP:**319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]] 347 347 348 - [[image:image-20230512173758-5.png||height="563"width="712"]]321 +**Connection to Ultrasonic Sensor:** 349 349 323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 350 350 351 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 - 353 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 354 - 355 -[[image:image-20230512173903-6.png||height="596" width="715"]] 356 - 357 - 358 358 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 359 359 360 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 361 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2** 362 -|Value|BAT|(% style="width:183px" %)((( 363 -Temperature(DS18B20)(PC13) 364 -)))|(% style="width:173px" %)((( 365 -Digital in(PB15) & Digital Interrupt(PA8) 366 -)))|(% style="width:84px" %)((( 367 -ADC(PA4) 368 -)))|(% style="width:323px" %)((( 327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 328 +|**Value**|BAT|((( 329 +Temperature(DS18B20) 330 +)))|Digital in & Digital Interrupt|ADC|((( 369 369 Distance measure by:1)TF-Mini plus LiDAR 370 -Or 2) TF-Luna LiDAR 371 -)))|(% style="width:188px" %)Distance signal strength 332 +Or 333 +2) TF-Luna LiDAR 334 +)))|Distance signal strength 372 372 373 373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 374 374 375 - 376 376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 377 377 378 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 379 379 380 -[[image:i mage-20230512180609-7.png||height="555"width="802"]]342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]] 381 381 382 - 383 383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 384 384 385 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 386 386 387 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 388 388 350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 389 389 352 + 390 390 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 391 391 392 - 393 393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 394 394 395 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 396 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 357 +|=((( 397 397 **Size(bytes)** 398 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 399 -|Value|(% style="width:68px" %)((( 400 -ADC1(PA4) 401 -)))|(% style="width:75px" %)((( 402 -ADC2(PA5) 403 -)))|((( 404 -ADC3(PA8) 405 -)))|((( 406 -Digital Interrupt(PB15) 407 -)))|(% style="width:304px" %)((( 408 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 409 -)))|(% style="width:163px" %)((( 410 -Humidity(SHT20 or SHT31) 411 -)))|(% style="width:53px" %)Bat 359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 361 +Digital in(PA12)&Digital Interrupt1(PB14) 362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 412 412 413 -[[image:i mage-20230513110214-6.png]]364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 414 414 415 415 416 416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 417 417 369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 418 418 419 - This modehas total11 bytes.Asshownbelow:371 +Hardware connection is as below, 420 420 421 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 422 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2** 423 -|Value|BAT|(% style="width:186px" %)((( 424 -Temperature1(DS18B20)(PC13) 425 -)))|(% style="width:82px" %)((( 426 -ADC(PA4) 427 -)))|(% style="width:210px" %)((( 428 -Digital in(PB15) & Digital Interrupt(PA8) 429 -)))|(% style="width:191px" %)Temperature2(DS18B20) 430 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 373 +**( Note:** 431 431 432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 433 433 378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 434 434 435 -[[image:i mage-20230513134006-1.png||height="559" width="736"]]380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 436 436 382 +This mode has total 11 bytes. As shown below: 437 437 384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 385 +|**Value**|BAT|((( 386 +Temperature1 387 +(DS18B20) 388 +(PB3) 389 +)))|ADC|Digital in & Digital Interrupt|Temperature2 390 +(DS18B20) 391 +(PA9)|Temperature3 392 +(DS18B20) 393 +(PA10) 394 + 395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 396 + 397 + 438 438 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 439 439 400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 440 440 441 -[[image:image-20230512164658-2.png||height="532" width="729"]] 442 442 403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 404 + 443 443 Each HX711 need to be calibrated before used. User need to do below two steps: 444 444 445 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 447 447 1. ((( 448 -Weight has 4 bytes, the unit is g. 449 - 450 - 451 - 410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 452 452 ))) 453 453 454 454 For example: 455 455 456 - (% style="color:blue" %)**AT+GETSENSORVALUE=0**415 +**AT+WEIGAP =403.0** 457 457 458 458 Response: Weight is 401 g 459 459 460 460 Check the response of this command and adjust the value to match the real value for thing. 461 461 462 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 463 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 421 +|=((( 464 464 **Size(bytes)** 465 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4** 466 -|Value|BAT|(% style="width:193px" %)((( 467 -Temperature(DS18B20)(PC13) 468 -)))|(% style="width:85px" %)((( 469 -ADC(PA4) 470 -)))|(% style="width:186px" %)((( 471 -Digital in(PB15) & Digital Interrupt(PA8) 472 -)))|(% style="width:100px" %)Weight 423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 473 473 474 474 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 475 475 ... ... @@ -476,570 +476,516 @@ 476 476 477 477 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 478 478 479 - 480 480 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 481 481 482 482 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 483 483 484 -[[image:i mage-20230512181814-9.png||height="543" width="697"]]435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]] 485 485 437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 486 486 487 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 488 488 489 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 490 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4** 491 -|Value|BAT|(% style="width:256px" %)((( 492 -Temperature(DS18B20)(PC13) 493 -)))|(% style="width:108px" %)((( 494 -ADC(PA4) 495 -)))|(% style="width:126px" %)((( 496 -Digital in(PB15) 497 -)))|(% style="width:145px" %)((( 498 -Count(PA8) 499 -))) 500 - 501 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 502 502 503 503 504 504 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 505 505 449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 506 506 507 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 508 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 451 +|=((( 509 509 **Size(bytes)** 510 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 511 -|Value|BAT|(% style="width:188px" %)((( 512 -Temperature(DS18B20) 513 -(PC13) 514 -)))|(% style="width:83px" %)((( 515 -ADC(PA5) 516 -)))|(% style="width:184px" %)((( 517 -Digital Interrupt1(PA8) 518 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 454 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 455 +Digital in(PA12)&Digital Interrupt1(PB14) 456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 519 519 520 -[[image:image-20230513111203-7.png||height="324" width="975"]] 521 - 522 - 523 523 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 524 524 525 - 526 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 527 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 460 +|=((( 528 528 **Size(bytes)** 529 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2 530 -|Value|BAT|(% style="width:207px" %)((( 531 -Temperature(DS18B20) 532 -(PC13) 533 -)))|(% style="width:94px" %)((( 534 -ADC1(PA4) 535 -)))|(% style="width:198px" %)((( 536 -Digital Interrupt(PB15) 537 -)))|(% style="width:84px" %)((( 538 -ADC2(PA5) 539 -)))|(% style="width:82px" %)((( 540 -ADC3(PA8) 462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 463 +|**Value**|BAT|Temperature(DS18B20)|((( 464 +ADC1(PA0) 465 +)))|((( 466 +Digital in 467 +& Digital Interrupt(PB14) 468 +)))|((( 469 +ADC2(PA1) 470 +)))|((( 471 +ADC3(PA4) 541 541 ))) 542 542 543 -[[image:image-202 30513111231-8.png||height="335" width="900"]]474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 544 544 545 545 546 546 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 547 547 548 - 549 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 550 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 479 +|=((( 551 551 **Size(bytes)** 552 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4 553 -|Value|BAT|((( 554 -Temperature 555 -(DS18B20)(PC13) 481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 482 +|**Value**|BAT|((( 483 +Temperature1(PB3) 556 556 )))|((( 557 -Temperature2 558 -(DS18B20)(PB9) 485 +Temperature2(PA9) 559 559 )))|((( 560 -Digital Interrupt 561 -(PB15) 562 -)))|(% style="width:193px" %)((( 563 -Temperature3 564 -(DS18B20)(PB8) 565 -)))|(% style="width:78px" %)((( 566 -Count1(PA8) 567 -)))|(% style="width:78px" %)((( 568 -Count2(PA4) 487 +Digital in 488 +& Digital Interrupt(PA4) 489 +)))|((( 490 +Temperature3(PA10) 491 +)))|((( 492 +Count1(PB14) 493 +)))|((( 494 +Count2(PB15) 569 569 ))) 570 570 571 -[[image:image-202 30513111255-9.png||height="341"width="899"]]497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 572 572 573 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**499 +**The newly added AT command is issued correspondingly:** 574 574 575 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**501 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 576 576 577 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**503 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 578 578 579 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**505 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 580 580 507 +**AT+SETCNT=aa,bb** 581 581 582 - (%style="color:blue"%)**AT+SETCNT=aa,bb**509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 583 583 584 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 585 585 586 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 587 587 588 588 589 -=== =2.3.2.10MOD~=10 (PWM input captureandoutput mode,Sincefirmware v1.2)(% style="display:none"%) (%%)====515 +=== 2.3.3 Decode payload === 590 590 517 +While using TTN V3 network, you can add the payload format to decode the payload. 591 591 592 - (% style="color:red"%)**Note: Firmwaretrelease, contact Draginofortesting.**519 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 593 593 594 - In thismode,the uplinkcanperformPWMinputcapture,and thedownlink can perform PWM output.521 +The payload decoder function for TTN V3 are here: 595 595 596 -[[ ItouldbetedwhenusingPWMmode.>>||anchor="H2.3.3.12A0PWMMOD"]]523 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 597 598 598 599 -==== =2.3.2.10.aUplink,PWM input capture =====526 +==== 2.3.3.1 Battery Info ==== 600 600 528 +Check the battery voltage for SN50v3. 601 601 602 - [[image:image-20230817172209-2.png||height="439"width="683"]]530 +Ex1: 0x0B45 = 2885mV 603 603 604 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 605 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 606 -|Value|Bat|(% style="width:191px" %)((( 607 -Temperature(DS18B20)(PC13) 608 -)))|(% style="width:78px" %)((( 609 -ADC(PA4) 610 -)))|(% style="width:135px" %)((( 611 -PWM_Setting 612 -&Digital Interrupt(PA8) 613 -)))|(% style="width:70px" %)((( 614 -Pulse period 615 -)))|(% style="width:89px" %)((( 616 -Duration of high level 617 -))) 532 +Ex2: 0x0B49 = 2889mV 618 618 619 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 620 620 535 +==== 2.3.3.2 Temperature (DS18B20) ==== 621 621 622 - Whenthedevicedetects thefollowingPWMsignal,decoder willconvertsthe pulseperiodandhigh-levelduration to frequencyand dutycycle.537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 623 623 624 - **Frequency:**539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 625 625 626 -(% class="MsoNormal" %) 627 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 541 +**Connection:** 628 628 629 -(% class="MsoNormal" %) 630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]] 631 631 545 +**Example**: 632 632 633 -(% class="MsoNormal" %) 634 -**Duty cycle:** 547 +If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 635 635 636 - Dutycycle= Durationofhighlevel/Pulseperiod*100~(%).549 +If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 637 637 638 - [[image:image-20230818092200-1.png||height="344"width="627"]]551 +(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 639 639 640 640 641 -==== =2.3.2.10.bUplink,PWM output =====554 +==== 2.3.3.3 Digital Input ==== 642 642 556 +The digital input for pin PA12, 643 643 644 -[[image:image-20230817172209-2.png||height="439" width="683"]] 558 +* When PA12 is high, the bit 1 of payload byte 6 is 1. 559 +* When PA12 is low, the bit 1 of payload byte 6 is 0. 645 645 646 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 647 647 648 - aisthetime delayof theoutput, theunitis ms.562 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 649 649 650 -b is t he outputfrequency, theunitisHZ.564 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin. 651 651 652 - cisthedutycycleofthe output,theunitis%.566 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink. 653 653 654 - (% style="background-attachment:initial;background-clip:initial;background-image:initial; background-origin:initial;background-position:initial; background-repeat:initial;background-size:initial;color:blue;font-family:Arial,sans-serif"%)**Downlink**(%%):(% style="color:#037691" %)**0B 01 bb cc aa **568 +The ADC monitors the voltage on the PA0 line, in mV. 655 655 656 - aaisthetime delay of the output,the unit is ms.570 +Ex: 0x021F = 543mv, 657 657 658 - bbistheoutputfrequency,theunitisHZ.572 +**~ Example1:** Reading an Oil Sensor (Read a resistance value): 659 659 660 -cc is the duty cycle of the output, the unit is %. 661 661 575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]] 662 662 663 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 577 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor. 578 + 664 664 665 - Theoscilloscope displays as follows:580 +**Steps:** 666 666 667 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 582 +1. Solder a 10K resistor between PA0 and VCC. 583 +1. Screw oil sensor's two pins to PA0 and PB4. 668 668 585 +The equipment circuit is as below: 669 669 670 - ===== 2.3.2.10.cDownlink, PWMtput====587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]] 671 671 589 +According to above diagram: 672 672 673 -[[image:image-202 30817173800-3.png||height="412" width="685"]]591 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]] 674 674 675 - Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz**593 +So 676 676 677 - x xx xxistheoutputfrequency, theunits HZ.595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]] 678 678 679 - yyis thedutycycleofthetput,theunitis%.597 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v 680 680 681 - zz zz is thetimeyof thetput, theunitisms.599 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm 682 682 601 +Since the Bouy is linear resistance from 10 ~~ 70cm. 683 683 684 - Forexample,sendk command:0B001A8 3213 88, thefrequencyis25KHZ, theduty cycleis50,andthe outputtimeis5 seconds.603 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy. 685 685 686 -The oscilloscope displays as follows: 687 687 688 - [[image:image-20230817173858-5.png||height="634"width="843"]]606 +==== 2.3.3.5 Digital Interrupt ==== 689 689 608 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 690 690 610 +**~ Interrupt connection method:** 691 691 692 - ==== 2.3.2.11MOD~=11 (TEMP117)====612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 693 693 614 +**Example to use with door sensor :** 694 694 695 - In thismode,uplinkpayloadincludesintotal11 bytes.Uplink packetsuseFPORT=2.616 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 696 696 697 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 698 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 699 -|Value|Bat|(% style="width:191px" %)((( 700 -Temperature(DS18B20)(PC13) 701 -)))|(% style="width:78px" %)((( 702 -ADC(PA4) 703 -)))|(% style="width:216px" %)((( 704 -Digital in(PB15)&Digital Interrupt(PA8) 705 -)))|(% style="width:308px" %)((( 706 -Temperature 618 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 707 707 708 -(TEMP117) 709 -)))|(% style="width:154px" %)((( 710 -Reserved position, meaningless 620 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 711 711 712 -(0x0000) 713 -))) 622 +**~ Below is the installation example:** 714 714 715 - [[image:image-20240717113113-1.png||height="352"width="793"]]624 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 716 716 717 -Connection: 718 - 719 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]] 720 - 721 - 722 -==== 2.3.2.12 MOD~=12 (Count+SHT31) ==== 723 - 724 - 725 -This mode has total 11 bytes. As shown below: 726 - 727 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 728 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4** 729 -|Value|BAT|(% style="width:86px" %)((( 730 - Temperature_SHT31 731 -)))|(% style="width:86px" %)((( 732 -Humidity_SHT31 733 -)))|(% style="width:86px" %)((( 734 - Digital in(PB15) 735 -)))|(% style="width:86px" %)((( 736 -Count(PA8) 626 +* ((( 627 +One pin to LSN50's PB14 pin 737 737 ))) 629 +* ((( 630 +The other pin to LSN50's VCC pin 631 +))) 738 738 739 - [[image:image-20240717150948-5.png||height="389"width="979"]]633 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 740 740 741 - Wiringexample:635 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 742 742 743 - [[image:image-20240717152224-6.jpeg||height="359"width="680"]]637 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 744 744 639 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 745 745 746 - ===2.3.3 Decode payload===641 +The above photos shows the two parts of the magnetic switch fitted to a door. 747 747 643 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt. 748 748 749 - While usingTTN V3 network, you can add thepayload format todecodethe payload.645 +The command is: 750 750 751 -[[ image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]647 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 752 752 753 - ThepayloaddecoderfunctionforTTN V3are here:649 +Below shows some screen captures in TTN V3: 754 754 755 - SN50v3-LB/LS TTN V3 Payload Decoder:[[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 756 756 653 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 757 757 758 -= ===2.3.3.1 BatteryInfo====655 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 759 759 657 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov). 760 760 761 - Checkthebatteryvoltage forSN50v3-LB/LS.659 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board. 762 762 763 - Ex1:0x0B45=2885mV661 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]] 764 764 765 -Ex2: 0x0B49 = 2889mV 766 766 664 +==== 2.3.3.6 I2C Interface (SHT20) ==== 767 767 768 - ====2.3.3.2Temperature(DS18B20)====666 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 769 769 668 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).** 770 770 771 - Ifthereis aDS18B20connected toPC13pin.The temperature willbe uploaded inthepayload.670 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference. 772 772 773 - MoreDS18B20cancheckthe[[3 DS18B20mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]672 +Below is the connection to SHT20/ SHT31. The connection is as below: 774 774 775 - (% style="color:blue"%)**Connection:**674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 776 776 777 - [[image:image-20230512180718-8.png||height="538"width="647"]]676 +The device will be able to get the I2C sensor data now and upload to IoT Server. 778 778 678 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] 779 779 780 - (%style="color:blue"%)**Example**:680 +Convert the read byte to decimal and divide it by ten. 781 781 782 - If payload is: 0105H: (0105 & 8000 == 0), temp= 0105H /10 = 26.1 degree682 +**Example:** 783 783 784 - Ifpayload is:FF3FH :(FF3F & 8000 ==1), temp= (FF3FH-65536)/10-19.3 degrees.684 +Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 785 785 786 - (FF3F & 8000:Judge whetherthehighestbitis1,whenthehighestbitis1,itis negative)686 +Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 787 787 688 +If you want to use other I2C device, please refer the SHT20 part source code as reference. 788 788 789 -==== 2.3.3.3 Digital Input ==== 790 790 691 +==== 2.3.3.7 Distance Reading ==== 791 791 792 - ThedigitalinputpinPB15,693 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 793 793 794 -* When PB15 is high, the bit 1 of payload byte 6 is 1. 795 -* When PB15 is low, the bit 1 of payload byte 6 is 0. 796 796 797 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 798 -((( 799 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 696 +==== 2.3.3.8 Ultrasonic Sensor ==== 800 800 801 - (%style="color:red"%)**Note:Themaximumvoltageinput supports3.6V.**698 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 802 802 803 - 804 -))) 700 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 805 805 806 - ====2.3.3.4AnalogueDigitalConverter (ADC) ====702 +The picture below shows the connection: 807 807 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]] 808 808 809 - The measuring range oftheADCis onlyabout0.1Vto1.1V Thevoltageresolutionsabout0.24mv.706 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 810 810 811 - Whenthe measured output voltage of thesensor isnot withinthe range of 0.1V and 1.1V, the output voltage terminal of thesensor shall bedivided Theexample inthefollowing figure is to reducetheoutput voltageofthe sensorbythreetimes If it is necessary to reduce moretimes, calculate accordingtothe formulain the figureand connect the corresponding resistance in series.708 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 812 812 813 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]710 +**Example:** 814 814 712 +Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 815 815 816 - (% style="color:red" %)**Note: If the ADCtype sensor needsto bepowered by SN50_v3,itisrecommended touse +5V to controlts switch.Onlysensors with low power consumption canbepowered with VDD.**714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 817 817 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 818 818 819 - The positionof PA5 onthe hardwareafter**LSN50 v3.3**is changedtohepositionshowninthefigure below, andthecollected voltagebecomes one-sixth of the original.718 +You can see the serial output in ULT mode as below: 820 820 821 -[[image:i mage-20230811113449-1.png||height="370" width="608"]]720 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 822 822 722 +**In TTN V3 server:** 823 823 724 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 824 824 825 - ==== 2.3.3.5 DigitalInterrupt===726 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 826 826 728 +==== 2.3.3.9 Battery Output - BAT pin ==== 827 827 828 - DigitalInterrupt refers to pinPA8,andthereare different trigger methods.When there isatrigger,the SN50v3-LB/LSwillsenda packet toheserver.730 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 829 829 830 -(% style="color:blue" %)** Interrupt connection method:** 831 831 832 - [[image:image-20230513105351-5.png||height="147"width="485"]]733 +==== 2.3.3.10 +5V Output ==== 833 833 735 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 834 834 835 - (% style="color:blue"%)**Example tousewithdoorsensor :**737 +The 5V output time can be controlled by AT Command. 836 836 837 -T he door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.739 +**AT+5VT=1000** 838 838 839 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]741 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 840 840 841 - Whenthetwo piecesare closetoeach other,the2 wireoutput will beshort or open(dependingonthe type),while if thetwo pieces areawayfrom eachother, the2 wire outputwill be theopposite status. So we can useSN50v3-LB/LSinterruptinterface to detect thestatus forthedoor orwindow.743 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 842 842 843 843 844 -(% style="color:blue" %)**Below is the installation example:** 845 845 846 - Fixonepieceof themagnetic sensor to the door andconnect the two pinstoSN50v3-LB/LS as follows:747 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 847 847 848 -* ((( 849 -One pin to SN50v3-LB/LS's PA8 pin 850 -))) 851 -* ((( 852 -The other pin to SN50v3-LB/LS's VDD pin 853 -))) 749 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 854 854 855 - Install theother piecetothedoor. Find a place where the twopieceswillbe close to each other whenthedoor is closed. For thisparticularmagneticsensor, when the door is closed, theoutput will beshort,and PA8 willbet theVCCvoltage.751 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]] 856 856 857 - Door sensors havewotypes:(% style="color:blue" %)** NC (Normalclose)**(%%)and (% style="color:blue"%)**NO (normal open)**(%%). The connectionforboth typensorsarethesame.But the decodingforpayload arereverse, user needto modify this in theIoT Server decoder.753 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 858 858 859 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 860 860 861 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]756 +==== 2.3.3.12 Working MOD ==== 862 862 863 -The abovephotosshowsthetwoparts of themagneticswitchfittedtoa door.758 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 864 864 865 - Thesoftwareby defaultusesthefalling edgeonthesignalline as an interrupt.We need tomodifyitto accept boththe risingedge(0v ~-~-> VCC , doorclose)andthefallingedge (VCC ~-~-> 0v , door open) as the interrupt.760 +User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 866 866 867 - Thecommandis:762 +Case 7^^th^^ Byte >> 2 & 0x1f: 868 868 869 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 764 +* 0: MOD1 765 +* 1: MOD2 766 +* 2: MOD3 767 +* 3: MOD4 768 +* 4: MOD5 769 +* 5: MOD6 870 870 871 -Below shows some screen captures in TTN V3: 872 872 873 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]772 +== 2.4 Payload Decoder file == 874 874 875 875 876 -In **MOD=1**, usercan use byte6 to seethestatus fordoor openorclose. TTN V3decoderis as below:775 +In TTN, use can add a custom payload so it shows friendly reading 877 877 878 - door=(bytes[6]&0x80)?"CLOSE":"OPEN";777 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 879 879 779 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 880 880 881 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 882 882 782 +== 2.5 Datalog Feature == 883 883 884 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 885 885 886 - Wehavemade an exampleto showhow to use theI2CinterfacetoconnecttotheSHT20/SHT31Temperatureand HumiditySensor.785 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes. 887 887 888 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 889 889 788 +=== 2.5.1 Ways to get datalog via LoRaWAN === 890 890 891 -Below is the connection to SHT20/ SHT31. The connection is as below: 892 892 893 -[[ image:image-20230610170152-2.png||height="501"width="846"]]791 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 894 894 793 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 794 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 895 895 896 - ThedevicewillbeabletogettheI2C sensor data now andupload toIoT Server.796 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 897 897 898 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L SN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]798 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 899 899 900 - Converttheread byte to decimal and divideitby ten.800 +=== 2.5.2 Unix TimeStamp === 901 901 902 -**Example:** 903 903 904 -Temp erature:Read:0116(H)= 278(D) Value: 278 /10=27.8℃;803 +S31x-LB uses Unix TimeStamp format based on 905 905 906 - Humidity: Read:0248(H)=584(D) Value: 584/10=58.4,So58.4%805 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 907 907 908 - Ifyou wanttouseotherI2C device,pleasereferheSHT20 part sourcedeasreference.807 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 909 909 809 +Below is the converter example 910 910 911 - ==== 2.3.3.7 Distance811 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 912 912 813 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 913 913 914 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 915 915 816 +=== 2.5.3 Set Device Time === 916 916 917 -==== 2.3.3.8 Ultrasonic Sensor ==== 918 918 819 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 919 919 920 - This FundamentalPrinciplesofthissensorcanbefoundatthislink:[[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]821 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 921 921 922 - TheSN50v3-LB/LSdetectsthepulse widthofthe sensorandconvertsittommoutput.Theaccuracywillbewithin1centimeter.Theusablerange(the distancebetweentheultrasonicprobeandthemeasuredobject)isbetween24cmand600cm.823 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 923 923 924 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 925 925 926 - Thepicturebelowshowsthe connection:826 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 927 927 928 -[[image:image-20230512173903-6.png||height="596" width="715"]] 929 929 829 +The Datalog uplinks will use below payload format. 930 930 931 - Connectto theSN50v3-LB/LSandrun (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).831 +**Retrieval data payload:** 932 932 933 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 833 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 834 +|=(% style="width: 80px;background-color:#D9E2F3" %)((( 835 +**Size(bytes)** 836 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 837 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 838 +[[Temp_Black>>||anchor="HTemperatureBlack:"]] 839 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 934 934 935 -** Example:**841 +**Poll message flag & Ext:** 936 936 937 - Distance:Read:0C2D(Hex) = 3117(D) Value: 3117mm=311.7cm843 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]] 938 938 845 +**No ACK Message**: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature) 939 939 940 - ====2.3.3.9 BatteryOutput-BATpin====847 +**Poll Message Flag**: 1: This message is a poll message reply. 941 941 849 +* Poll Message Flag is set to 1. 942 942 943 - TheBAT pin of SN50v3-LB/LS isconnected to theBatterydirectly.IfuserswanttouseBAT pinto poweranexternal sensor. User needto make surethe externalsensorisof lowpower consumption.Becausethe BAT pinisalwaysopen. Iftheexternal sensorsofhigh powerconsumption.thebatteryof SN50v3-LB/LS willrun out verysoon.851 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 944 944 853 +For example, in US915 band, the max payload for different DR is: 945 945 946 - ====2.3.3.10+5VOutput====855 +**a) DR0:** max is 11 bytes so one entry of data 947 947 857 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 948 948 949 - SN50v3-LB/LSwillenable +5V output beforeallsamplinganddisable the+5vafterall sampling.859 +**c) DR2:** total payload includes 11 entries of data 950 950 951 - The5Voutputtimecanbecontrolledby AT Command.861 +**d) DR3: **total payload includes 22 entries of data. 952 952 953 - (%style="color:blue"%)**AT+5VT=1000**863 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 954 954 955 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 956 956 957 - By default the**AT+5VT=500**. If the external sensor which require 5v and requiremore time to get stablestate, user can use this command to increase the power ON duration for this sensor.866 +**Example:** 958 958 868 +If S31x-LB has below data inside Flash: 959 959 960 - ==== 2.3.3.11 BH1750 Illumination Sensor ====870 +[[image:1682646494051-944.png]] 961 961 872 +If user sends below downlink command: 3160065F9760066DA705 962 962 963 - MOD=1 support this sensor. Thesensorvalueisinthe8^^th^^ and9^^th^^bytes.874 +Where : Start time: 60065F97 = time 21/1/19 04:27:03 964 964 965 - [[image:image-20230512172447-4.png||height="416"width="712"]]876 + Stop time: 60066DA7= time 21/1/19 05:27:03 966 966 967 967 968 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"height="361"width="953"]]879 +**S31x-LB will uplink this payload.** 969 969 881 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 970 970 971 -==== 2.3.3.12 PWM MOD ==== 883 +((( 884 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 885 +))) 972 972 887 +((( 888 +Where the first 11 bytes is for the first entry: 889 +))) 973 973 974 - *(((975 - The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.891 +((( 892 +7FFF089801464160065F97 976 976 ))) 977 -* ((( 978 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 894 + 895 +((( 896 +**Ext sensor data**=0x7FFF/100=327.67 979 979 ))) 980 980 981 - [[image:image-20230817183249-3.png||height="320" width="417"]] 899 +((( 900 +**Temp**=0x088E/100=22.00 901 +))) 982 982 983 - *(((984 - The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processingmethod is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.903 +((( 904 +**Hum**=0x014B/10=32.6 985 985 ))) 986 -* ((( 987 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 906 + 907 +((( 908 +**poll message flag & Ext**=0x41,means reply data,Ext=1 988 988 ))) 989 -* ((( 990 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 991 991 992 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 993 - 994 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 995 - 996 -b) If the output duration is more than 30 seconds, better to use external power source. 911 +((( 912 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 997 997 ))) 998 998 999 -==== 2.3.3.13 Working MOD ==== 1000 1000 916 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的 1001 1001 1002 -T heworking MOD info is contained intheDigitalin & Digital Interruptbyte(7^^th^^ Byte).918 +== 2.6 Temperature Alarm Feature == 1003 1003 1004 -User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 1005 1005 1006 - Case 7^^th^^Byte>>2&0x1f:921 +S31x-LB work flow with Alarm feature. 1007 1007 1008 -* 0: MOD1 1009 -* 1: MOD2 1010 -* 2: MOD3 1011 -* 3: MOD4 1012 -* 4: MOD5 1013 -* 5: MOD6 1014 -* 6: MOD7 1015 -* 7: MOD8 1016 -* 8: MOD9 1017 -* 9: MOD10 1018 1018 1019 - == 2.4 PayloadDecoderfile924 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 1020 1020 1021 1021 1022 - InTTN,usecanadd acustom payloadso it shows friendly reading927 +== 2.7 Frequency Plans == 1023 1023 1024 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 1025 1025 1026 - [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]930 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 1027 1027 1028 - 1029 -== 2.5 Frequency Plans == 1030 - 1031 - 1032 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 1033 - 1034 1034 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 1035 1035 1036 1036 1037 -= 3. Configure S N50v3-LB/LS=935 += 3. Configure S31x-LB = 1038 1038 1039 1039 == 3.1 Configure Methods == 1040 1040 1041 1041 1042 -S N50v3-LB/LSsupports below configure method:940 +S31x-LB supports below configure method: 1043 1043 1044 1044 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 1045 1045 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -1058,10 +1058,10 @@ 1058 1058 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1059 1059 1060 1060 1061 -== 3.3 Commands special design for S N50v3-LB/LS==959 +== 3.3 Commands special design for S31x-LB == 1062 1062 1063 1063 1064 -These commands only valid for S N50v3-LB/LS, as below:962 +These commands only valid for S31x-LB, as below: 1065 1065 1066 1066 1067 1067 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1072,7 +1072,7 @@ 1072 1072 (% style="color:blue" %)**AT Command: AT+TDC** 1073 1073 1074 1074 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1075 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**973 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1076 1076 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1077 1077 30000 1078 1078 OK ... ... @@ -1095,246 +1095,120 @@ 1095 1095 === 3.3.2 Get Device Status === 1096 1096 1097 1097 1098 -Send a LoRaWAN downlink to ask thedevicetosenditsstatus.996 +Send a LoRaWAN downlink to ask device send Alarm settings. 1099 1099 1100 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **998 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1101 1101 1102 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.1000 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1103 1103 1104 1104 1105 -=== 3.3.3 Set InterruptMode===1003 +=== 3.3.3 Set Temperature Alarm Threshold === 1106 1106 1005 +* (% style="color:blue" %)**AT Command:** 1107 1107 1108 - Feature,SetInterrupt mode forGPIO_EXIT.1007 +(% style="color:#037691" %)**AT+SHTEMP=min,max** 1109 1109 1110 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1009 +* When min=0, and max≠0, Alarm higher than max 1010 +* When min≠0, and max=0, Alarm lower than min 1011 +* When min≠0 and max≠0, Alarm higher than max or lower than min 1111 1111 1112 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1113 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1114 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1115 -0 1116 -OK 1117 -the mode is 0 =Disable Interrupt 1118 -))) 1119 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 1120 -Set Transmit Interval 1121 -0. (Disable Interrupt), 1122 -~1. (Trigger by rising and falling edge) 1123 -2. (Trigger by falling edge) 1124 -3. (Trigger by rising edge) 1125 -)))|(% style="width:157px" %)OK 1126 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1127 -Set Transmit Interval 1128 -trigger by rising edge. 1129 -)))|(% style="width:157px" %)OK 1130 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1013 +Example: 1131 1131 1132 - (%style="color:blue"%)**DownlinkCommand:0x06**1015 + AT+SHTEMP=0,30 ~/~/ Alarm when temperature higher than 30. 1133 1133 1134 - Format:CommandCode(0x06)followedby 3 bytes.1017 +* (% style="color:blue" %)**Downlink Payload:** 1135 1135 1136 - Thismeanshat theinterrupt modeofthe end node is set to0x000003=3(risingedgetrigger),andthetypecodeis06.1019 +(% style="color:#037691" %)**0x(0C 01 00 1E)** (%%) ~/~/ Set AT+SHTEMP=0,30 1137 1137 1138 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1139 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1140 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1141 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1021 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 1142 1142 1143 -=== 3.3.4 Set Power Output Duration === 1144 1144 1024 +=== 3.3.4 Set Humidity Alarm Threshold === 1145 1145 1146 - Controltheoutput duration 5V . Beforeeachsampling,device will1026 +* (% style="color:blue" %)**AT Command:** 1147 1147 1148 - ~1.firstenablethe poweroutput to externalsensor,1028 +(% style="color:#037691" %)**AT+SHHUM=min,max** 1149 1149 1150 -2. keep it on as per duration, read sensor value and construct uplink payload 1030 +* When min=0, and max≠0, Alarm higher than max 1031 +* When min≠0, and max=0, Alarm lower than min 1032 +* When min≠0 and max≠0, Alarm higher than max or lower than min 1151 1151 1152 - 3. final, closethe power output.1034 +Example: 1153 1153 1154 - (%style="color:blue"%)**ATCommand:AT+5VT**1036 + AT+SHHUM=70,0 ~/~/ Alarm when humidity lower than 70%. 1155 1155 1156 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1157 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1158 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1159 -500(default) 1160 -OK 1161 -))) 1162 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1163 -Close after a delay of 1000 milliseconds. 1164 -)))|(% style="width:157px" %)OK 1038 +* (% style="color:blue" %)**Downlink Payload:** 1165 1165 1166 -(% style="color: blue" %)**DownlinkCommand:0x07**1040 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%) ~/~/ Set AT+SHTHUM=70,0 1167 1167 1168 - Format:CommandCode(0x07)followedby2bytes.1042 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))** 1169 1169 1170 -The first and second bytes are the time to turn on. 1171 1171 1172 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1173 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1045 +=== 3.3.5 Set Alarm Interval === 1174 1174 1175 - ===3.3.5 SetWeighingparameters===1047 +The shortest time of two Alarm packet. (unit: min) 1176 1176 1049 +* (% style="color:blue" %)**AT Command:** 1177 1177 1178 - Feature:Workingmode5iseffective,weight initializationandweightfactorsettingofHX711.1051 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 1179 1179 1180 -(% style="color:blue" %)** ATCommand:AT+WEIGRE,AT+WEIGAP**1053 +* (% style="color:blue" %)**Downlink Payload:** 1181 1181 1182 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1183 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1184 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1185 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1186 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1055 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 1187 1187 1188 -(% style="color:blue" %)**Downlink Command: 0x08** 1189 1189 1190 - Format:CommandCode(0x08) followed by 2 bytesor4 bytes.1058 +=== 3.3.6 Get Alarm settings === 1191 1191 1192 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1193 1193 1194 - Thesecond andthird bytesaremultipliedby10timesto betheAT+WEIGAP value.1061 +Send a LoRaWAN downlink to ask device send Alarm settings. 1195 1195 1196 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1197 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1198 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1063 +* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 1199 1199 1200 - === 3.3.6 Set Digitalpulsecount value ===1065 +**Example:** 1201 1201 1067 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]] 1202 1202 1203 -Feature: Set the pulse count value. 1204 1204 1205 - Count 1 is PA8pin of mode 6and mode 9. Count 2is PA4 pinof mode 9.1070 +**Explain:** 1206 1206 1207 - (%style="color:blue"%)**ATCommand:AT+SETCNT**1072 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 1208 1208 1209 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1210 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1211 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1212 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1074 +=== 3.3.7 Set Interrupt Mode === 1213 1213 1214 -(% style="color:blue" %)**Downlink Command: 0x09** 1215 1215 1216 -F ormat:CommandCode(0x09)followedby 5 bytes.1077 +Feature, Set Interrupt mode for GPIO_EXIT. 1217 1217 1218 - Thefirstbyte is to select which count value toinitialize, and the next fourytes are the count valuetobe initialized.1079 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1219 1219 1220 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1221 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1222 - 1223 -=== 3.3.7 Set Workmode === 1224 - 1225 - 1226 -Feature: Switch working mode. 1227 - 1228 -(% style="color:blue" %)**AT Command: AT+MOD** 1229 - 1230 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1231 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1232 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1081 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1082 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1083 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1084 +0 1233 1233 OK 1086 +the mode is 0 =Disable Interrupt 1234 1234 ))) 1235 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1236 -OK 1237 -Attention:Take effect after ATZ 1238 -))) 1088 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1089 +Set Transmit Interval 1090 +0. (Disable Interrupt), 1091 +~1. (Trigger by rising and falling edge) 1092 +2. (Trigger by falling edge) 1093 +3. (Trigger by rising edge) 1094 +)))|(% style="width:157px" %)OK 1239 1239 1240 -(% style="color:blue" %)**Downlink Command: 0x0 A**1096 +(% style="color:blue" %)**Downlink Command: 0x06** 1241 1241 1242 -Format: Command Code (0x0 A) followed by1bytes.1098 +Format: Command Code (0x06) followed by 3 bytes. 1243 1243 1244 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1245 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1100 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1246 1246 1247 -=== 3.3.8 PWM setting === 1102 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1103 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1248 1248 1105 += 4. Battery & Power Consumption = 1249 1249 1250 -Feature: Set the time acquisition unit for PWM input capture. 1251 1251 1252 - (%style="color:blue"%)**ATCommand:AT+PWMSET**1108 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1253 1253 1254 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1255 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1256 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1257 -0(default) 1258 -OK 1259 -))) 1260 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1261 -OK 1262 - 1263 -))) 1264 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1265 - 1266 -(% style="color:blue" %)**Downlink Command: 0x0C** 1267 - 1268 -Format: Command Code (0x0C) followed by 1 bytes. 1269 - 1270 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1271 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1272 - 1273 -**Feature: Set PWM output time, output frequency and output duty cycle.** 1274 - 1275 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1276 - 1277 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1278 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1279 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1280 -0,0,0(default) 1281 -OK 1282 -))) 1283 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1284 -OK 1285 - 1286 -))) 1287 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1288 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1289 - 1290 - 1291 -)))|(% style="width:137px" %)((( 1292 -OK 1293 -))) 1294 - 1295 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1296 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1297 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1298 -AT+PWMOUT=a,b,c 1299 - 1300 - 1301 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1302 -Set PWM output time, output frequency and output duty cycle. 1303 - 1304 -((( 1305 - 1306 -))) 1307 - 1308 -((( 1309 - 1310 -))) 1311 -)))|(% style="width:242px" %)((( 1312 -a: Output time (unit: seconds) 1313 -The value ranges from 0 to 65535. 1314 -When a=65535, PWM will always output. 1315 -))) 1316 -|(% style="width:242px" %)((( 1317 -b: Output frequency (unit: HZ) 1318 -))) 1319 -|(% style="width:242px" %)((( 1320 -c: Output duty cycle (unit: %) 1321 -The value ranges from 0 to 100. 1322 -))) 1323 - 1324 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1325 - 1326 -Format: Command Code (0x0B01) followed by 6 bytes. 1327 - 1328 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1329 - 1330 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1331 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1332 - 1333 -= 4. Battery & Power Cons = 1334 - 1335 - 1336 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1337 - 1338 1338 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1339 1339 1340 1340 ... ... @@ -1342,47 +1342,28 @@ 1342 1342 1343 1343 1344 1344 (% class="wikigeneratedid" %) 1345 - **User can change firmware SN50v3-LB/LSto:**1117 +User can change firmware SN50v3-LB to: 1346 1346 1347 1347 * Change Frequency band/ region. 1348 1348 * Update with new features. 1349 1349 * Fix bugs. 1350 1350 1351 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1123 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1352 1352 1353 -**Methods to Update Firmware:** 1354 1354 1355 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1356 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1126 +Methods to Update Firmware: 1357 1357 1128 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1129 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1130 + 1358 1358 = 6. FAQ = 1359 1359 1360 -== 6.1 Where can i find source code of SN50v3-LB/LS? == 1361 1361 1362 1362 1363 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1364 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1365 - 1366 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1367 - 1368 - 1369 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1370 - 1371 - 1372 -== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1373 - 1374 - 1375 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1376 - 1377 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1378 - 1379 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1380 - 1381 - 1382 1382 = 7. Order Info = 1383 1383 1384 1384 1385 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**1138 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1386 1386 1387 1387 (% style="color:red" %)**XX**(%%): The default frequency band 1388 1388 ... ... @@ -1404,10 +1404,9 @@ 1404 1404 1405 1405 = 8. Packing Info = 1406 1406 1407 - 1408 1408 (% style="color:#037691" %)**Package Includes**: 1409 1409 1410 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node1162 +* SN50v3-LB LoRaWAN Generic Node 1411 1411 1412 1412 (% style="color:#037691" %)**Dimension and weight**: 1413 1413 ... ... @@ -1420,5 +1420,4 @@ 1420 1420 1421 1421 1422 1422 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1423 - 1424 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 1175 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content
- image-20240717113113-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.0 KB - Content
- image-20240717141512-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.8 KB - Content
- image-20240717141528-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -234.2 KB - Content
- image-20240717145707-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.8 KB - Content
- image-20240717150334-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20240717150948-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.3 KB - Content
- image-20240717152224-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -238.1 KB - Content