<
From version < 95.1 >
edited by Mengting Qiu
on 2024/07/17 15:22
To version < 11.1 >
edited by Edwin Chen
on 2023/05/11 20:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Edwin
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,40 +127,34 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
138 +== Hole Option ==
146 146  
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 147  
148 -== 1.9 Hole Option ==
149 -
150 -
151 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 -
153 153  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154 154  
155 155  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156 156  
157 157  
158 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 159  
160 160  == 2.1 How it works ==
161 161  
162 162  
163 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 164  
165 165  
166 166  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,14 +168,14 @@
168 168  
169 169  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170 170  
171 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 172  
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
175 175  
176 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
180 180  
181 181  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -201,10 +201,12 @@
201 201  
202 202  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203 203  
204 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205 205  
206 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
207 207  
196 +
197 +Press the button for 5 seconds to activate the S31x-LB.
198 +
208 208  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209 209  
210 210  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -215,52 +215,54 @@
215 215  === 2.3.1 Device Status, FPORT~=5 ===
216 216  
217 217  
218 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
219 219  
220 220  The Payload format is as below.
221 221  
222 222  
223 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
225 225  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
226 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
227 227  
228 228  Example parse in TTNv3
229 229  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
230 230  
231 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
232 232  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
233 233  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234 234  
235 235  (% style="color:#037691" %)**Frequency Band**:
236 236  
237 -0x01: EU868
230 +*0x01: EU868
238 238  
239 -0x02: US915
232 +*0x02: US915
240 240  
241 -0x03: IN865
234 +*0x03: IN865
242 242  
243 -0x04: AU915
236 +*0x04: AU915
244 244  
245 -0x05: KZ865
238 +*0x05: KZ865
246 246  
247 -0x06: RU864
240 +*0x06: RU864
248 248  
249 -0x07: AS923
242 +*0x07: AS923
250 250  
251 -0x08: AS923-1
244 +*0x08: AS923-1
252 252  
253 -0x09: AS923-2
246 +*0x09: AS923-2
254 254  
255 -0x0a: AS923-3
248 +*0x0a: AS923-3
256 256  
257 -0x0b: CN470
250 +*0x0b: CN470
258 258  
259 -0x0c: EU433
252 +*0x0c: EU433
260 260  
261 -0x0d: KR920
254 +*0x0d: KR920
262 262  
263 -0x0e: MA869
256 +*0x0e: MA869
264 264  
265 265  
266 266  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -281,477 +281,41 @@
281 281  Ex2: 0x0B49 = 2889mV
282 282  
283 283  
284 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
285 285  
286 286  
287 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
280 +Sensor Data is uplink via FPORT=2
288 288  
289 -For example:
290 -
291 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
292 -
293 -
294 -(% style="color:red" %) **Important Notice:**
295 -
296 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
297 -
298 -2. All modes share the same Payload Explanation from HERE.
299 -
300 -3. By default, the device will send an uplink message every 20 minutes.
301 -
302 -
303 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
304 -
305 -
306 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 -
308 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
310 -|Value|Bat|(% style="width:191px" %)(((
311 -Temperature(DS18B20)(PC13)
312 -)))|(% style="width:78px" %)(((
313 -ADC(PA4)
314 -)))|(% style="width:216px" %)(((
315 -Digital in(PB15)&Digital Interrupt(PA8)
316 -)))|(% style="width:308px" %)(((
317 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
318 -)))|(% style="width:154px" %)(((
319 -Humidity(SHT20 or SHT31)
320 -)))
321 -
322 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323 -
324 -
325 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326 -
327 -
328 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329 -
330 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
332 -|Value|BAT|(% style="width:196px" %)(((
333 -Temperature(DS18B20)(PC13)
334 -)))|(% style="width:87px" %)(((
335 -ADC(PA4)
336 -)))|(% style="width:189px" %)(((
337 -Digital in(PB15) & Digital Interrupt(PA8)
338 -)))|(% style="width:208px" %)(((
339 -Distance measure by: 1) LIDAR-Lite V3HP
340 -Or 2) Ultrasonic Sensor
341 -)))|(% style="width:117px" %)Reserved
342 -
343 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344 -
345 -
346 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
347 -
348 -[[image:image-20230512173758-5.png||height="563" width="712"]]
349 -
350 -
351 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352 -
353 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
354 -
355 -[[image:image-20230512173903-6.png||height="596" width="715"]]
356 -
357 -
358 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 -
360 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
362 -|Value|BAT|(% style="width:183px" %)(((
363 -Temperature(DS18B20)(PC13)
364 -)))|(% style="width:173px" %)(((
365 -Digital in(PB15) & Digital Interrupt(PA8)
366 -)))|(% style="width:84px" %)(((
367 -ADC(PA4)
368 -)))|(% style="width:323px" %)(((
369 -Distance measure by:1)TF-Mini plus LiDAR
370 -Or 2) TF-Luna LiDAR
371 -)))|(% style="width:188px" %)Distance signal  strength
372 -
373 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374 -
375 -
376 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 -
378 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379 -
380 -[[image:image-20230512180609-7.png||height="555" width="802"]]
381 -
382 -
383 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 -
385 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 -
387 -[[image:image-20230610170047-1.png||height="452" width="799"]]
388 -
389 -
390 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391 -
392 -
393 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 -
395 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
399 -|Value|(% style="width:68px" %)(((
400 -ADC1(PA4)
401 -)))|(% style="width:75px" %)(((
402 -ADC2(PA5)
403 -)))|(((
404 -ADC3(PA8)
405 -)))|(((
406 -Digital Interrupt(PB15)
407 -)))|(% style="width:304px" %)(((
408 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 -)))|(% style="width:163px" %)(((
410 -Humidity(SHT20 or SHT31)
411 -)))|(% style="width:53px" %)Bat
412 -
413 -[[image:image-20230513110214-6.png]]
414 -
415 -
416 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417 -
418 -
419 -This mode has total 11 bytes. As shown below:
420 -
421 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
423 -|Value|BAT|(% style="width:186px" %)(((
424 -Temperature1(DS18B20)(PC13)
425 -)))|(% style="width:82px" %)(((
426 -ADC(PA4)
427 -)))|(% style="width:210px" %)(((
428 -Digital in(PB15) & Digital Interrupt(PA8) 
429 -)))|(% style="width:191px" %)Temperature2(DS18B20)
430 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
431 -
432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433 -
434 -
435 -[[image:image-20230513134006-1.png||height="559" width="736"]]
436 -
437 -
438 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439 -
440 -
441 -[[image:image-20230512164658-2.png||height="532" width="729"]]
442 -
443 -Each HX711 need to be calibrated before used. User need to do below two steps:
444 -
445 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
447 -1. (((
448 -Weight has 4 bytes, the unit is g.
449 -
450 -
451 -
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
452 452  )))
453 453  
454 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
455 455  
456 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
457 457  
458 -Response:  Weight is 401 g
459 -
460 -Check the response of this command and adjust the value to match the real value for thing.
461 -
462 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
464 -**Size(bytes)**
465 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
466 -|Value|BAT|(% style="width:193px" %)(((
467 -Temperature(DS18B20)(PC13)
468 -)))|(% style="width:85px" %)(((
469 -ADC(PA4)
470 -)))|(% style="width:186px" %)(((
471 -Digital in(PB15) & Digital Interrupt(PA8)
472 -)))|(% style="width:100px" %)Weight
473 -
474 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 -
476 -
477 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 -
479 -
480 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481 -
482 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483 -
484 -[[image:image-20230512181814-9.png||height="543" width="697"]]
485 -
486 -
487 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488 -
489 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
491 -|Value|BAT|(% style="width:256px" %)(((
492 -Temperature(DS18B20)(PC13)
493 -)))|(% style="width:108px" %)(((
494 -ADC(PA4)
495 -)))|(% style="width:126px" %)(((
496 -Digital in(PB15)
497 -)))|(% style="width:145px" %)(((
498 -Count(PA8)
499 -)))
500 -
501 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502 -
503 -
504 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 -
506 -
507 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
509 -**Size(bytes)**
510 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
511 -|Value|BAT|(% style="width:188px" %)(((
512 -Temperature(DS18B20)
513 -(PC13)
514 -)))|(% style="width:83px" %)(((
515 -ADC(PA5)
516 -)))|(% style="width:184px" %)(((
517 -Digital Interrupt1(PA8)
518 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
519 -
520 -[[image:image-20230513111203-7.png||height="324" width="975"]]
521 -
522 -
523 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 -
525 -
526 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
528 -**Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
530 -|Value|BAT|(% style="width:207px" %)(((
531 -Temperature(DS18B20)
532 -(PC13)
533 -)))|(% style="width:94px" %)(((
534 -ADC1(PA4)
535 -)))|(% style="width:198px" %)(((
536 -Digital Interrupt(PB15)
537 -)))|(% style="width:84px" %)(((
538 -ADC2(PA5)
539 -)))|(% style="width:82px" %)(((
540 -ADC3(PA8)
541 -)))
542 -
543 -[[image:image-20230513111231-8.png||height="335" width="900"]]
544 -
545 -
546 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547 -
548 -
549 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
551 -**Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
553 -|Value|BAT|(((
554 -Temperature
555 -(DS18B20)(PC13)
556 -)))|(((
557 -Temperature2
558 -(DS18B20)(PB9)
559 -)))|(((
560 -Digital Interrupt
561 -(PB15)
562 -)))|(% style="width:193px" %)(((
563 -Temperature3
564 -(DS18B20)(PB8)
565 -)))|(% style="width:78px" %)(((
566 -Count1(PA8)
567 -)))|(% style="width:78px" %)(((
568 -Count2(PA4)
569 -)))
570 -
571 -[[image:image-20230513111255-9.png||height="341" width="899"]]
572 -
573 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
574 -
575 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
576 -
577 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
578 -
579 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
580 -
581 -
582 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
583 -
584 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
585 -
586 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 -
588 -
589 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590 -
591 -
592 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593 -
594 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595 -
596 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597 -
598 -
599 -===== 2.3.2.10.a  Uplink, PWM input capture =====
600 -
601 -
602 -[[image:image-20230817172209-2.png||height="439" width="683"]]
603 -
604 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 -|Value|Bat|(% style="width:191px" %)(((
607 -Temperature(DS18B20)(PC13)
608 -)))|(% style="width:78px" %)(((
609 -ADC(PA4)
610 -)))|(% style="width:135px" %)(((
611 -PWM_Setting
612 -&Digital Interrupt(PA8)
613 -)))|(% style="width:70px" %)(((
614 -Pulse period
615 -)))|(% style="width:89px" %)(((
616 -Duration of high level
617 -)))
618 -
619 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
620 -
621 -
622 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623 -
624 -**Frequency:**
625 -
626 -(% class="MsoNormal" %)
627 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631 -
632 -
633 -(% class="MsoNormal" %)
634 -**Duty cycle:**
635 -
636 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637 -
638 -[[image:image-20230818092200-1.png||height="344" width="627"]]
639 -
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -
644 -[[image:image-20230817172209-2.png||height="439" width="683"]]
645 -
646 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 -
648 -a is the time delay of the output, the unit is ms.
649 -
650 -b is the output frequency, the unit is HZ.
651 -
652 -c is the duty cycle of the output, the unit is %.
653 -
654 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 -
656 -aa is the time delay of the output, the unit is ms.
657 -
658 -bb is the output frequency, the unit is HZ.
659 -
660 -cc is the duty cycle of the output, the unit is %.
661 -
662 -
663 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 -
665 -The oscilloscope displays as follows:
666 -
667 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668 -
669 -
670 -===== 2.3.2.10.c  Downlink, PWM output =====
671 -
672 -
673 -[[image:image-20230817173800-3.png||height="412" width="685"]]
674 -
675 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 -
677 - xx xx xx is the output frequency, the unit is HZ.
678 -
679 - yy is the duty cycle of the output, the unit is %.
680 -
681 - zz zz is the time delay of the output, the unit is ms.
682 -
683 -
684 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 -
686 -The oscilloscope displays as follows:
687 -
688 -[[image:image-20230817173858-5.png||height="634" width="843"]]
689 -
690 -
691 -
692 -==== 2.3.2.11  MOD~=11 (TEMP117) ====
693 -
694 -
695 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696 -
697 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 -|Value|Bat|(% style="width:191px" %)(((
700 -Temperature(DS18B20)(PC13)
701 -)))|(% style="width:78px" %)(((
702 -ADC(PA4)
703 -)))|(% style="width:216px" %)(((
704 -Digital in(PB15)&Digital Interrupt(PA8)
705 -)))|(% style="width:308px" %)(((
706 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
707 -)))|(% style="width:154px" %)(((
708 -Humidity(SHT20 or SHT31)
709 -)))
710 -
711 -[[image:image-20240717113113-1.png||height="361" width="814"]]
712 -
713 -
714 -==== 2.3.2.12  MOD~=12 ====
715 -
716 -
717 -
718 -
719 -=== 2.3.3  ​Decode payload ===
720 -
721 -
722 -While using TTN V3 network, you can add the payload format to decode the payload.
723 -
724 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
725 -
726 -The payload decoder function for TTN V3 are here:
727 -
728 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
729 -
730 -
731 -==== 2.3.3.1 Battery Info ====
732 -
733 -
734 -Check the battery voltage for SN50v3-LB/LS.
735 -
736 736  Ex1: 0x0B45 = 2885mV
737 737  
738 738  Ex2: 0x0B49 = 2889mV
739 739  
740 740  
741 -==== 2.3.3.2  Temperature (DS18B20) ====
742 742  
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
743 743  
744 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
310 +**Example**:
745 745  
746 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
747 -
748 -(% style="color:blue" %)**Connection:**
749 -
750 -[[image:image-20230512180718-8.png||height="538" width="647"]]
751 -
752 -
753 -(% style="color:blue" %)**Example**:
754 -
755 755  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
756 756  
757 757  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -759,260 +759,195 @@
759 759  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
760 760  
761 761  
762 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
763 763  
764 764  
765 -The digital input for pin PB15,
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
766 766  
767 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
768 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
769 769  
770 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
771 -(((
772 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
773 773  
774 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
775 775  
776 -
777 -)))
328 +**Example:**
778 778  
779 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
780 780  
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
781 781  
782 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
783 783  
784 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
785 785  
786 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
787 787  
339 +== 2.4 Payload Decoder file ==
788 788  
789 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
790 790  
342 +In TTN, use can add a custom payload so it shows friendly reading
791 791  
792 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
793 793  
794 -[[image:image-20230811113449-1.png||height="370" width="608"]]
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
795 795  
796 796  
349 +== 2.5 Datalog Feature ==
797 797  
798 -==== 2.3.3.5 Digital Interrupt ====
799 799  
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
800 800  
801 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
802 802  
803 -(% style="color:blue" %)** Interrupt connection method:**
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
804 804  
805 -[[image:image-20230513105351-5.png||height="147" width="485"]]
806 806  
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
807 807  
808 -(% style="color:blue" %)**Example to use with door sensor :**
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
809 809  
810 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
811 811  
812 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
813 813  
814 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
367 +=== 2.5.2 Unix TimeStamp ===
815 815  
816 816  
817 -(% style="color:blue" %)**Below is the installation example:**
370 +S31x-LB uses Unix TimeStamp format based on
818 818  
819 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
820 820  
821 -* (((
822 -One pin to SN50v3-LB/LS's PA8 pin
823 -)))
824 -* (((
825 -The other pin to SN50v3-LB/LS's VDD pin
826 -)))
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
827 827  
828 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
376 +Below is the converter example
829 829  
830 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
831 831  
832 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
833 833  
834 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
835 835  
836 -The above photos shows the two parts of the magnetic switch fitted to a door.
383 +=== 2.5.3 Set Device Time ===
837 837  
838 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
839 839  
840 -The command is:
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
841 841  
842 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
843 843  
844 -Below shows some screen captures in TTN V3:
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
845 845  
846 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
847 847  
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
848 848  
849 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
850 850  
851 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
396 +The Datalog uplinks will use below payload format.
852 852  
398 +**Retrieval data payload:**
853 853  
854 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
855 855  
408 +**Poll message flag & Ext:**
856 856  
857 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
858 858  
859 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
860 860  
861 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
414 +**Poll Message Flag**: 1: This message is a poll message reply.
862 862  
416 +* Poll Message Flag is set to 1.
863 863  
864 -Below is the connection to SHT20/ SHT31. The connection is as below:
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
865 865  
866 -[[image:image-20230610170152-2.png||height="501" width="846"]]
420 +For example, in US915 band, the max payload for different DR is:
867 867  
422 +**a) DR0:** max is 11 bytes so one entry of data
868 868  
869 -The device will be able to get the I2C sensor data now and upload to IoT Server.
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
870 870  
871 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
426 +**c) DR2:** total payload includes 11 entries of data
872 872  
873 -Convert the read byte to decimal and divide it by ten.
428 +**d) DR3: **total payload includes 22 entries of data.
874 874  
875 -**Example:**
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
876 876  
877 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
878 878  
879 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
880 -
881 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
882 -
883 -
884 -==== 2.3.3.7  ​Distance Reading ====
885 -
886 -
887 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
888 -
889 -
890 -==== 2.3.3.8 Ultrasonic Sensor ====
891 -
892 -
893 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
894 -
895 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
896 -
897 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
898 -
899 -The picture below shows the connection:
900 -
901 -[[image:image-20230512173903-6.png||height="596" width="715"]]
902 -
903 -
904 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
905 -
906 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
907 -
908 908  **Example:**
909 909  
910 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
911 911  
437 +[[image:1682646494051-944.png]]
912 912  
913 -==== 2.3.3.9  Battery Output - BAT pin ====
439 +If user sends below downlink command: 3160065F9760066DA705
914 914  
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
915 915  
916 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
917 917  
918 918  
919 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
920 920  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
921 921  
922 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
923 923  
924 -The 5V output time can be controlled by AT Command.
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
925 925  
926 -(% style="color:blue" %)**AT+5VT=1000**
458 +(((
459 +7FFF089801464160065F97
460 +)))
927 927  
928 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
929 929  
930 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
931 931  
932 -
933 -==== 2.3.3.11  BH1750 Illumination Sensor ====
934 -
935 -
936 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
937 -
938 -[[image:image-20230512172447-4.png||height="416" width="712"]]
939 -
940 -
941 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
942 -
943 -
944 -==== 2.3.3.12  PWM MOD ====
945 -
946 -
947 -* (((
948 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
470 +(((
471 +**Hum**=0x014B/10=32.6
949 949  )))
950 -* (((
951 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
952 -)))
953 953  
954 - [[image:image-20230817183249-3.png||height="320" width="417"]]
955 -
956 -* (((
957 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
958 958  )))
959 -* (((
960 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
961 -)))
962 -* (((
963 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
964 964  
965 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
966 -
967 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
968 -
969 -b) If the output duration is more than 30 seconds, better to use external power source. 
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
970 970  )))
971 971  
972 -==== 2.3.3.13  Working MOD ====
973 973  
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
974 974  
975 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
485 +== 2.6 Temperature Alarm Feature ==
976 976  
977 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
978 978  
979 -Case 7^^th^^ Byte >> 2 & 0x1f:
488 +S31x-LB work flow with Alarm feature.
980 980  
981 -* 0: MOD1
982 -* 1: MOD2
983 -* 2: MOD3
984 -* 3: MOD4
985 -* 4: MOD5
986 -* 5: MOD6
987 -* 6: MOD7
988 -* 7: MOD8
989 -* 8: MOD9
990 -* 9: MOD10
991 991  
992 -== 2.4 Payload Decoder file ==
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
993 993  
994 994  
995 -In TTN, use can add a custom payload so it shows friendly reading
494 +== 2.7 Frequency Plans ==
996 996  
997 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
998 998  
999 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1000 1000  
1001 -
1002 -== 2.5 Frequency Plans ==
1003 -
1004 -
1005 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
1006 -
1007 1007  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1008 1008  
1009 1009  
1010 -= 3. Configure SN50v3-LB/LS =
502 += 3. Configure S31x-LB =
1011 1011  
1012 1012  == 3.1 Configure Methods ==
1013 1013  
1014 1014  
1015 -SN50v3-LB/LS supports below configure method:
507 +S31x-LB supports below configure method:
1016 1016  
1017 1017  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1018 1018  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1031,10 +1031,10 @@
1031 1031  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1032 1032  
1033 1033  
1034 -== 3.3 Commands special design for SN50v3-LB/LS ==
526 +== 3.3 Commands special design for S31x-LB ==
1035 1035  
1036 1036  
1037 -These commands only valid for SN50v3-LB/LS, as below:
529 +These commands only valid for S31x-LB, as below:
1038 1038  
1039 1039  
1040 1040  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1045,7 +1045,7 @@
1045 1045  (% style="color:blue" %)**AT Command: AT+TDC**
1046 1046  
1047 1047  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1048 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
540 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1049 1049  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1050 1050  30000
1051 1051  OK
... ... @@ -1068,246 +1068,120 @@
1068 1068  === 3.3.2 Get Device Status ===
1069 1069  
1070 1070  
1071 -Send a LoRaWAN downlink to ask the device to send its status.
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
1072 1072  
1073 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
565 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1074 1074  
1075 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
567 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1076 1076  
1077 1077  
1078 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
1079 1079  
572 +* (% style="color:blue" %)**AT Command:**
1080 1080  
1081 -Feature, Set Interrupt mode for GPIO_EXIT.
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1082 1082  
1083 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1084 1084  
1085 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1086 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1087 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1088 -0
1089 -OK
1090 -the mode is 0 =Disable Interrupt
1091 -)))
1092 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1093 -Set Transmit Interval
1094 -0. (Disable Interrupt),
1095 -~1. (Trigger by rising and falling edge)
1096 -2. (Trigger by falling edge)
1097 -3. (Trigger by rising edge)
1098 -)))|(% style="width:157px" %)OK
1099 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1100 -Set Transmit Interval
1101 -trigger by rising edge.
1102 -)))|(% style="width:157px" %)OK
1103 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
580 +Example:
1104 1104  
1105 -(% style="color:blue" %)**Downlink Command: 0x06**
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1106 1106  
1107 -Format: Command Code (0x06) followed by 3 bytes.
584 +* (% style="color:blue" %)**Downlink Payload:**
1108 1108  
1109 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1110 1110  
1111 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1112 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1113 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1114 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1115 1115  
1116 -=== 3.3.4 Set Power Output Duration ===
1117 1117  
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
1118 1118  
1119 -Control the output duration 5V . Before each sampling, device will
593 +* (% style="color:blue" %)**AT Command:**
1120 1120  
1121 -~1. first enable the power output to external sensor,
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1122 1122  
1123 -2. keep it on as per duration, read sensor value and construct uplink payload
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1124 1124  
1125 -3. final, close the power output.
601 +Example:
1126 1126  
1127 -(% style="color:blue" %)**AT Command: AT+5VT**
603 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1128 1128  
1129 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1130 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1131 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1132 -500(default)
1133 -OK
1134 -)))
1135 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1136 -Close after a delay of 1000 milliseconds.
1137 -)))|(% style="width:157px" %)OK
605 +* (% style="color:blue" %)**Downlink Payload:**
1138 1138  
1139 -(% style="color:blue" %)**Downlink Command: 0x07**
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1140 1140  
1141 -Format: Command Code (0x07) followed by 2 bytes.
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1142 1142  
1143 -The first and second bytes are the time to turn on.
1144 1144  
1145 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1146 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
612 +=== 3.3.5 Set Alarm Interval ===
1147 1147  
1148 -=== 3.3.5 Set Weighing parameters ===
614 +The shortest time of two Alarm packet. (unit: min)
1149 1149  
616 +* (% style="color:blue" %)**AT Command:**
1150 1150  
1151 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1152 1152  
1153 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
620 +* (% style="color:blue" %)**Downlink Payload:**
1154 1154  
1155 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1156 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1157 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1158 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1159 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1160 1160  
1161 -(% style="color:blue" %)**Downlink Command: 0x08**
1162 1162  
1163 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
625 +=== 3.3.6 Get Alarm settings ===
1164 1164  
1165 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1166 1166  
1167 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
1168 1168  
1169 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1170 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1171 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
630 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1172 1172  
1173 -=== 3.3.6 Set Digital pulse count value ===
632 +**Example:**
1174 1174  
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1175 1175  
1176 -Feature: Set the pulse count value.
1177 1177  
1178 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
637 +**Explain:**
1179 1179  
1180 -(% style="color:blue" %)**AT Command: AT+SETCNT**
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1181 1181  
1182 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1183 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1184 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1185 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
641 +=== 3.3.7 Set Interrupt Mode ===
1186 1186  
1187 -(% style="color:blue" %)**Downlink Command: 0x09**
1188 1188  
1189 -Format: Command Code (0x09) followed by 5 bytes.
644 +Feature, Set Interrupt mode for GPIO_EXIT.
1190 1190  
1191 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1192 1192  
1193 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1194 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1195 -
1196 -=== 3.3.7 Set Workmode ===
1197 -
1198 -
1199 -Feature: Switch working mode.
1200 -
1201 -(% style="color:blue" %)**AT Command: AT+MOD**
1202 -
1203 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1204 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1205 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
648 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
649 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1206 1206  OK
653 +the mode is 0 =Disable Interrupt
1207 1207  )))
1208 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1209 -OK
1210 -Attention:Take effect after ATZ
1211 -)))
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1212 1212  
1213 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1214 1214  
1215 -Format: Command Code (0x0A) followed by 1 bytes.
665 +Format: Command Code (0x06) followed by 3 bytes.
1216 1216  
1217 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1218 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1219 1219  
1220 -=== 3.3.8 PWM setting ===
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1221 1221  
672 += 4. Battery & Power Consumption =
1222 1222  
1223 -Feature: Set the time acquisition unit for PWM input capture.
1224 1224  
1225 -(% style="color:blue" %)**AT Command: AT+PWMSET**
675 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1226 1226  
1227 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1228 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1229 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1230 -0(default)
1231 -OK
1232 -)))
1233 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1234 -OK
1235 -
1236 -)))
1237 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1238 -
1239 -(% style="color:blue" %)**Downlink Command: 0x0C**
1240 -
1241 -Format: Command Code (0x0C) followed by 1 bytes.
1242 -
1243 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1244 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1245 -
1246 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1247 -
1248 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1249 -
1250 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1251 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1252 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1253 -0,0,0(default)
1254 -OK
1255 -)))
1256 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1257 -OK
1258 -
1259 -)))
1260 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1261 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1262 -
1263 -
1264 -)))|(% style="width:137px" %)(((
1265 -OK
1266 -)))
1267 -
1268 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1269 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1270 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1271 -AT+PWMOUT=a,b,c
1272 -
1273 -
1274 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1275 -Set PWM output time, output frequency and output duty cycle.
1276 -
1277 -(((
1278 -
1279 -)))
1280 -
1281 -(((
1282 -
1283 -)))
1284 -)))|(% style="width:242px" %)(((
1285 -a: Output time (unit: seconds)
1286 -The value ranges from 0 to 65535.
1287 -When a=65535, PWM will always output.
1288 -)))
1289 -|(% style="width:242px" %)(((
1290 -b: Output frequency (unit: HZ)
1291 -)))
1292 -|(% style="width:242px" %)(((
1293 -c: Output duty cycle (unit: %)
1294 -The value ranges from 0 to 100.
1295 -)))
1296 -
1297 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1298 -
1299 -Format: Command Code (0x0B01) followed by 6 bytes.
1300 -
1301 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1302 -
1303 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1304 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1305 -
1306 -= 4. Battery & Power Cons =
1307 -
1308 -
1309 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1310 -
1311 1311  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1312 1312  
1313 1313  
... ... @@ -1315,47 +1315,28 @@
1315 1315  
1316 1316  
1317 1317  (% class="wikigeneratedid" %)
1318 -**User can change firmware SN50v3-LB/LS to:**
684 +User can change firmware SN50v3-LB to:
1319 1319  
1320 1320  * Change Frequency band/ region.
1321 1321  * Update with new features.
1322 1322  * Fix bugs.
1323 1323  
1324 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
690 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1325 1325  
1326 -**Methods to Update Firmware:**
1327 1327  
1328 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1329 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
693 +Methods to Update Firmware:
1330 1330  
695 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
696 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
697 +
1331 1331  = 6. FAQ =
1332 1332  
1333 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1334 1334  
1335 1335  
1336 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1337 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1338 -
1339 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1340 -
1341 -
1342 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1343 -
1344 -
1345 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1346 -
1347 -
1348 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1349 -
1350 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1351 -
1352 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1353 -
1354 -
1355 1355  = 7. Order Info =
1356 1356  
1357 1357  
1358 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
705 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1359 1359  
1360 1360  (% style="color:red" %)**XX**(%%): The default frequency band
1361 1361  
... ... @@ -1377,10 +1377,9 @@
1377 1377  
1378 1378  = 8. ​Packing Info =
1379 1379  
1380 -
1381 1381  (% style="color:#037691" %)**Package Includes**:
1382 1382  
1383 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
729 +* SN50v3-LB LoRaWAN Generic Node
1384 1384  
1385 1385  (% style="color:#037691" %)**Dimension and weight**:
1386 1386  
... ... @@ -1393,5 +1393,4 @@
1393 1393  
1394 1394  
1395 1395  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1396 -
1397 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
742 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0