Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS--LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,15 +3,10 @@ 1 - 2 - 3 3 (% style="text-align:center" %) 4 -[[image:image-202 40103095714-2.png]]2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 5 5 6 6 7 7 6 +**Table of Contents:** 8 8 9 - 10 - 11 -**Table of Contents:** 12 - 13 13 {{toc/}} 14 14 15 15 ... ... @@ -19,19 +19,20 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is SN50v3-LB /LSLoRaWAN Generic Node ==17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 23 23 24 24 25 -(% style="color:blue" %)**SN50V3-LB /LS**(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAhLi/SOCl2 battery**(%%)or (% style="color:blue" %)**solar powered + li-on battery**(%%)for long term use.SN50V3-LB/LSis designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LSwireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 28 28 29 - SN50V3-LB/LS has a powerful(% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has(% style="color:blue" %)**multiplex I/O pins**(%%)to connect to different sensors.24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 30 30 31 - SN50V3-LB/LS has a(% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support(% style="color:blue" %)**OTA upgrade**(%%)via private LoRa protocol for easy maintaining.26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 32 32 33 -SN50V3-LB /LSis the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 30 + 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -43,8 +43,7 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 42 +* 8500mAh Battery for long term use 48 48 49 49 == 1.3 Specification == 50 50 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-inBattery , 2.5v ~~ 3.6v49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -94,10 +94,11 @@ 94 94 == 1.5 Button & LEDs == 95 95 96 96 97 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]92 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 98 98 94 + 99 99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 100 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**96 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 101 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 102 102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 103 103 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -112,7 +112,7 @@ 112 112 == 1.6 BLE connection == 113 113 114 114 115 -SN50v3-LB /LSsupports BLE remote configure.111 +SN50v3-LB supports BLE remote configure. 116 116 117 117 118 118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -132,23 +132,18 @@ 132 132 133 133 == 1.8 Mechanical == 134 134 135 -=== 1.8.1 for LB version === 136 136 132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 137 137 138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]134 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 139 140 - 141 141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 142 142 143 -=== 1.8.2 for LS version === 144 144 145 -[[image:image-20231231203439-3.png||height="385" width="886"]] 146 - 147 - 148 148 == 1.9 Hole Option == 149 149 150 150 151 -SN50v3-LB /LShas different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:142 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 152 153 153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 154 154 ... ... @@ -155,12 +155,12 @@ 155 155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 156 156 157 157 158 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =149 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 159 160 160 == 2.1 How it works == 161 161 162 162 163 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 164 165 165 166 166 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -171,9 +171,9 @@ 171 171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 172 172 173 173 174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.165 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 175 176 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:167 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 177 178 178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 179 179 ... ... @@ -202,10 +202,10 @@ 202 202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 203 203 204 204 205 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB /LS196 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 206 207 207 208 -Press the button for 5 seconds to activate the SN50v3-LB /LS.199 +Press the button for 5 seconds to activate the SN50v3-LB. 209 209 210 210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 211 211 ... ... @@ -217,13 +217,13 @@ 217 217 === 2.3.1 Device Status, FPORT~=5 === 218 218 219 219 220 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB /LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 221 221 222 222 The Payload format is as below. 223 223 224 224 225 225 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 226 -|(% colspan="6" style="background-color:# 4f81bd; color:white" %)**Device Status (FPORT=5)**217 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 227 227 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 228 228 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 229 229 ... ... @@ -230,7 +230,7 @@ 230 230 Example parse in TTNv3 231 231 232 232 233 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB /LS, this value is 0x1C224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 234 234 235 235 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 236 236 ... ... @@ -286,7 +286,7 @@ 286 286 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 287 287 288 288 289 -SN50v3-LB /LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LSto different working modes.280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 290 290 291 291 For example: 292 292 ... ... @@ -295,7 +295,7 @@ 295 295 296 296 (% style="color:red" %) **Important Notice:** 297 297 298 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB /LStransmit in DR0 with 12 bytes payload.289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 299 299 300 300 2. All modes share the same Payload Explanation from HERE. 301 301 ... ... @@ -307,8 +307,8 @@ 307 307 308 308 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 309 309 310 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)311 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**301 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 312 312 |Value|Bat|(% style="width:191px" %)((( 313 313 Temperature(DS18B20)(PC13) 314 314 )))|(% style="width:78px" %)((( ... ... @@ -329,8 +329,8 @@ 329 329 330 330 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 331 331 332 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)333 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**323 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 334 334 |Value|BAT|(% style="width:196px" %)((( 335 335 Temperature(DS18B20)(PC13) 336 336 )))|(% style="width:87px" %)((( ... ... @@ -359,8 +359,8 @@ 359 359 360 360 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 361 361 362 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)363 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**353 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 354 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 364 364 |Value|BAT|(% style="width:183px" %)((( 365 365 Temperature(DS18B20)(PC13) 366 366 )))|(% style="width:173px" %)((( ... ... @@ -394,10 +394,10 @@ 394 394 395 395 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 396 396 397 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)398 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((388 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 389 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 399 399 **Size(bytes)** 400 -)))|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width:97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1391 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 401 401 |Value|(% style="width:68px" %)((( 402 402 ADC1(PA4) 403 403 )))|(% style="width:75px" %)((( ... ... @@ -420,8 +420,8 @@ 420 420 421 421 This mode has total 11 bytes. As shown below: 422 422 423 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)424 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**414 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 415 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 425 425 |Value|BAT|(% style="width:186px" %)((( 426 426 Temperature1(DS18B20)(PC13) 427 427 )))|(% style="width:82px" %)((( ... ... @@ -462,9 +462,9 @@ 462 462 Check the response of this command and adjust the value to match the real value for thing. 463 463 464 464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 465 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((456 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 466 466 **Size(bytes)** 467 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**458 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 468 468 |Value|BAT|(% style="width:193px" %)((( 469 469 Temperature(DS18B20)(PC13) 470 470 )))|(% style="width:85px" %)((( ... ... @@ -489,7 +489,7 @@ 489 489 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 490 490 491 491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 -|=(% style="width: 60px;background-color:# 4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**483 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 493 |Value|BAT|(% style="width:256px" %)((( 494 494 Temperature(DS18B20)(PC13) 495 495 )))|(% style="width:108px" %)((( ... ... @@ -507,9 +507,9 @@ 507 507 508 508 509 509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 510 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((501 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 511 511 **Size(bytes)** 512 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2503 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 513 513 |Value|BAT|(% style="width:188px" %)((( 514 514 Temperature(DS18B20) 515 515 (PC13) ... ... @@ -526,9 +526,9 @@ 526 526 527 527 528 528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 529 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((520 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 530 530 **Size(bytes)** 531 -)))|=(% style="width: 30px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2522 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 532 532 |Value|BAT|(% style="width:207px" %)((( 533 533 Temperature(DS18B20) 534 534 (PC13) ... ... @@ -549,9 +549,9 @@ 549 549 550 550 551 551 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 552 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((543 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 553 553 **Size(bytes)** 554 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4545 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 555 555 |Value|BAT|((( 556 556 Temperature 557 557 (DS18B20)(PC13) ... ... @@ -588,23 +588,19 @@ 588 588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 589 589 590 590 591 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) (%style="display:none" %) (%%)====582 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 592 592 593 - 594 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 595 - 596 596 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 597 597 598 -[[It should be noted when using PWM mode.>> ||anchor="H2.3.3.12A0PWMMOD"]]586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 599 599 600 600 601 601 ===== 2.3.2.10.a Uplink, PWM input capture ===== 602 602 603 - 604 604 [[image:image-20230817172209-2.png||height="439" width="683"]] 605 605 606 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 515px" %)607 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**593 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 594 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 608 608 |Value|Bat|(% style="width:191px" %)((( 609 609 Temperature(DS18B20)(PC13) 610 610 )))|(% style="width:78px" %)((( ... ... @@ -611,6 +611,7 @@ 611 611 ADC(PA4) 612 612 )))|(% style="width:135px" %)((( 613 613 PWM_Setting 601 + 614 614 &Digital Interrupt(PA8) 615 615 )))|(% style="width:70px" %)((( 616 616 Pulse period ... ... @@ -621,57 +621,15 @@ 621 621 [[image:image-20230817170702-1.png||height="161" width="1044"]] 622 622 623 623 624 - Whenthe device detectshefollowingPWMsignal,decoder willconverts thepulseperiod andhigh-leveldurationto frequencyandduty cycle.612 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0) ==> Corresponding downlink: 0B AA** 625 625 626 - **Frequency:**614 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 627 627 628 -(% class="MsoNormal" %) 629 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 616 +When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 630 630 631 -(% class="MsoNormal" %) 632 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 633 633 619 +===== 2.3.2.10.b Downlink, PWM output ===== 634 634 635 -(% class="MsoNormal" %) 636 -**Duty cycle:** 637 - 638 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 639 - 640 -[[image:image-20230818092200-1.png||height="344" width="627"]] 641 - 642 - 643 -===== 2.3.2.10.b Uplink, PWM output ===== 644 - 645 - 646 -[[image:image-20230817172209-2.png||height="439" width="683"]] 647 - 648 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 649 - 650 -a is the time delay of the output, the unit is ms. 651 - 652 -b is the output frequency, the unit is HZ. 653 - 654 -c is the duty cycle of the output, the unit is %. 655 - 656 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 657 - 658 -aa is the time delay of the output, the unit is ms. 659 - 660 -bb is the output frequency, the unit is HZ. 661 - 662 -cc is the duty cycle of the output, the unit is %. 663 - 664 - 665 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 666 - 667 -The oscilloscope displays as follows: 668 - 669 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 670 - 671 - 672 -===== 2.3.2.10.c Downlink, PWM output ===== 673 - 674 - 675 675 [[image:image-20230817173800-3.png||height="412" width="685"]] 676 676 677 677 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -687,7 +687,7 @@ 687 687 688 688 The oscilloscope displays as follows: 689 689 690 -[[image:image-20230817173858-5.png||height="6 34" width="843"]]636 +[[image:image-20230817173858-5.png||height="694" width="921"]] 691 691 692 692 693 693 === 2.3.3 Decode payload === ... ... @@ -699,13 +699,13 @@ 699 699 700 700 The payload decoder function for TTN V3 are here: 701 701 702 -SN50v3-LB /LSTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]648 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 703 703 704 704 705 705 ==== 2.3.3.1 Battery Info ==== 706 706 707 707 708 -Check the battery voltage for SN50v3-LB /LS.654 +Check the battery voltage for SN50v3-LB. 709 709 710 710 Ex1: 0x0B45 = 2885mV 711 711 ... ... @@ -767,12 +767,10 @@ 767 767 768 768 [[image:image-20230811113449-1.png||height="370" width="608"]] 769 769 770 - 771 - 772 772 ==== 2.3.3.5 Digital Interrupt ==== 773 773 774 774 775 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB /LSwill send a packet to the server.719 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 776 776 777 777 (% style="color:blue" %)** Interrupt connection method:** 778 778 ... ... @@ -785,18 +785,18 @@ 785 785 786 786 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 787 787 788 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB /LSinterrupt interface to detect the status for the door or window.732 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 789 789 790 790 791 791 (% style="color:blue" %)**Below is the installation example:** 792 792 793 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB /LSas follows:737 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 794 794 795 795 * ((( 796 -One pin to SN50v3-LB /LS's PA8 pin740 +One pin to SN50v3-LB's PA8 pin 797 797 ))) 798 798 * ((( 799 -The other pin to SN50v3-LB /LS's VDD pin743 +The other pin to SN50v3-LB's VDD pin 800 800 ))) 801 801 802 802 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -832,7 +832,7 @@ 832 832 833 833 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 834 834 835 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB /LSwill be a good reference.**779 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 836 836 837 837 838 838 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -866,7 +866,7 @@ 866 866 867 867 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 868 868 869 -The SN50v3-LB /LSdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.813 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 870 870 871 871 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 872 872 ... ... @@ -875,7 +875,7 @@ 875 875 [[image:image-20230512173903-6.png||height="596" width="715"]] 876 876 877 877 878 -Connect to the SN50v3-LB /LSand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).822 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 879 879 880 880 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 881 881 ... ... @@ -887,13 +887,13 @@ 887 887 ==== 2.3.3.9 Battery Output - BAT pin ==== 888 888 889 889 890 -The BAT pin of SN50v3-LB /LSis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LSwill run out very soon.834 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 891 891 892 892 893 893 ==== 2.3.3.10 +5V Output ==== 894 894 895 895 896 -SN50v3-LB /LSwill enable +5V output before all sampling and disable the +5v after all sampling.840 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 897 897 898 898 The 5V output time can be controlled by AT Command. 899 899 ... ... @@ -931,16 +931,9 @@ 931 931 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 932 932 ))) 933 933 * ((( 934 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 935 -))) 936 -* ((( 937 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 878 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 938 938 939 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 940 - 941 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 942 - 943 -b) If the output duration is more than 30 seconds, better to use external power source. 880 + 944 944 ))) 945 945 946 946 ==== 2.3.3.13 Working MOD ==== ... ... @@ -976,17 +976,17 @@ 976 976 == 2.5 Frequency Plans == 977 977 978 978 979 -The SN50v3-LB /LSuses OTAA mode and below frequency plans by default.Eachfrequencybanduse different firmware,userupdatethefirmwareto the corresponding bandfor theircountry.916 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 980 980 981 981 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 982 982 983 983 984 -= 3. Configure SN50v3-LB /LS=921 += 3. Configure SN50v3-LB = 985 985 986 986 == 3.1 Configure Methods == 987 987 988 988 989 -SN50v3-LB /LSsupports below configure method:926 +SN50v3-LB supports below configure method: 990 990 991 991 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 992 992 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -1005,10 +1005,10 @@ 1005 1005 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1006 1006 1007 1007 1008 -== 3.3 Commands special design for SN50v3-LB /LS==945 +== 3.3 Commands special design for SN50v3-LB == 1009 1009 1010 1010 1011 -These commands only valid for SN50v3-LB /LS, as below:948 +These commands only valid for SN50v3-LB, as below: 1012 1012 1013 1013 1014 1014 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1019,7 +1019,7 @@ 1019 1019 (% style="color:blue" %)**AT Command: AT+TDC** 1020 1020 1021 1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1022 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**959 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 1023 1023 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1024 1024 30000 1025 1025 OK ... ... @@ -1054,10 +1054,10 @@ 1054 1054 1055 1055 Feature, Set Interrupt mode for GPIO_EXIT. 1056 1056 1057 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**994 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1058 1058 1059 1059 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1060 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**997 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1061 1061 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1062 1062 0 1063 1063 OK ... ... @@ -1101,7 +1101,7 @@ 1101 1101 (% style="color:blue" %)**AT Command: AT+5VT** 1102 1102 1103 1103 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1104 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1041 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1105 1105 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1106 1106 500(default) 1107 1107 OK ... ... @@ -1127,9 +1127,9 @@ 1127 1127 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1128 1128 1129 1129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1130 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1067 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1131 1131 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1132 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1069 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1133 1133 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1134 1134 1135 1135 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1154,7 +1154,7 @@ 1154 1154 (% style="color:blue" %)**AT Command: AT+SETCNT** 1155 1155 1156 1156 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1157 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1094 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1158 1158 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1159 1159 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1160 1160 ... ... @@ -1175,7 +1175,7 @@ 1175 1175 (% style="color:blue" %)**AT Command: AT+MOD** 1176 1176 1177 1177 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1178 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1115 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1179 1179 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1180 1180 OK 1181 1181 ))) ... ... @@ -1191,97 +1191,11 @@ 1191 1191 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1192 1192 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1193 1193 1194 -= ==3.3.8PWMsetting===1131 += 4. Battery & Power Consumption = 1195 1195 1196 1196 1197 - Feature:Setthetimeacquisition unitforPWMinputcapture.1134 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1198 1198 1199 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1200 - 1201 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1202 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1203 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1204 -0(default) 1205 -OK 1206 -))) 1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 -OK 1209 - 1210 -))) 1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1212 - 1213 -(% style="color:blue" %)**Downlink Command: 0x0C** 1214 - 1215 -Format: Command Code (0x0C) followed by 1 bytes. 1216 - 1217 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 - 1220 -**Feature: Set PWM output time, output frequency and output duty cycle.** 1221 - 1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 - 1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 -0,0,0(default) 1228 -OK 1229 -))) 1230 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1231 -OK 1232 - 1233 -))) 1234 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1235 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1236 - 1237 - 1238 -)))|(% style="width:137px" %)((( 1239 -OK 1240 -))) 1241 - 1242 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1243 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1244 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1245 -AT+PWMOUT=a,b,c 1246 - 1247 - 1248 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1249 -Set PWM output time, output frequency and output duty cycle. 1250 - 1251 -((( 1252 - 1253 -))) 1254 - 1255 -((( 1256 - 1257 -))) 1258 -)))|(% style="width:242px" %)((( 1259 -a: Output time (unit: seconds) 1260 -The value ranges from 0 to 65535. 1261 -When a=65535, PWM will always output. 1262 -))) 1263 -|(% style="width:242px" %)((( 1264 -b: Output frequency (unit: HZ) 1265 -))) 1266 -|(% style="width:242px" %)((( 1267 -c: Output duty cycle (unit: %) 1268 -The value ranges from 0 to 100. 1269 -))) 1270 - 1271 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1272 - 1273 -Format: Command Code (0x0B01) followed by 6 bytes. 1274 - 1275 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1276 - 1277 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1278 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1279 - 1280 -= 4. Battery & Power Cons = 1281 - 1282 - 1283 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1284 - 1285 1285 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1286 1286 1287 1287 ... ... @@ -1289,7 +1289,7 @@ 1289 1289 1290 1290 1291 1291 (% class="wikigeneratedid" %) 1292 -**User can change firmware SN50v3-LB /LSto:**1143 +**User can change firmware SN50v3-LB to:** 1293 1293 1294 1294 * Change Frequency band/ region. 1295 1295 * Update with new features. ... ... @@ -1304,22 +1304,22 @@ 1304 1304 1305 1305 = 6. FAQ = 1306 1306 1307 -== 6.1 Where can i find source code of SN50v3-LB /LS? ==1158 +== 6.1 Where can i find source code of SN50v3-LB? == 1308 1308 1309 1309 1310 1310 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1311 1311 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1312 1312 1313 -== 6.2 How to generate PWM Output in SN50v3-LB /LS? ==1164 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1314 1314 1315 1315 1316 1316 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1317 1317 1318 1318 1319 -== 6.3 How to put several sensors to a SN50v3-LB /LS? ==1170 +== 6.3 How to put several sensors to a SN50v3-LB? == 1320 1320 1321 1321 1322 -When we want to put several sensors to A SN50v3-LB /LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.1173 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1323 1323 1324 1324 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1325 1325 ... ... @@ -1329,7 +1329,7 @@ 1329 1329 = 7. Order Info = 1330 1330 1331 1331 1332 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**1183 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1333 1333 1334 1334 (% style="color:red" %)**XX**(%%): The default frequency band 1335 1335 ... ... @@ -1354,7 +1354,7 @@ 1354 1354 1355 1355 (% style="color:#037691" %)**Package Includes**: 1356 1356 1357 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node1208 +* SN50v3-LB LoRaWAN Generic Node 1358 1358 1359 1359 (% style="color:#037691" %)**Dimension and weight**: 1360 1360
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content