<
From version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
To version < 74.6 >
edited by Xiaoling
on 2023/09/26 08:50
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,15 +3,10 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
6 +**Table of Contents:**
8 8  
9 -
10 -
11 -**Table of Contents:**
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -19,18 +19,18 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
... ... @@ -45,6 +45,7 @@
45 45  * Downlink to change configure
46 46  * 8500mAh Battery for long term use
47 47  
43 +
48 48  == 1.3 Specification ==
49 49  
50 50  
... ... @@ -82,6 +82,7 @@
82 82  * Sleep Mode: 5uA @ 3.3v
83 83  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
84 84  
81 +
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
93 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -109,6 +109,7 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
109 +
112 112  == 1.6 BLE connection ==
113 113  
114 114  
... ... @@ -132,19 +132,14 @@
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
134 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
136 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
146 -
147 -
148 148  == 1.9 Hole Option ==
149 149  
150 150  
... ... @@ -590,7 +590,6 @@
590 590  
591 591  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 592  
593 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594 594  
595 595  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596 596  
... ... @@ -602,8 +602,8 @@
602 602  
603 603  [[image:image-20230817172209-2.png||height="439" width="683"]]
604 604  
605 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
597 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
607 607  |Value|Bat|(% style="width:191px" %)(((
608 608  Temperature(DS18B20)(PC13)
609 609  )))|(% style="width:78px" %)(((
... ... @@ -610,6 +610,7 @@
610 610  ADC(PA4)
611 611  )))|(% style="width:135px" %)(((
612 612  PWM_Setting
605 +
613 613  &Digital Interrupt(PA8)
614 614  )))|(% style="width:70px" %)(((
615 615  Pulse period
... ... @@ -638,37 +638,10 @@
638 638  
639 639  [[image:image-20230818092200-1.png||height="344" width="627"]]
640 640  
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 642  
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
635 +===== 2.3.2.10. Downlink, PWM output =====
644 644  
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 646  
647 -a is the time delay of the output, the unit is ms.
648 -
649 -b is the output frequency, the unit is HZ.
650 -
651 -c is the duty cycle of the output, the unit is %.
652 -
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 -
655 -aa is the time delay of the output, the unit is ms.
656 -
657 -bb is the output frequency, the unit is HZ.
658 -
659 -cc is the duty cycle of the output, the unit is %.
660 -
661 -
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 -
664 -The oscilloscope displays as follows:
665 -
666 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 -
668 -
669 -===== 2.3.2.10.c  Downlink, PWM output =====
670 -
671 -
672 672  [[image:image-20230817173800-3.png||height="412" width="685"]]
673 673  
674 674  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -927,17 +927,8 @@
927 927  )))
928 928  * (((
929 929  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 -)))
931 -* (((
932 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
933 933  
934 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935 935  
936 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 -
938 -b) If the output duration is more than 30 seconds, better to use external power source. 
939 -
940 -
941 941  
942 942  )))
943 943  
... ... @@ -961,6 +961,7 @@
961 961  * 8: MOD9
962 962  * 9: MOD10
963 963  
921 +
964 964  == 2.4 Payload Decoder file ==
965 965  
966 966  
... ... @@ -990,6 +990,7 @@
990 990  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
991 991  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
992 992  
951 +
993 993  == 3.2 General Commands ==
994 994  
995 995  
... ... @@ -1037,6 +1037,7 @@
1037 1037  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1038 1038  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1039 1039  
999 +
1040 1040  === 3.3.2 Get Device Status ===
1041 1041  
1042 1042  
... ... @@ -1085,6 +1085,7 @@
1085 1085  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 1086  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1087 1087  
1048 +
1088 1088  === 3.3.4 Set Power Output Duration ===
1089 1089  
1090 1090  
... ... @@ -1117,6 +1117,7 @@
1117 1117  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 1118  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1119 1119  
1081 +
1120 1120  === 3.3.5 Set Weighing parameters ===
1121 1121  
1122 1122  
... ... @@ -1142,6 +1142,7 @@
1142 1142  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 1143  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1144 1144  
1107 +
1145 1145  === 3.3.6 Set Digital pulse count value ===
1146 1146  
1147 1147  
... ... @@ -1165,6 +1165,7 @@
1165 1165  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 1166  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167 1167  
1131 +
1168 1168  === 3.3.7 Set Workmode ===
1169 1169  
1170 1170  
... ... @@ -1189,26 +1189,26 @@
1189 1189  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 1190  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191 1191  
1192 -(% id="H3.3.8PWMsetting" %)
1156 +
1193 1193  === 3.3.8 PWM setting ===
1194 1194  
1195 1195  
1196 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1160 +Feature: Set the time acquisition unit for PWM input capture.
1197 1197  
1198 1198  (% style="color:blue" %)**AT Command: AT+PWMSET**
1199 1199  
1200 1200  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1165 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1203 1203  0(default)
1204 1204  
1205 1205  OK
1206 1206  )))
1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1171 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1208 1208  OK
1209 1209  
1210 1210  )))
1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1175 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1212 1212  
1213 1213  (% style="color:blue" %)**Downlink Command: 0x0C**
1214 1214  
... ... @@ -1217,73 +1217,10 @@
1217 1217  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 1218  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 1219  
1220 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 1221  
1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1185 += 4. Battery & Power Consumption =
1223 1223  
1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 -0,0,0(default)
1228 1228  
1229 -OK
1230 -)))
1231 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 -OK
1233 -
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 -
1238 -
1239 -)))|(% style="width:137px" %)(((
1240 -OK
1241 -)))
1242 -
1243 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 -AT+PWMOUT=a,b,c
1247 -
1248 -
1249 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 -Set PWM output time, output frequency and output duty cycle.
1251 -
1252 -(((
1253 -
1254 -)))
1255 -
1256 -(((
1257 -
1258 -)))
1259 -)))|(% style="width:242px" %)(((
1260 -a: Output time (unit: seconds)
1261 -
1262 -The value ranges from 0 to 65535.
1263 -
1264 -When a=65535, PWM will always output.
1265 -)))
1266 -|(% style="width:242px" %)(((
1267 -b: Output frequency (unit: HZ)
1268 -)))
1269 -|(% style="width:242px" %)(((
1270 -c: Output duty cycle (unit: %)
1271 -
1272 -The value ranges from 0 to 100.
1273 -)))
1274 -
1275 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 -
1277 -Format: Command Code (0x0B01) followed by 6 bytes.
1278 -
1279 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 -
1281 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 -
1284 -= 4. Battery & Power Cons =
1285 -
1286 -
1287 1287  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1288 1288  
1289 1289  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1306,6 +1306,7 @@
1306 1306  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 1307  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1308 1308  
1210 +
1309 1309  = 6. FAQ =
1310 1310  
1311 1311  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1314,6 +1314,7 @@
1314 1314  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 1315  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1316 1316  
1219 +
1317 1317  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1318 1318  
1319 1319  
... ... @@ -1353,6 +1353,7 @@
1353 1353  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1354 1354  * (% style="color:red" %)**NH**(%%): No Hole
1355 1355  
1259 +
1356 1356  = 8. ​Packing Info =
1357 1357  
1358 1358  
... ... @@ -1367,6 +1367,7 @@
1367 1367  * Package Size / pcs : cm
1368 1368  * Weight / pcs : g
1369 1369  
1274 +
1370 1370  = 9. Support =
1371 1371  
1372 1372  
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0