<
From version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
To version < 71.1 >
edited by Saxer Lin
on 2023/08/18 09:21
>
Change comment: Uploaded new attachment "image-20230818092200-1.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,15 +3,10 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
6 +**Table of Contents:**
8 8  
9 -
10 -
11 -**Table of Contents:**
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -19,19 +19,20 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
30 +
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -132,19 +132,14 @@
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
146 -
147 -
148 148  == 1.9 Hole Option ==
149 149  
150 150  
... ... @@ -590,20 +590,17 @@
590 590  
591 591  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 592  
593 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594 -
595 595  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596 596  
597 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
598 598  
599 599  
600 600  ===== 2.3.2.10.a  Uplink, PWM input capture =====
601 601  
602 -
603 603  [[image:image-20230817172209-2.png||height="439" width="683"]]
604 604  
605 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
593 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
594 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
607 607  |Value|Bat|(% style="width:191px" %)(((
608 608  Temperature(DS18B20)(PC13)
609 609  )))|(% style="width:78px" %)(((
... ... @@ -610,6 +610,7 @@
610 610  ADC(PA4)
611 611  )))|(% style="width:135px" %)(((
612 612  PWM_Setting
601 +
613 613  &Digital Interrupt(PA8)
614 614  )))|(% style="width:70px" %)(((
615 615  Pulse period
... ... @@ -620,55 +620,15 @@
620 620  [[image:image-20230817170702-1.png||height="161" width="1044"]]
621 621  
622 622  
623 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
612 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
624 624  
625 -**Frequency:**
614 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.  
626 626  
627 -(% class="MsoNormal" %)
628 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
616 +When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ.  
629 629  
630 -(% class="MsoNormal" %)
631 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 632  
619 +===== 2.3.2.10.b  Downlink, PWM output =====
633 633  
634 -(% class="MsoNormal" %)
635 -**Duty cycle:**
636 -
637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638 -
639 -[[image:image-20230818092200-1.png||height="344" width="627"]]
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
644 -
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 -
647 -a is the time delay of the output, the unit is ms.
648 -
649 -b is the output frequency, the unit is HZ.
650 -
651 -c is the duty cycle of the output, the unit is %.
652 -
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 -
655 -aa is the time delay of the output, the unit is ms.
656 -
657 -bb is the output frequency, the unit is HZ.
658 -
659 -cc is the duty cycle of the output, the unit is %.
660 -
661 -
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 -
664 -The oscilloscope displays as follows:
665 -
666 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 -
668 -
669 -===== 2.3.2.10.c  Downlink, PWM output =====
670 -
671 -
672 672  [[image:image-20230817173800-3.png||height="412" width="685"]]
673 673  
674 674  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -926,18 +926,8 @@
926 926  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 927  )))
928 928  * (((
929 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 -)))
931 -* (((
932 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
878 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
933 933  
934 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935 -
936 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 -
938 -b) If the output duration is more than 30 seconds, better to use external power source. 
939 -
940 -
941 941  
942 942  )))
943 943  
... ... @@ -1189,101 +1189,9 @@
1189 1189  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 1190  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191 1191  
1192 -(% id="H3.3.8PWMsetting" %)
1193 -=== 3.3.8 PWM setting ===
1131 += 4. Battery & Power Consumption =
1194 1194  
1195 1195  
1196 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197 -
1198 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1199 -
1200 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 -0(default)
1204 -
1205 -OK
1206 -)))
1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 -OK
1209 -
1210 -)))
1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 -
1213 -(% style="color:blue" %)**Downlink Command: 0x0C**
1214 -
1215 -Format: Command Code (0x0C) followed by 1 bytes.
1216 -
1217 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 -
1220 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 -
1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 -
1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 -0,0,0(default)
1228 -
1229 -OK
1230 -)))
1231 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 -OK
1233 -
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 -
1238 -
1239 -)))|(% style="width:137px" %)(((
1240 -OK
1241 -)))
1242 -
1243 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 -AT+PWMOUT=a,b,c
1247 -
1248 -
1249 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 -Set PWM output time, output frequency and output duty cycle.
1251 -
1252 -(((
1253 -
1254 -)))
1255 -
1256 -(((
1257 -
1258 -)))
1259 -)))|(% style="width:242px" %)(((
1260 -a: Output time (unit: seconds)
1261 -
1262 -The value ranges from 0 to 65535.
1263 -
1264 -When a=65535, PWM will always output.
1265 -)))
1266 -|(% style="width:242px" %)(((
1267 -b: Output frequency (unit: HZ)
1268 -)))
1269 -|(% style="width:242px" %)(((
1270 -c: Output duty cycle (unit: %)
1271 -
1272 -The value ranges from 0 to 100.
1273 -)))
1274 -
1275 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 -
1277 -Format: Command Code (0x0B01) followed by 6 bytes.
1278 -
1279 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 -
1281 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 -
1284 -= 4. Battery & Power Cons =
1285 -
1286 -
1287 1287  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1288 1288  
1289 1289  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0