Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230810121434-1.png", version {1}
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS--LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -1,15 +3,10 @@ 1 - 2 - 3 3 (% style="text-align:center" %) 4 -[[image:image-202 40103095714-2.png]]2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 5 5 6 6 7 7 6 +**Table of Contents:** 8 8 9 - 10 - 11 -**Table of Contents:** 12 - 13 13 {{toc/}} 14 14 15 15 ... ... @@ -19,19 +19,20 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is SN50v3-LB /LSLoRaWAN Generic Node ==17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 23 23 24 24 25 -(% style="color:blue" %)**SN50V3-LB /LS**(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)or (% style="color:blue" %)**solar powered + li-on battery**(%%)for long term use.SN50V3-LB/LSis designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LSwireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 28 28 29 - SN50V3-LB/LS has a powerful(% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has(% style="color:blue" %)**multiplex I/O pins**(%%)to connect to different sensors.24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 30 30 31 - SN50V3-LB/LS has a(% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support(% style="color:blue" %)**OTA upgrade**(%%)via private LoRa protocol for easy maintaining.26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 32 32 33 -SN50V3-LB /LSis the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 30 + 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -45,6 +45,8 @@ 45 45 * Downlink to change configure 46 46 * 8500mAh Battery for long term use 47 47 44 + 45 + 48 48 == 1.3 Specification == 49 49 50 50 ... ... @@ -82,6 +82,8 @@ 82 82 * Sleep Mode: 5uA @ 3.3v 83 83 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 84 84 83 + 84 + 85 85 == 1.4 Sleep mode and working mode == 86 86 87 87 ... ... @@ -93,7 +93,7 @@ 93 93 == 1.5 Button & LEDs == 94 94 95 95 96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] [[image:image-20231231203148-2.png||height="456" width="316"]]96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 97 97 98 98 99 99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -109,6 +109,8 @@ 109 109 ))) 110 110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 111 111 112 + 113 + 112 112 == 1.6 BLE connection == 113 113 114 114 ... ... @@ -132,19 +132,14 @@ 132 132 133 133 == 1.8 Mechanical == 134 134 135 -=== 1.8.1 for LB version === 136 136 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 137 137 138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]140 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 139 140 - 141 141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 142 142 143 -=== 1.8.2 for LS version === 144 144 145 -[[image:image-20231231203439-3.png||height="385" width="886"]] 146 - 147 - 148 148 == 1.9 Hole Option == 149 149 150 150 ... ... @@ -476,6 +476,7 @@ 476 476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 477 477 478 478 476 + 479 479 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 480 480 481 481 ... ... @@ -588,105 +588,6 @@ 588 588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 589 589 590 590 591 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 592 - 593 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 594 - 595 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 596 - 597 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 598 - 599 - 600 -===== 2.3.2.10.a Uplink, PWM input capture ===== 601 - 602 - 603 -[[image:image-20230817172209-2.png||height="439" width="683"]] 604 - 605 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 606 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 607 -|Value|Bat|(% style="width:191px" %)((( 608 -Temperature(DS18B20)(PC13) 609 -)))|(% style="width:78px" %)((( 610 -ADC(PA4) 611 -)))|(% style="width:135px" %)((( 612 -PWM_Setting 613 -&Digital Interrupt(PA8) 614 -)))|(% style="width:70px" %)((( 615 -Pulse period 616 -)))|(% style="width:89px" %)((( 617 -Duration of high level 618 -))) 619 - 620 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 621 - 622 - 623 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 624 - 625 -**Frequency:** 626 - 627 -(% class="MsoNormal" %) 628 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 629 - 630 -(% class="MsoNormal" %) 631 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 632 - 633 - 634 -(% class="MsoNormal" %) 635 -**Duty cycle:** 636 - 637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 638 - 639 -[[image:image-20230818092200-1.png||height="344" width="627"]] 640 - 641 -===== 2.3.2.10.b Uplink, PWM output ===== 642 - 643 -[[image:image-20230817172209-2.png||height="439" width="683"]] 644 - 645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 646 - 647 -a is the time delay of the output, the unit is ms. 648 - 649 -b is the output frequency, the unit is HZ. 650 - 651 -c is the duty cycle of the output, the unit is %. 652 - 653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 654 - 655 -aa is the time delay of the output, the unit is ms. 656 - 657 -bb is the output frequency, the unit is HZ. 658 - 659 -cc is the duty cycle of the output, the unit is %. 660 - 661 - 662 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 663 - 664 -The oscilloscope displays as follows: 665 - 666 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 667 - 668 - 669 -===== 2.3.2.10.c Downlink, PWM output ===== 670 - 671 - 672 -[[image:image-20230817173800-3.png||height="412" width="685"]] 673 - 674 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 675 - 676 - xx xx xx is the output frequency, the unit is HZ. 677 - 678 - yy is the duty cycle of the output, the unit is %. 679 - 680 - zz zz is the time delay of the output, the unit is ms. 681 - 682 - 683 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 684 - 685 -The oscilloscope displays as follows: 686 - 687 -[[image:image-20230817173858-5.png||height="694" width="921"]] 688 - 689 - 690 690 === 2.3.3 Decode payload === 691 691 692 692 ... ... @@ -760,10 +760,6 @@ 760 760 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 761 761 762 762 763 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 764 - 765 -[[image:image-20230811113449-1.png||height="370" width="608"]] 766 - 767 767 ==== 2.3.3.5 Digital Interrupt ==== 768 768 769 769 ... ... @@ -910,40 +910,9 @@ 910 910 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 911 911 912 912 913 -==== 2.3.3.12 PWMMOD ====808 +==== 2.3.3.12 Working MOD ==== 914 914 915 915 916 -* ((( 917 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 918 -))) 919 -* ((( 920 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 921 -))) 922 - 923 - [[image:image-20230817183249-3.png||height="320" width="417"]] 924 - 925 -* ((( 926 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 927 -))) 928 -* ((( 929 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 930 -))) 931 -* ((( 932 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 933 - 934 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 935 - 936 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 937 - 938 -b) If the output duration is more than 30 seconds, better to use external power source. 939 - 940 - 941 - 942 -))) 943 - 944 -==== 2.3.3.13 Working MOD ==== 945 - 946 - 947 947 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 948 948 949 949 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -959,8 +959,9 @@ 959 959 * 6: MOD7 960 960 * 7: MOD8 961 961 * 8: MOD9 962 -* 9: MOD10 963 963 827 + 828 + 964 964 == 2.4 Payload Decoder file == 965 965 966 966 ... ... @@ -990,6 +990,8 @@ 990 990 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 991 991 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 992 992 858 + 859 + 993 993 == 3.2 General Commands == 994 994 995 995 ... ... @@ -1037,6 +1037,8 @@ 1037 1037 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1038 1038 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1039 1039 907 + 908 + 1040 1040 === 3.3.2 Get Device Status === 1041 1041 1042 1042 ... ... @@ -1085,6 +1085,8 @@ 1085 1085 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1086 1086 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1087 1087 957 + 958 + 1088 1088 === 3.3.4 Set Power Output Duration === 1089 1089 1090 1090 ... ... @@ -1117,6 +1117,8 @@ 1117 1117 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1118 1118 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1119 1119 991 + 992 + 1120 1120 === 3.3.5 Set Weighing parameters === 1121 1121 1122 1122 ... ... @@ -1142,6 +1142,8 @@ 1142 1142 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1143 1143 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1144 1144 1018 + 1019 + 1145 1145 === 3.3.6 Set Digital pulse count value === 1146 1146 1147 1147 ... ... @@ -1165,6 +1165,8 @@ 1165 1165 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1166 1166 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1167 1167 1043 + 1044 + 1168 1168 === 3.3.7 Set Workmode === 1169 1169 1170 1170 ... ... @@ -1189,101 +1189,11 @@ 1189 1189 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1190 1190 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1191 1191 1192 -(% id="H3.3.8PWMsetting" %) 1193 -=== 3.3.8 PWM setting === 1194 1194 1195 1195 1196 - (% class="mark"%)Feature:Setthetime acquisitionnitfor PWMinputcapture.1071 += 4. Battery & Power Consumption = 1197 1197 1198 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1199 1199 1200 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1201 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1202 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1203 -0(default) 1204 - 1205 -OK 1206 -))) 1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 -OK 1209 - 1210 -))) 1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1212 - 1213 -(% style="color:blue" %)**Downlink Command: 0x0C** 1214 - 1215 -Format: Command Code (0x0C) followed by 1 bytes. 1216 - 1217 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 - 1220 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1221 - 1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 - 1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 -0,0,0(default) 1228 - 1229 -OK 1230 -))) 1231 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1232 -OK 1233 - 1234 -))) 1235 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1236 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1237 - 1238 - 1239 -)))|(% style="width:137px" %)((( 1240 -OK 1241 -))) 1242 - 1243 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1244 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1245 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1246 -AT+PWMOUT=a,b,c 1247 - 1248 - 1249 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1250 -Set PWM output time, output frequency and output duty cycle. 1251 - 1252 -((( 1253 - 1254 -))) 1255 - 1256 -((( 1257 - 1258 -))) 1259 -)))|(% style="width:242px" %)((( 1260 -a: Output time (unit: seconds) 1261 - 1262 -The value ranges from 0 to 65535. 1263 - 1264 -When a=65535, PWM will always output. 1265 -))) 1266 -|(% style="width:242px" %)((( 1267 -b: Output frequency (unit: HZ) 1268 -))) 1269 -|(% style="width:242px" %)((( 1270 -c: Output duty cycle (unit: %) 1271 - 1272 -The value ranges from 0 to 100. 1273 -))) 1274 - 1275 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1276 - 1277 -Format: Command Code (0x0B01) followed by 6 bytes. 1278 - 1279 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1280 - 1281 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1282 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1283 - 1284 -= 4. Battery & Power Cons = 1285 - 1286 - 1287 1287 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1288 1288 1289 1289 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1306,6 +1306,8 @@ 1306 1306 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1307 1307 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1308 1308 1096 + 1097 + 1309 1309 = 6. FAQ = 1310 1310 1311 1311 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1314,6 +1314,8 @@ 1314 1314 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1315 1315 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1316 1316 1106 + 1107 + 1317 1317 == 6.2 How to generate PWM Output in SN50v3-LB? == 1318 1318 1319 1319 ... ... @@ -1320,16 +1320,6 @@ 1320 1320 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1321 1321 1322 1322 1323 -== 6.3 How to put several sensors to a SN50v3-LB? == 1324 - 1325 - 1326 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1327 - 1328 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1329 - 1330 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1331 - 1332 - 1333 1333 = 7. Order Info = 1334 1334 1335 1335 ... ... @@ -1353,6 +1353,8 @@ 1353 1353 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1354 1354 * (% style="color:red" %)**NH**(%%): No Hole 1355 1355 1137 + 1138 + 1356 1356 = 8. Packing Info = 1357 1357 1358 1358 ... ... @@ -1367,6 +1367,8 @@ 1367 1367 * Package Size / pcs : cm 1368 1368 * Weight / pcs : g 1369 1369 1153 + 1154 + 1370 1370 = 9. Support = 1371 1371 1372 1372
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content