<
From version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
To version < 43.60 >
edited by Xiaoling
on 2023/05/16 17:06
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,15 +3,10 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
6 +**Table of Contents:**
8 8  
9 -
10 -
11 -**Table of Contents:**
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -19,19 +19,20 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
30 +
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -45,6 +45,8 @@
45 45  * Downlink to change configure
46 46  * 8500mAh Battery for long term use
47 47  
44 +
45 +
48 48  == 1.3 Specification ==
49 49  
50 50  
... ... @@ -82,6 +82,8 @@
82 82  * Sleep Mode: 5uA @ 3.3v
83 83  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
84 84  
83 +
84 +
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -109,6 +109,8 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 +
113 +
112 112  == 1.6 BLE connection ==
113 113  
114 114  
... ... @@ -127,27 +127,22 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
132 +[[image:image-20230513102034-2.png]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
140 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
145 +== Hole Option ==
146 146  
147 147  
148 -== 1.9 Hole Option ==
149 -
150 -
151 151  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 152  
153 153  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -160,7 +160,7 @@
160 160  == 2.1 How it works ==
161 161  
162 162  
163 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 164  
165 165  
166 166  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,7 +168,7 @@
168 168  
169 169  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170 170  
171 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 172  
173 173  
174 174  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -217,7 +217,7 @@
217 217  === 2.3.1 Device Status, FPORT~=5 ===
218 218  
219 219  
220 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
221 221  
222 222  The Payload format is as below.
223 223  
... ... @@ -225,44 +225,44 @@
225 225  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
226 226  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 227  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
228 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 229  
230 230  Example parse in TTNv3
231 231  
232 232  
233 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
234 234  
235 235  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236 236  
237 237  (% style="color:#037691" %)**Frequency Band**:
238 238  
239 -0x01: EU868
236 +*0x01: EU868
240 240  
241 -0x02: US915
238 +*0x02: US915
242 242  
243 -0x03: IN865
240 +*0x03: IN865
244 244  
245 -0x04: AU915
242 +*0x04: AU915
246 246  
247 -0x05: KZ865
244 +*0x05: KZ865
248 248  
249 -0x06: RU864
246 +*0x06: RU864
250 250  
251 -0x07: AS923
248 +*0x07: AS923
252 252  
253 -0x08: AS923-1
250 +*0x08: AS923-1
254 254  
255 -0x09: AS923-2
252 +*0x09: AS923-2
256 256  
257 -0x0a: AS923-3
254 +*0x0a: AS923-3
258 258  
259 -0x0b: CN470
256 +*0x0b: CN470
260 260  
261 -0x0c: EU433
258 +*0x0c: EU433
262 262  
263 -0x0d: KR920
260 +*0x0d: KR920
264 264  
265 -0x0e: MA869
262 +*0x0e: MA869
266 266  
267 267  
268 268  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -286,22 +286,21 @@
286 286  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
287 287  
288 288  
289 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
290 290  
291 291  For example:
292 292  
293 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 294  
295 295  
296 296  (% style="color:red" %) **Important Notice:**
297 297  
298 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 +1. All modes share the same Payload Explanation from HERE.
297 +1. By default, the device will send an uplink message every 20 minutes.
299 299  
300 -2. All modes share the same Payload Explanation from HERE.
301 301  
302 -3. By default, the device will send an uplink message every 20 minutes.
303 303  
304 -
305 305  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
306 306  
307 307  
... ... @@ -309,7 +309,7 @@
309 309  
310 310  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
311 311  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 -|Value|Bat|(% style="width:191px" %)(((
308 +|**Value**|Bat|(% style="width:191px" %)(((
313 313  Temperature(DS18B20)(PC13)
314 314  )))|(% style="width:78px" %)(((
315 315  ADC(PA4)
... ... @@ -324,6 +324,7 @@
324 324  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
325 325  
326 326  
323 +
327 327  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
328 328  
329 329  
... ... @@ -331,7 +331,7 @@
331 331  
332 332  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
333 333  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 -|Value|BAT|(% style="width:196px" %)(((
331 +|**Value**|BAT|(% style="width:196px" %)(((
335 335  Temperature(DS18B20)(PC13)
336 336  )))|(% style="width:87px" %)(((
337 337  ADC(PA4)
... ... @@ -338,8 +338,9 @@
338 338  )))|(% style="width:189px" %)(((
339 339  Digital in(PB15) & Digital Interrupt(PA8)
340 340  )))|(% style="width:208px" %)(((
341 -Distance measure by: 1) LIDAR-Lite V3HP
342 -Or 2) Ultrasonic Sensor
338 +Distance measure by:1) LIDAR-Lite V3HP
339 +Or
340 +2) Ultrasonic Sensor
343 343  )))|(% style="width:117px" %)Reserved
344 344  
345 345  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -352,7 +352,7 @@
352 352  
353 353  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
354 354  
355 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 356  
357 357  [[image:image-20230512173903-6.png||height="596" width="715"]]
358 358  
... ... @@ -361,7 +361,7 @@
361 361  
362 362  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
363 363  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 -|Value|BAT|(% style="width:183px" %)(((
362 +|**Value**|BAT|(% style="width:183px" %)(((
365 365  Temperature(DS18B20)(PC13)
366 366  )))|(% style="width:173px" %)(((
367 367  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -369,7 +369,8 @@
369 369  ADC(PA4)
370 370  )))|(% style="width:323px" %)(((
371 371  Distance measure by:1)TF-Mini plus LiDAR
372 -Or 2) TF-Luna LiDAR
370 +Or 
371 +2) TF-Luna LiDAR
373 373  )))|(% style="width:188px" %)Distance signal  strength
374 374  
375 375  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -377,7 +377,7 @@
377 377  
378 378  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
379 379  
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 381  
382 382  [[image:image-20230512180609-7.png||height="555" width="802"]]
383 383  
... ... @@ -384,9 +384,9 @@
384 384  
385 385  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
386 386  
387 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
388 388  
389 -[[image:image-20230610170047-1.png||height="452" width="799"]]
388 +[[image:image-20230513105207-4.png||height="469" width="802"]]
390 390  
391 391  
392 392  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -398,7 +398,7 @@
398 398  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 399  **Size(bytes)**
400 400  )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 -|Value|(% style="width:68px" %)(((
400 +|**Value**|(% style="width:68px" %)(((
402 402  ADC1(PA4)
403 403  )))|(% style="width:75px" %)(((
404 404  ADC2(PA5)
... ... @@ -422,7 +422,7 @@
422 422  
423 423  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 424  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 -|Value|BAT|(% style="width:186px" %)(((
424 +|**Value**|BAT|(% style="width:186px" %)(((
426 426  Temperature1(DS18B20)(PC13)
427 427  )))|(% style="width:82px" %)(((
428 428  ADC(PA4)
... ... @@ -433,10 +433,10 @@
433 433  
434 434  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
435 435  
436 -
437 437  [[image:image-20230513134006-1.png||height="559" width="736"]]
438 438  
439 439  
438 +
440 440  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
441 441  
442 442  
... ... @@ -444,8 +444,8 @@
444 444  
445 445  Each HX711 need to be calibrated before used. User need to do below two steps:
446 446  
447 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
449 449  1. (((
450 450  Weight has 4 bytes, the unit is g.
451 451  
... ... @@ -455,7 +455,7 @@
455 455  
456 456  For example:
457 457  
458 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
457 +**AT+GETSENSORVALUE =0**
459 459  
460 460  Response:  Weight is 401 g
461 461  
... ... @@ -465,7 +465,7 @@
465 465  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 466  **Size(bytes)**
467 467  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 -|Value|BAT|(% style="width:193px" %)(((
467 +|**Value**|BAT|(% style="width:193px" %)(((
469 469  Temperature(DS18B20)(PC13)
470 470  )))|(% style="width:85px" %)(((
471 471  ADC(PA4)
... ... @@ -476,6 +476,7 @@
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477 477  
478 478  
478 +
479 479  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480 480  
481 481  
... ... @@ -490,7 +490,7 @@
490 490  
491 491  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 492  |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 -|Value|BAT|(% style="width:256px" %)(((
493 +|**Value**|BAT|(% style="width:256px" %)(((
494 494  Temperature(DS18B20)(PC13)
495 495  )))|(% style="width:108px" %)(((
496 496  ADC(PA4)
... ... @@ -503,6 +503,7 @@
503 503  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504 504  
505 505  
506 +
506 506  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507 507  
508 508  
... ... @@ -510,7 +510,7 @@
510 510  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 511  **Size(bytes)**
512 512  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 -|Value|BAT|(% style="width:188px" %)(((
514 +|**Value**|BAT|(% style="width:188px" %)(((
514 514  Temperature(DS18B20)
515 515  (PC13)
516 516  )))|(% style="width:83px" %)(((
... ... @@ -529,7 +529,7 @@
529 529  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 530  **Size(bytes)**
531 531  )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 -|Value|BAT|(% style="width:207px" %)(((
533 +|**Value**|BAT|(% style="width:207px" %)(((
533 533  Temperature(DS18B20)
534 534  (PC13)
535 535  )))|(% style="width:94px" %)(((
... ... @@ -552,7 +552,7 @@
552 552  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 553  **Size(bytes)**
554 554  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 -|Value|BAT|(((
556 +|**Value**|BAT|(((
556 556  Temperature
557 557  (DS18B20)(PC13)
558 558  )))|(((
... ... @@ -588,105 +588,6 @@
588 588  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 589  
590 590  
591 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 -
593 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594 -
595 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596 -
597 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
598 -
599 -
600 -===== 2.3.2.10.a  Uplink, PWM input capture =====
601 -
602 -
603 -[[image:image-20230817172209-2.png||height="439" width="683"]]
604 -
605 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 -|Value|Bat|(% style="width:191px" %)(((
608 -Temperature(DS18B20)(PC13)
609 -)))|(% style="width:78px" %)(((
610 -ADC(PA4)
611 -)))|(% style="width:135px" %)(((
612 -PWM_Setting
613 -&Digital Interrupt(PA8)
614 -)))|(% style="width:70px" %)(((
615 -Pulse period
616 -)))|(% style="width:89px" %)(((
617 -Duration of high level
618 -)))
619 -
620 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
621 -
622 -
623 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
624 -
625 -**Frequency:**
626 -
627 -(% class="MsoNormal" %)
628 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
629 -
630 -(% class="MsoNormal" %)
631 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 -
633 -
634 -(% class="MsoNormal" %)
635 -**Duty cycle:**
636 -
637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638 -
639 -[[image:image-20230818092200-1.png||height="344" width="627"]]
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
644 -
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 -
647 -a is the time delay of the output, the unit is ms.
648 -
649 -b is the output frequency, the unit is HZ.
650 -
651 -c is the duty cycle of the output, the unit is %.
652 -
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 -
655 -aa is the time delay of the output, the unit is ms.
656 -
657 -bb is the output frequency, the unit is HZ.
658 -
659 -cc is the duty cycle of the output, the unit is %.
660 -
661 -
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 -
664 -The oscilloscope displays as follows:
665 -
666 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 -
668 -
669 -===== 2.3.2.10.c  Downlink, PWM output =====
670 -
671 -
672 -[[image:image-20230817173800-3.png||height="412" width="685"]]
673 -
674 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675 -
676 - xx xx xx is the output frequency, the unit is HZ.
677 -
678 - yy is the duty cycle of the output, the unit is %.
679 -
680 - zz zz is the time delay of the output, the unit is ms.
681 -
682 -
683 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684 -
685 -The oscilloscope displays as follows:
686 -
687 -[[image:image-20230817173858-5.png||height="694" width="921"]]
688 -
689 -
690 690  === 2.3.3  ​Decode payload ===
691 691  
692 692  
... ... @@ -696,13 +696,13 @@
696 696  
697 697  The payload decoder function for TTN V3 are here:
698 698  
699 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
601 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
700 700  
701 701  
702 702  ==== 2.3.3.1 Battery Info ====
703 703  
704 704  
705 -Check the battery voltage for SN50v3-LB.
607 +Check the battery voltage for SN50v3.
706 706  
707 707  Ex1: 0x0B45 = 2885mV
708 708  
... ... @@ -750,24 +750,19 @@
750 750  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
751 751  
752 752  
753 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
754 754  
755 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
756 756  
757 757  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
758 758  
759 -
760 760  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
761 761  
762 762  
763 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
764 -
765 -[[image:image-20230811113449-1.png||height="370" width="608"]]
766 -
767 767  ==== 2.3.3.5 Digital Interrupt ====
768 768  
769 769  
770 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
771 771  
772 772  (% style="color:blue" %)** Interrupt connection method:**
773 773  
... ... @@ -780,18 +780,18 @@
780 780  
781 781  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
782 782  
783 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
784 784  
785 785  
786 786  (% style="color:blue" %)**Below is the installation example:**
787 787  
788 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
789 789  
790 790  * (((
791 -One pin to SN50v3-LB's PA8 pin
688 +One pin to SN50_v3's PA8 pin
792 792  )))
793 793  * (((
794 -The other pin to SN50v3-LB's VDD pin
691 +The other pin to SN50_v3's VDD pin
795 795  )))
796 796  
797 797  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -808,7 +808,7 @@
808 808  
809 809  The command is:
810 810  
811 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
812 812  
813 813  Below shows some screen captures in TTN V3:
814 814  
... ... @@ -815,7 +815,7 @@
815 815  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
816 816  
817 817  
818 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
819 819  
820 820  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
821 821  
... ... @@ -827,13 +827,12 @@
827 827  
828 828  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
829 829  
830 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
831 831  
832 -
833 833  Below is the connection to SHT20/ SHT31. The connection is as below:
834 834  
835 -[[image:image-20230610170152-2.png||height="501" width="846"]]
836 836  
732 +[[image:image-20230513103633-3.png||height="448" width="716"]]
837 837  
838 838  The device will be able to get the I2C sensor data now and upload to IoT Server.
839 839  
... ... @@ -861,7 +861,7 @@
861 861  
862 862  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
863 863  
864 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
865 865  
866 866  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
867 867  
... ... @@ -870,7 +870,7 @@
870 870  [[image:image-20230512173903-6.png||height="596" width="715"]]
871 871  
872 872  
873 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
874 874  
875 875  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
876 876  
... ... @@ -882,13 +882,13 @@
882 882  ==== 2.3.3.9  Battery Output - BAT pin ====
883 883  
884 884  
885 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
886 886  
887 887  
888 888  ==== 2.3.3.10  +5V Output ====
889 889  
890 890  
891 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
892 892  
893 893  The 5V output time can be controlled by AT Command.
894 894  
... ... @@ -896,7 +896,7 @@
896 896  
897 897  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
898 898  
899 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
900 900  
901 901  
902 902  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -910,40 +910,9 @@
910 910  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
911 911  
912 912  
913 -==== 2.3.3.12  PWM MOD ====
809 +==== 2.3.3.12  Working MOD ====
914 914  
915 915  
916 -* (((
917 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
918 -)))
919 -* (((
920 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 -)))
922 -
923 - [[image:image-20230817183249-3.png||height="320" width="417"]]
924 -
925 -* (((
926 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 -)))
928 -* (((
929 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 -)))
931 -* (((
932 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
933 -
934 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935 -
936 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 -
938 -b) If the output duration is more than 30 seconds, better to use external power source. 
939 -
940 -
941 -
942 -)))
943 -
944 -==== 2.3.3.13  Working MOD ====
945 -
946 -
947 947  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
948 948  
949 949  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -959,8 +959,8 @@
959 959  * 6: MOD7
960 960  * 7: MOD8
961 961  * 8: MOD9
962 -* 9: MOD10
963 963  
828 +
964 964  == 2.4 Payload Decoder file ==
965 965  
966 966  
... ... @@ -990,6 +990,7 @@
990 990  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
991 991  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
992 992  
858 +
993 993  == 3.2 General Commands ==
994 994  
995 995  
... ... @@ -1006,7 +1006,7 @@
1006 1006  == 3.3 Commands special design for SN50v3-LB ==
1007 1007  
1008 1008  
1009 -These commands only valid for SN50v3-LB, as below:
875 +These commands only valid for S31x-LB, as below:
1010 1010  
1011 1011  
1012 1012  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1017,7 +1017,7 @@
1017 1017  (% style="color:blue" %)**AT Command: AT+TDC**
1018 1018  
1019 1019  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
886 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1021 1021  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1022 1022  30000
1023 1023  OK
... ... @@ -1037,14 +1037,15 @@
1037 1037  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1038 1038  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1039 1039  
906 +
1040 1040  === 3.3.2 Get Device Status ===
1041 1041  
1042 1042  
1043 1043  Send a LoRaWAN downlink to ask the device to send its status.
1044 1044  
1045 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
912 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1046 1046  
1047 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
914 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1048 1048  
1049 1049  
1050 1050  === 3.3.3 Set Interrupt Mode ===
... ... @@ -1055,7 +1055,7 @@
1055 1055  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1056 1056  
1057 1057  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1058 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
925 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1059 1059  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1060 1060  0
1061 1061  OK
... ... @@ -1085,6 +1085,7 @@
1085 1085  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 1086  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1087 1087  
955 +
1088 1088  === 3.3.4 Set Power Output Duration ===
1089 1089  
1090 1090  
... ... @@ -1099,7 +1099,7 @@
1099 1099  (% style="color:blue" %)**AT Command: AT+5VT**
1100 1100  
1101 1101  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1102 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
970 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1103 1103  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1104 1104  500(default)
1105 1105  OK
... ... @@ -1117,6 +1117,7 @@
1117 1117  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 1118  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1119 1119  
988 +
1120 1120  === 3.3.5 Set Weighing parameters ===
1121 1121  
1122 1122  
... ... @@ -1125,7 +1125,7 @@
1125 1125  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1126 1126  
1127 1127  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1128 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
997 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1129 1129  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1130 1130  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1131 1131  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1142,6 +1142,7 @@
1142 1142  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 1143  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1144 1144  
1014 +
1145 1145  === 3.3.6 Set Digital pulse count value ===
1146 1146  
1147 1147  
... ... @@ -1152,7 +1152,7 @@
1152 1152  (% style="color:blue" %)**AT Command: AT+SETCNT**
1153 1153  
1154 1154  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1155 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1025 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1156 1156  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1157 1157  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1158 1158  
... ... @@ -1165,6 +1165,7 @@
1165 1165  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 1166  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167 1167  
1038 +
1168 1168  === 3.3.7 Set Workmode ===
1169 1169  
1170 1170  
... ... @@ -1173,7 +1173,7 @@
1173 1173  (% style="color:blue" %)**AT Command: AT+MOD**
1174 1174  
1175 1175  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1176 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1047 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1177 1177  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1178 1178  OK
1179 1179  )))
... ... @@ -1189,101 +1189,10 @@
1189 1189  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 1190  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191 1191  
1192 -(% id="H3.3.8PWMsetting" %)
1193 -=== 3.3.8 PWM setting ===
1194 1194  
1064 += 4. Battery & Power Consumption =
1195 1195  
1196 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197 1197  
1198 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1199 -
1200 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 -0(default)
1204 -
1205 -OK
1206 -)))
1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 -OK
1209 -
1210 -)))
1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 -
1213 -(% style="color:blue" %)**Downlink Command: 0x0C**
1214 -
1215 -Format: Command Code (0x0C) followed by 1 bytes.
1216 -
1217 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 -
1220 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 -
1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 -
1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 -0,0,0(default)
1228 -
1229 -OK
1230 -)))
1231 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 -OK
1233 -
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 -
1238 -
1239 -)))|(% style="width:137px" %)(((
1240 -OK
1241 -)))
1242 -
1243 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 -AT+PWMOUT=a,b,c
1247 -
1248 -
1249 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 -Set PWM output time, output frequency and output duty cycle.
1251 -
1252 -(((
1253 -
1254 -)))
1255 -
1256 -(((
1257 -
1258 -)))
1259 -)))|(% style="width:242px" %)(((
1260 -a: Output time (unit: seconds)
1261 -
1262 -The value ranges from 0 to 65535.
1263 -
1264 -When a=65535, PWM will always output.
1265 -)))
1266 -|(% style="width:242px" %)(((
1267 -b: Output frequency (unit: HZ)
1268 -)))
1269 -|(% style="width:242px" %)(((
1270 -c: Output duty cycle (unit: %)
1271 -
1272 -The value ranges from 0 to 100.
1273 -)))
1274 -
1275 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 -
1277 -Format: Command Code (0x0B01) followed by 6 bytes.
1278 -
1279 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 -
1281 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 -
1284 -= 4. Battery & Power Cons =
1285 -
1286 -
1287 1287  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1288 1288  
1289 1289  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1293,19 +1293,21 @@
1293 1293  
1294 1294  
1295 1295  (% class="wikigeneratedid" %)
1296 -**User can change firmware SN50v3-LB to:**
1076 +User can change firmware SN50v3-LB to:
1297 1297  
1298 1298  * Change Frequency band/ region.
1299 1299  * Update with new features.
1300 1300  * Fix bugs.
1301 1301  
1302 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1082 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1303 1303  
1304 -**Methods to Update Firmware:**
1305 1305  
1306 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1085 +Methods to Update Firmware:
1308 1308  
1087 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1088 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1089 +
1090 +
1309 1309  = 6. FAQ =
1310 1310  
1311 1311  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1314,22 +1314,7 @@
1314 1314  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 1315  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1316 1316  
1317 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1318 1318  
1319 -
1320 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321 -
1322 -
1323 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1324 -
1325 -
1326 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 -
1328 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329 -
1330 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1331 -
1332 -
1333 1333  = 7. Order Info =
1334 1334  
1335 1335  
... ... @@ -1353,6 +1353,7 @@
1353 1353  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1354 1354  * (% style="color:red" %)**NH**(%%): No Hole
1355 1355  
1123 +
1356 1356  = 8. ​Packing Info =
1357 1357  
1358 1358  
... ... @@ -1367,6 +1367,7 @@
1367 1367  * Package Size / pcs : cm
1368 1368  * Weight / pcs : g
1369 1369  
1138 +
1370 1370  = 9. Support =
1371 1371  
1372 1372  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0