<
From version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
To version < 14.1 >
edited by Edwin Chen
on 2023/05/11 23:21
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -47,7 +47,6 @@
47 47  
48 48  == 1.3 Specification ==
49 49  
50 -
51 51  (% style="color:#037691" %)**Common DC Characteristics:**
52 52  
53 53  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -84,7 +84,6 @@
84 84  
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 -
88 88  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89 89  
90 90  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -127,27 +127,21 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
138 +== Hole Option ==
146 146  
147 -
148 -== 1.9 Hole Option ==
149 -
150 -
151 151  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 152  
153 153  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -160,7 +160,7 @@
160 160  == 2.1 How it works ==
161 161  
162 162  
163 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 164  
165 165  
166 166  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,7 +168,7 @@
168 168  
169 169  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170 170  
171 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 172  
173 173  
174 174  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -217,7 +217,7 @@
217 217  === 2.3.1 Device Status, FPORT~=5 ===
218 218  
219 219  
220 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
221 221  
222 222  The Payload format is as below.
223 223  
... ... @@ -225,44 +225,44 @@
225 225  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
226 226  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 227  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
228 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 229  
230 230  Example parse in TTNv3
231 231  
232 232  
233 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
234 234  
235 235  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236 236  
237 237  (% style="color:#037691" %)**Frequency Band**:
238 238  
239 -0x01: EU868
228 +*0x01: EU868
240 240  
241 -0x02: US915
230 +*0x02: US915
242 242  
243 -0x03: IN865
232 +*0x03: IN865
244 244  
245 -0x04: AU915
234 +*0x04: AU915
246 246  
247 -0x05: KZ865
236 +*0x05: KZ865
248 248  
249 -0x06: RU864
238 +*0x06: RU864
250 250  
251 -0x07: AS923
240 +*0x07: AS923
252 252  
253 -0x08: AS923-1
242 +*0x08: AS923-1
254 254  
255 -0x09: AS923-2
244 +*0x09: AS923-2
256 256  
257 -0x0a: AS923-3
246 +*0x0a: AS923-3
258 258  
259 -0x0b: CN470
248 +*0x0b: CN470
260 260  
261 -0x0c: EU433
250 +*0x0c: EU433
262 262  
263 -0x0d: KR920
252 +*0x0d: KR920
264 264  
265 -0x0e: MA869
254 +*0x0e: MA869
266 266  
267 267  
268 268  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -286,40 +286,25 @@
286 286  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
287 287  
288 288  
289 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
290 290  
291 291  For example:
292 292  
293 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 294  
295 295  
296 296  (% style="color:red" %) **Important Notice:**
297 297  
298 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
299 299  
300 -2. All modes share the same Payload Explanation from HERE.
301 -
302 -3. By default, the device will send an uplink message every 20 minutes.
303 -
304 -
305 305  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
306 306  
307 -
308 308  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309 309  
310 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
311 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 -|Value|Bat|(% style="width:191px" %)(((
313 -Temperature(DS18B20)(PC13)
314 -)))|(% style="width:78px" %)(((
315 -ADC(PA4)
316 -)))|(% style="width:216px" %)(((
317 -Digital in(PB15)&Digital Interrupt(PA8)
318 -)))|(% style="width:308px" %)(((
319 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
320 -)))|(% style="width:154px" %)(((
321 -Humidity(SHT20 or SHT31)
322 -)))
295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
323 323  
324 324  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
325 325  
... ... @@ -326,152 +326,128 @@
326 326  
327 327  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
328 328  
329 -
330 330  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
331 331  
332 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
333 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 -|Value|BAT|(% style="width:196px" %)(((
335 -Temperature(DS18B20)(PC13)
336 -)))|(% style="width:87px" %)(((
337 -ADC(PA4)
338 -)))|(% style="width:189px" %)(((
339 -Digital in(PB15) & Digital Interrupt(PA8)
340 -)))|(% style="width:208px" %)(((
341 -Distance measure by: 1) LIDAR-Lite V3HP
342 -Or 2) Ultrasonic Sensor
343 -)))|(% style="width:117px" %)Reserved
305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
306 +|**Value**|BAT|(((
307 +Temperature(DS18B20)
308 +)))|ADC|Digital in & Digital Interrupt|(((
309 +Distance measure by:
310 +1) LIDAR-Lite V3HP
311 +Or
312 +2) Ultrasonic Sensor
313 +)))|Reserved
344 344  
345 345  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
346 346  
317 +**Connection of LIDAR-Lite V3HP:**
347 347  
348 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
349 349  
350 -[[image:image-20230512173758-5.png||height="563" width="712"]]
321 +**Connection to Ultrasonic Sensor:**
351 351  
323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
352 352  
353 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
354 -
355 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
356 -
357 -[[image:image-20230512173903-6.png||height="596" width="715"]]
358 -
359 -
360 360  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
361 361  
362 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
363 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 -|Value|BAT|(% style="width:183px" %)(((
365 -Temperature(DS18B20)(PC13)
366 -)))|(% style="width:173px" %)(((
367 -Digital in(PB15) & Digital Interrupt(PA8)
368 -)))|(% style="width:84px" %)(((
369 -ADC(PA4)
370 -)))|(% style="width:323px" %)(((
327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
330 +)))|Digital in & Digital Interrupt|ADC|(((
371 371  Distance measure by:1)TF-Mini plus LiDAR
372 -Or 2) TF-Luna LiDAR
373 -)))|(% style="width:188px" %)Distance signal  strength
332 +Or 
333 +2) TF-Luna LiDAR
334 +)))|Distance signal  strength
374 374  
375 375  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
376 376  
377 -
378 378  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
379 379  
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
381 381  
382 -[[image:image-20230512180609-7.png||height="555" width="802"]]
342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
383 383  
384 -
385 385  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
386 386  
387 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
388 388  
389 -[[image:image-20230610170047-1.png||height="452" width="799"]]
348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
390 390  
350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
391 391  
352 +
392 392  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
393 393  
394 -
395 395  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396 396  
397 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
398 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
357 +|=(((
399 399  **Size(bytes)**
400 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 -|Value|(% style="width:68px" %)(((
402 -ADC1(PA4)
403 -)))|(% style="width:75px" %)(((
404 -ADC2(PA5)
405 -)))|(((
406 -ADC3(PA8)
407 -)))|(((
408 -Digital Interrupt(PB15)
409 -)))|(% style="width:304px" %)(((
410 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
411 -)))|(% style="width:163px" %)(((
412 -Humidity(SHT20 or SHT31)
413 -)))|(% style="width:53px" %)Bat
359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
361 +Digital in(PA12)&Digital Interrupt1(PB14)
362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
414 414  
415 -[[image:image-20230513110214-6.png]]
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
416 416  
417 417  
418 418  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
419 419  
369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
420 420  
421 -This mode has total 11 bytes. As shown below:
371 +Hardware connection is as below,
422 422  
423 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 -|Value|BAT|(% style="width:186px" %)(((
426 -Temperature1(DS18B20)(PC13)
427 -)))|(% style="width:82px" %)(((
428 -ADC(PA4)
429 -)))|(% style="width:210px" %)(((
430 -Digital in(PB15) & Digital Interrupt(PA8) 
431 -)))|(% style="width:191px" %)Temperature2(DS18B20)
432 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
373 +**( Note:**
433 433  
434 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
435 435  
378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
436 436  
437 -[[image:image-20230513134006-1.png||height="559" width="736"]]
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
438 438  
382 +This mode has total 11 bytes. As shown below:
439 439  
384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
385 +|**Value**|BAT|(((
386 +Temperature1
387 +(DS18B20)
388 +(PB3)
389 +)))|ADC|Digital in & Digital Interrupt|Temperature2
390 +(DS18B20)
391 +(PA9)|Temperature3
392 +(DS18B20)
393 +(PA10)
394 +
395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
396 +
397 +
440 440  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
441 441  
400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
442 442  
443 -[[image:image-20230512164658-2.png||height="532" width="729"]]
444 444  
403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
404 +
445 445  Each HX711 need to be calibrated before used. User need to do below two steps:
446 446  
447 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
449 449  1. (((
450 -Weight has 4 bytes, the unit is g.
451 -
452 -
453 -
410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
454 454  )))
455 455  
456 456  For example:
457 457  
458 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
415 +**AT+WEIGAP =403.0**
459 459  
460 460  Response:  Weight is 401 g
461 461  
462 462  Check the response of this command and adjust the value to match the real value for thing.
463 463  
464 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
465 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
421 +|=(((
466 466  **Size(bytes)**
467 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 -|Value|BAT|(% style="width:193px" %)(((
469 -Temperature(DS18B20)(PC13)
470 -)))|(% style="width:85px" %)(((
471 -ADC(PA4)
472 -)))|(% style="width:186px" %)(((
473 -Digital in(PB15) & Digital Interrupt(PA8)
474 -)))|(% style="width:100px" %)Weight
423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
475 475  
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477 477  
... ... @@ -478,513 +478,516 @@
478 478  
479 479  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480 480  
481 -
482 482  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483 483  
484 484  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485 485  
486 -[[image:image-20230512181814-9.png||height="543" width="697"]]
435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
487 487  
437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
488 488  
489 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
490 490  
491 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 -|Value|BAT|(% style="width:256px" %)(((
494 -Temperature(DS18B20)(PC13)
495 -)))|(% style="width:108px" %)(((
496 -ADC(PA4)
497 -)))|(% style="width:126px" %)(((
498 -Digital in(PB15)
499 -)))|(% style="width:145px" %)(((
500 -Count(PA8)
501 -)))
502 -
503 503  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504 504  
505 505  
506 506  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507 507  
449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
508 508  
509 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
451 +|=(((
511 511  **Size(bytes)**
512 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 -|Value|BAT|(% style="width:188px" %)(((
514 -Temperature(DS18B20)
515 -(PC13)
516 -)))|(% style="width:83px" %)(((
517 -ADC(PA5)
518 -)))|(% style="width:184px" %)(((
519 -Digital Interrupt1(PA8)
520 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
454 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
455 +Digital in(PA12)&Digital Interrupt1(PB14)
456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
521 521  
522 -[[image:image-20230513111203-7.png||height="324" width="975"]]
523 -
524 -
525 525  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
526 526  
527 -
528 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 +|=(((
530 530  **Size(bytes)**
531 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 -|Value|BAT|(% style="width:207px" %)(((
533 -Temperature(DS18B20)
534 -(PC13)
535 -)))|(% style="width:94px" %)(((
536 -ADC1(PA4)
537 -)))|(% style="width:198px" %)(((
538 -Digital Interrupt(PB15)
539 -)))|(% style="width:84px" %)(((
540 -ADC2(PA5)
541 -)))|(% style="width:82px" %)(((
542 -ADC3(PA8)
462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
463 +|**Value**|BAT|Temperature(DS18B20)|(((
464 +ADC1(PA0)
465 +)))|(((
466 +Digital in
467 +& Digital Interrupt(PB14)
468 +)))|(((
469 +ADC2(PA1)
470 +)))|(((
471 +ADC3(PA4)
543 543  )))
544 544  
545 -[[image:image-20230513111231-8.png||height="335" width="900"]]
474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
546 546  
547 547  
548 548  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549 549  
550 -
551 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
479 +|=(((
553 553  **Size(bytes)**
554 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 -|Value|BAT|(((
556 -Temperature
557 -(DS18B20)(PC13)
481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
482 +|**Value**|BAT|(((
483 +Temperature1(PB3)
558 558  )))|(((
559 -Temperature2
560 -(DS18B20)(PB9)
485 +Temperature2(PA9)
561 561  )))|(((
562 -Digital Interrupt
563 -(PB15)
564 -)))|(% style="width:193px" %)(((
565 -Temperature3
566 -(DS18B20)(PB8)
567 -)))|(% style="width:78px" %)(((
568 -Count1(PA8)
569 -)))|(% style="width:78px" %)(((
570 -Count2(PA4)
487 +Digital in
488 +& Digital Interrupt(PA4)
489 +)))|(((
490 +Temperature3(PA10)
491 +)))|(((
492 +Count1(PB14)
493 +)))|(((
494 +Count2(PB15)
571 571  )))
572 572  
573 -[[image:image-20230513111255-9.png||height="341" width="899"]]
497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
574 574  
575 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
499 +**The newly added AT command is issued correspondingly:**
576 576  
577 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
501 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
578 578  
579 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
503 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
580 580  
581 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
505 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
582 582  
507 +**AT+SETCNT=aa,bb** 
583 583  
584 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
585 585  
586 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 589  
590 590  
591 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
515 +=== 2.3.3  Decode payload ===
592 592  
593 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
517 +While using TTN V3 network, you can add the payload format to decode the payload.
594 594  
595 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
519 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
596 596  
597 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
521 +The payload decoder function for TTN V3 are here:
598 598  
523 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 599  
600 -===== 2.3.2.10.a  Uplink, PWM input capture =====
601 601  
526 +==== 2.3.3.1 Battery Info ====
602 602  
603 -[[image:image-20230817172209-2.png||height="439" width="683"]]
528 +Check the battery voltage for SN50v3.
604 604  
605 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 -|Value|Bat|(% style="width:191px" %)(((
608 -Temperature(DS18B20)(PC13)
609 -)))|(% style="width:78px" %)(((
610 -ADC(PA4)
611 -)))|(% style="width:135px" %)(((
612 -PWM_Setting
613 -&Digital Interrupt(PA8)
614 -)))|(% style="width:70px" %)(((
615 -Pulse period
616 -)))|(% style="width:89px" %)(((
617 -Duration of high level
618 -)))
530 +Ex1: 0x0B45 = 2885mV
619 619  
620 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
532 +Ex2: 0x0B49 = 2889mV
621 621  
622 622  
623 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
535 +==== 2.3.3.2  Temperature (DS18B20) ====
624 624  
625 -**Frequency:**
537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
626 626  
627 -(% class="MsoNormal" %)
628 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
629 629  
630 -(% class="MsoNormal" %)
631 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
541 +**Connection:**
632 632  
543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]]
633 633  
634 -(% class="MsoNormal" %)
635 -**Duty cycle:**
545 +**Example**:
636 636  
637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
547 +If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
638 638  
639 -[[image:image-20230818092200-1.png||height="344" width="627"]]
549 +If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
640 640  
641 -===== 2.3.2.10.b  Uplink, PWM output =====
551 +(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
642 642  
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
644 644  
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
554 +==== 2.3.3.3 Digital Input ====
646 646  
647 -a is the time delay of the output, the unit is ms.
556 +The digital input for pin PA12,
648 648  
649 -b is the output frequency, the unit is HZ.
558 +* When PA12 is high, the bit 1 of payload byte 6 is 1.
559 +* When PA12 is low, the bit 1 of payload byte 6 is 0.
650 650  
651 -c is the duty cycle of the output, the unit is %.
652 652  
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%) (% style="color:#037691" %)**0B 01 bb cc aa **
562 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
654 654  
655 -aa is the time delay of the output, the unit is ms.
564 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
656 656  
657 -bb is the output frequency, the unit is HZ.
566 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
658 658  
659 -cc is the duty cycle of the output, the unit is %.
568 +The ADC monitors the voltage on the PA0 line, in mV.
660 660  
570 +Ex: 0x021F = 543mv,
661 661  
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
572 +**~ Example1:**  Reading an Oil Sensor (Read a resistance value):
663 663  
664 -The oscilloscope displays as follows:
665 665  
666 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]]
667 667  
577 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
578 +
668 668  
669 -===== 2.3.2.10.c  Downlink, PWM output =====
580 +**Steps:**
670 670  
582 +1. Solder a 10K resistor between PA0 and VCC.
583 +1. Screw oil sensor's two pins to PA0 and PB4.
671 671  
672 -[[image:image-20230817173800-3.png||height="412" width="685"]]
585 +The equipment circuit is as below:
673 673  
674 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]
675 675  
676 - xx xx xx is the output frequency, the unit is HZ.
589 +According to above diagram:
677 677  
678 - yy is the duty cycle of the output, the unit is %.
591 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]]
679 679  
680 - zz zz is the time delay of the output, the unit is ms.
593 +So
681 681  
595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]]
682 682  
683 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
597 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
684 684  
685 -The oscilloscope displays as follows:
599 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm
686 686  
687 -[[image:image-20230817173858-5.png||height="694" width="921"]]
601 +Since the Bouy is linear resistance from 10 ~~ 70cm.
688 688  
603 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy.
689 689  
690 -=== 2.3.3  ​Decode payload ===
691 691  
606 +==== 2.3.3.5 Digital Interrupt ====
692 692  
693 -While using TTN V3 network, you can add the payload format to decode the payload.
608 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
694 694  
695 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
610 +**~ Interrupt connection method:**
696 696  
697 -The payload decoder function for TTN V3 are here:
612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
698 698  
699 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
614 +**Example to use with door sensor :**
700 700  
616 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
701 701  
702 -==== 2.3.3.1 Battery Info ====
618 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
703 703  
620 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
704 704  
705 -Check the battery voltage for SN50v3-LB.
622 +**~ Below is the installation example:**
706 706  
707 -Ex1: 0x0B45 = 2885mV
624 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
708 708  
709 -Ex2: 0x0B49 = 2889mV
626 +* (((
627 +One pin to LSN50's PB14 pin
628 +)))
629 +* (((
630 +The other pin to LSN50's VCC pin
631 +)))
710 710  
633 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
711 711  
712 -==== 2.3.3.2  Temperature (DS18B20) ====
635 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
713 713  
637 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
714 714  
715 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
639 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
716 716  
717 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
641 +The above photos shows the two parts of the magnetic switch fitted to a door.
718 718  
719 -(% style="color:blue" %)**Connection:**
643 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
720 720  
721 -[[image:image-20230512180718-8.png||height="538" width="647"]]
645 +The command is:
722 722  
647 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
723 723  
724 -(% style="color:blue" %)**Example**:
649 +Below shows some screen captures in TTN V3:
725 725  
726 -If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
727 727  
728 -If payload is: FF3FH (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
653 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
729 729  
730 -(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
655 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
731 731  
657 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov).
732 732  
733 -==== 2.3.3.3 Digital Input ====
659 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
734 734  
661 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]]
735 735  
736 -The digital input for pin PB15,
737 737  
738 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
739 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
664 +==== 2.3.3.6 I2C Interface (SHT20) ====
740 740  
741 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
742 -(((
743 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
666 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
744 744  
745 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
668 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).**
746 746  
747 -
748 -)))
670 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.
749 749  
750 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
672 +Below is the connection to SHT20/ SHT31. The connection is as below:
751 751  
674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
752 752  
753 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
676 +The device will be able to get the I2C sensor data now and upload to IoT Server.
754 754  
755 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
678 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
756 756  
757 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
680 +Convert the read byte to decimal and divide it by ten.
758 758  
682 +**Example:**
759 759  
760 -(% style="color:red" %)**NoteIf the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
684 +Temperature:  Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
761 761  
686 +Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
762 762  
763 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
688 +If you want to use other I2C device, please refer the SHT20 part source code as reference.
764 764  
765 -[[image:image-20230811113449-1.png||height="370" width="608"]]
766 766  
767 -==== 2.3.3.5 Digital Interrupt ====
691 +==== 2.3.3. Distance Reading ====
768 768  
693 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
769 769  
770 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
771 771  
772 -(% style="color:blue" %)** Interrupt connection method:**
696 +==== 2.3.3.8 Ultrasonic Sensor ====
773 773  
774 -[[image:image-20230513105351-5.png||height="147" width="485"]]
698 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
775 775  
700 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
776 776  
777 -(% style="color:blue" %)**Example to use with door sensor :**
702 +The picture below shows the connection:
778 778  
779 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]
780 780  
781 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
706 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
782 782  
783 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
708 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
784 784  
710 +**Example:**
785 785  
786 -(% style="color:blue" %)**Below is the installation example:**
712 +Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
787 787  
788 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
789 789  
790 -* (((
791 -One pin to SN50v3-LB's PA8 pin
792 -)))
793 -* (((
794 -The other pin to SN50v3-LB's VDD pin
795 -)))
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
796 796  
797 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
718 +You can see the serial output in ULT mode as below:
798 798  
799 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
720 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
800 800  
801 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
722 +**In TTN V3 server:**
802 802  
803 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
724 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
804 804  
805 -The above photos shows the two parts of the magnetic switch fitted to a door.
726 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
806 806  
807 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
728 +==== 2.3.3.9  Battery Output - BAT pin ====
808 808  
809 -The command is:
730 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
810 810  
811 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
812 812  
813 -Below shows some screen captures in TTN V3:
733 +==== 2.3.3.10  +5V Output ====
814 814  
815 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
735 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling
816 816  
737 +The 5V output time can be controlled by AT Command.
817 817  
818 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
739 +**AT+5VT=1000**
819 819  
820 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
741 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
821 821  
743 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
822 822  
823 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
824 824  
825 825  
826 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
747 +==== 2.3.3.11  BH1750 Illumination Sensor ====
827 827  
828 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
749 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
829 829  
830 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
751 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]
831 831  
753 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
832 832  
833 -Below is the connection to SHT20/ SHT31. The connection is as below:
834 834  
835 -[[image:image-20230610170152-2.png||height="501" width="846"]]
756 +==== 2.3.3.12  Working MOD ====
836 836  
758 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
837 837  
838 -The device will be able to get the I2C sensor data now and upload to IoT Server.
760 +User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
839 839  
840 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
762 +Case 7^^th^^ Byte >> 2 & 0x1f:
841 841  
842 -Convert the read byte to decimal and divide it by ten.
764 +* 0: MOD1
765 +* 1: MOD2
766 +* 2: MOD3
767 +* 3: MOD4
768 +* 4: MOD5
769 +* 5: MOD6
843 843  
844 -**Example:**
845 845  
846 -Temperature:  Read:0116(H) = 278(D Value 278 /10=27.8℃;
772 +== 2.4 Payload Decoder file ==
847 847  
848 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
849 849  
850 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
775 +In TTN, use can add a custom payload so it shows friendly reading
851 851  
777 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
852 852  
853 -==== 2.3.3.7  ​Distance Reading ====
779 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
854 854  
855 855  
856 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
782 +== 2.5 Datalog Feature ==
857 857  
858 858  
859 -==== 2.3.3.8 Ultrasonic Sensor ====
785 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
860 860  
861 861  
862 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
788 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
863 863  
864 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
865 865  
866 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
791 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
867 867  
868 -The picture below shows the connection:
793 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
794 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
869 869  
870 -[[image:image-20230512173903-6.png||height="596" width="715"]]
796 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
871 871  
798 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
872 872  
873 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
800 +=== 2.5.2 Unix TimeStamp ===
874 874  
875 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
876 876  
877 -**Example:**
803 +S31x-LB uses Unix TimeStamp format based on
878 878  
879 -DistanceRead: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
805 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
880 880  
807 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
881 881  
882 -==== 2.3.3.9  Battery Output - BAT pin ====
809 +Below is the converter example
883 883  
811 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
884 884  
885 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
813 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
886 886  
887 887  
888 -==== 2.3.3.10  +5V Output ====
816 +=== 2.5.3 Set Device Time ===
889 889  
890 890  
891 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
819 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
892 892  
893 -The 5V output time can be controlled by AT Command.
821 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
894 894  
895 -(% style="color:blue" %)**AT+5VT=1000**
823 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
896 896  
897 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
898 898  
899 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
826 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
900 900  
901 901  
902 -==== 2.3.3.11  BH1750 Illumination Sensor ====
829 +The Datalog uplinks will use below payload format.
903 903  
831 +**Retrieval data payload:**
904 904  
905 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
833 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
834 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
835 +**Size(bytes)**
836 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
837 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
838 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
839 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
906 906  
907 -[[image:image-20230512172447-4.png||height="416" width="712"]]
841 +**Poll message flag & Ext:**
908 908  
843 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
909 909  
910 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
845 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
911 911  
847 +**Poll Message Flag**: 1: This message is a poll message reply.
912 912  
913 -==== 2.3.3.12  PWM MOD ====
849 +* Poll Message Flag is set to 1.
914 914  
851 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
915 915  
916 -* (((
917 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
918 -)))
919 -* (((
920 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 -)))
853 +For example, in US915 band, the max payload for different DR is:
922 922  
923 - [[image:image-20230817183249-3.png||height="320" width="417"]]
855 +**a) DR0:** max is 11 bytes so one entry of data
924 924  
925 -* (((
926 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 -)))
928 -* (((
929 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 -)))
931 -* (((
932 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
857 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
933 933  
934 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
859 +**c) DR2:** total payload includes 11 entries of data
935 935  
936 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
861 +**d) DR3: **total payload includes 22 entries of data.
937 937  
938 -b) If the output duration is more than 30 seconds, better to use external power source. 
863 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
939 939  
940 940  
941 -
866 +**Example:**
867 +
868 +If S31x-LB has below data inside Flash:
869 +
870 +[[image:1682646494051-944.png]]
871 +
872 +If user sends below downlink command: 3160065F9760066DA705
873 +
874 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
875 +
876 + Stop time: 60066DA7= time 21/1/19 05:27:03
877 +
878 +
879 +**S31x-LB will uplink this payload.**
880 +
881 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
882 +
883 +(((
884 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
942 942  )))
943 943  
944 -==== 2.3.3.13  Working MOD ====
887 +(((
888 +Where the first 11 bytes is for the first entry:
889 +)))
945 945  
891 +(((
892 +7FFF089801464160065F97
893 +)))
946 946  
947 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
895 +(((
896 +**Ext sensor data**=0x7FFF/100=327.67
897 +)))
948 948  
949 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
899 +(((
900 +**Temp**=0x088E/100=22.00
901 +)))
950 950  
951 -Case 7^^th^^ Byte >> 2 & 0x1f:
903 +(((
904 +**Hum**=0x014B/10=32.6
905 +)))
952 952  
953 -* 0: MOD1
954 -* 1: MOD2
955 -* 2: MOD3
956 -* 3: MOD4
957 -* 4: MOD5
958 -* 5: MOD6
959 -* 6: MOD7
960 -* 7: MOD8
961 -* 8: MOD9
962 -* 9: MOD10
907 +(((
908 +**poll message flag & Ext**=0x41,means reply data,Ext=1
909 +)))
963 963  
964 -== 2.4 Payload Decoder file ==
911 +(((
912 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
913 +)))
965 965  
966 966  
967 -In TTN, use can add a custom payload so it shows friendly reading
916 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
968 968  
969 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
918 +== 2.6 Temperature Alarm Feature ==
970 970  
971 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
972 972  
921 +S31x-LB work flow with Alarm feature.
973 973  
974 -== 2.5 Frequency Plans ==
975 975  
924 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
976 976  
977 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
978 978  
927 +== 2.7 Frequency Plans ==
928 +
929 +
930 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
931 +
979 979  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
980 980  
981 981  
982 -= 3. Configure SN50v3-LB =
935 += 3. Configure S31x-LB =
983 983  
984 984  == 3.1 Configure Methods ==
985 985  
986 986  
987 -SN50v3-LB supports below configure method:
940 +S31x-LB supports below configure method:
988 988  
989 989  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
990 990  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1003,10 +1003,10 @@
1003 1003  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1004 1004  
1005 1005  
1006 -== 3.3 Commands special design for SN50v3-LB ==
959 +== 3.3 Commands special design for S31x-LB ==
1007 1007  
1008 1008  
1009 -These commands only valid for SN50v3-LB, as below:
962 +These commands only valid for S31x-LB, as below:
1010 1010  
1011 1011  
1012 1012  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1017,7 +1017,7 @@
1017 1017  (% style="color:blue" %)**AT Command: AT+TDC**
1018 1018  
1019 1019  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
973 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1021 1021  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1022 1022  30000
1023 1023  OK
... ... @@ -1040,250 +1040,118 @@
1040 1040  === 3.3.2 Get Device Status ===
1041 1041  
1042 1042  
1043 -Send a LoRaWAN downlink to ask the device to send its status.
996 +Send a LoRaWAN downlink to ask device send Alarm settings.
1044 1044  
1045 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
998 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1046 1046  
1047 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1000 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1048 1048  
1049 1049  
1050 -=== 3.3.3 Set Interrupt Mode ===
1003 +=== 3.3.3 Set Temperature Alarm Threshold ===
1051 1051  
1005 +* (% style="color:blue" %)**AT Command:**
1052 1052  
1053 -Feature, Set Interrupt mode for GPIO_EXIT.
1007 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1054 1054  
1055 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1009 +* When min=0, and max≠0, Alarm higher than max
1010 +* When min≠0, and max=0, Alarm lower than min
1011 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1056 1056  
1057 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1058 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1059 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1060 -0
1061 -OK
1062 -the mode is 0 =Disable Interrupt
1063 -)))
1064 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1065 -Set Transmit Interval
1066 -0. (Disable Interrupt),
1067 -~1. (Trigger by rising and falling edge)
1068 -2. (Trigger by falling edge)
1069 -3. (Trigger by rising edge)
1070 -)))|(% style="width:157px" %)OK
1071 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1072 -Set Transmit Interval
1073 -trigger by rising edge.
1074 -)))|(% style="width:157px" %)OK
1075 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1013 +Example:
1076 1076  
1077 -(% style="color:blue" %)**Downlink Command: 0x06**
1015 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1078 1078  
1079 -Format: Command Code (0x06) followed by 3 bytes.
1017 +* (% style="color:blue" %)**Downlink Payload:**
1080 1080  
1081 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1019 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1082 1082  
1083 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1084 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1085 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1021 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1087 1087  
1088 -=== 3.3.4 Set Power Output Duration ===
1089 1089  
1024 +=== 3.3.4 Set Humidity Alarm Threshold ===
1090 1090  
1091 -Control the output duration 5V . Before each sampling, device will
1026 +* (% style="color:blue" %)**AT Command:**
1092 1092  
1093 -~1. first enable the power output to external sensor,
1028 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1094 1094  
1095 -2. keep it on as per duration, read sensor value and construct uplink payload
1030 +* When min=0, and max≠0, Alarm higher than max
1031 +* When min≠0, and max=0, Alarm lower than min
1032 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1096 1096  
1097 -3. final, close the power output.
1034 +Example:
1098 1098  
1099 -(% style="color:blue" %)**AT Command: AT+5VT**
1036 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1100 1100  
1101 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1102 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1103 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1104 -500(default)
1105 -OK
1106 -)))
1107 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1108 -Close after a delay of 1000 milliseconds.
1109 -)))|(% style="width:157px" %)OK
1038 +* (% style="color:blue" %)**Downlink Payload:**
1110 1110  
1111 -(% style="color:blue" %)**Downlink Command: 0x07**
1040 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1112 1112  
1113 -Format: Command Code (0x07) followed by 2 bytes.
1042 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1114 1114  
1115 -The first and second bytes are the time to turn on.
1116 1116  
1117 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1045 +=== 3.3.5 Set Alarm Interval ===
1119 1119  
1120 -=== 3.3.5 Set Weighing parameters ===
1047 +The shortest time of two Alarm packet. (unit: min)
1121 1121  
1049 +* (% style="color:blue" %)**AT Command:**
1122 1122  
1123 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1051 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1124 1124  
1125 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1053 +* (% style="color:blue" %)**Downlink Payload:**
1126 1126  
1127 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1128 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1129 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1130 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1131 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1055 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1132 1132  
1133 -(% style="color:blue" %)**Downlink Command: 0x08**
1134 1134  
1135 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1058 +=== 3.3.6 Get Alarm settings ===
1136 1136  
1137 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1138 1138  
1139 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1061 +Send a LoRaWAN downlink to ask device send Alarm settings.
1140 1140  
1141 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1142 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1063 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1144 1144  
1145 -=== 3.3.6 Set Digital pulse count value ===
1065 +**Example:**
1146 1146  
1067 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1147 1147  
1148 -Feature: Set the pulse count value.
1149 1149  
1150 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1070 +**Explain:**
1151 1151  
1152 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1072 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1153 1153  
1154 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1155 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1156 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1157 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1074 +=== 3.3.7 Set Interrupt Mode ===
1158 1158  
1159 -(% style="color:blue" %)**Downlink Command: 0x09**
1160 1160  
1161 -Format: Command Code (0x09) followed by 5 bytes.
1077 +Feature, Set Interrupt mode for GPIO_EXIT.
1162 1162  
1163 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1079 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1164 1164  
1165 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167 -
1168 -=== 3.3.7 Set Workmode ===
1169 -
1170 -
1171 -Feature: Switch working mode.
1172 -
1173 -(% style="color:blue" %)**AT Command: AT+MOD**
1174 -
1175 1175  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1176 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1177 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1082 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1083 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1084 +0
1178 1178  OK
1086 +the mode is 0 =Disable Interrupt
1179 1179  )))
1180 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1181 -OK
1182 -Attention:Take effect after ATZ
1183 -)))
1088 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1089 +Set Transmit Interval
1090 +0. (Disable Interrupt),
1091 +~1. (Trigger by rising and falling edge)
1092 +2. (Trigger by falling edge)
1093 +3. (Trigger by rising edge)
1094 +)))|(% style="width:157px" %)OK
1184 1184  
1185 -(% style="color:blue" %)**Downlink Command: 0x0A**
1096 +(% style="color:blue" %)**Downlink Command: 0x06**
1186 1186  
1187 -Format: Command Code (0x0A) followed by 1 bytes.
1098 +Format: Command Code (0x06) followed by 3 bytes.
1188 1188  
1189 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1100 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1191 1191  
1192 -(% id="H3.3.8PWMsetting" %)
1193 -=== 3.3.8 PWM setting ===
1102 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1103 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1194 1194  
1105 += 4. Battery & Power Consumption =
1195 1195  
1196 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197 1197  
1198 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1199 -
1200 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 -0(default)
1204 -
1205 -OK
1206 -)))
1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 -OK
1209 -
1210 -)))
1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 -
1213 -(% style="color:blue" %)**Downlink Command: 0x0C**
1214 -
1215 -Format: Command Code (0x0C) followed by 1 bytes.
1216 -
1217 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 -
1220 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 -
1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 -
1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 -0,0,0(default)
1228 -
1229 -OK
1230 -)))
1231 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 -OK
1233 -
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 -
1238 -
1239 -)))|(% style="width:137px" %)(((
1240 -OK
1241 -)))
1242 -
1243 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 -AT+PWMOUT=a,b,c
1247 -
1248 -
1249 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 -Set PWM output time, output frequency and output duty cycle.
1251 -
1252 -(((
1253 -
1254 -)))
1255 -
1256 -(((
1257 -
1258 -)))
1259 -)))|(% style="width:242px" %)(((
1260 -a: Output time (unit: seconds)
1261 -
1262 -The value ranges from 0 to 65535.
1263 -
1264 -When a=65535, PWM will always output.
1265 -)))
1266 -|(% style="width:242px" %)(((
1267 -b: Output frequency (unit: HZ)
1268 -)))
1269 -|(% style="width:242px" %)(((
1270 -c: Output duty cycle (unit: %)
1271 -
1272 -The value ranges from 0 to 100.
1273 -)))
1274 -
1275 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 -
1277 -Format: Command Code (0x0B01) followed by 6 bytes.
1278 -
1279 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 -
1281 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 -
1284 -= 4. Battery & Power Cons =
1285 -
1286 -
1287 1287  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1288 1288  
1289 1289  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1293,43 +1293,24 @@
1293 1293  
1294 1294  
1295 1295  (% class="wikigeneratedid" %)
1296 -**User can change firmware SN50v3-LB to:**
1117 +User can change firmware SN50v3-LB to:
1297 1297  
1298 1298  * Change Frequency band/ region.
1299 1299  * Update with new features.
1300 1300  * Fix bugs.
1301 1301  
1302 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1123 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1303 1303  
1304 -**Methods to Update Firmware:**
1305 1305  
1306 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1126 +Methods to Update Firmware:
1308 1308  
1128 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1129 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1130 +
1309 1309  = 6. FAQ =
1310 1310  
1311 -== 6.1 Where can i find source code of SN50v3-LB? ==
1312 1312  
1313 1313  
1314 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1316 -
1317 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1318 -
1319 -
1320 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321 -
1322 -
1323 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1324 -
1325 -
1326 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 -
1328 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329 -
1330 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1331 -
1332 -
1333 1333  = 7. Order Info =
1334 1334  
1335 1335  
... ... @@ -1355,7 +1355,6 @@
1355 1355  
1356 1356  = 8. ​Packing Info =
1357 1357  
1358 -
1359 1359  (% style="color:#037691" %)**Package Includes**:
1360 1360  
1361 1361  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1371,5 +1371,4 @@
1371 1371  
1372 1372  
1373 1373  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1374 -
1375 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1175 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0