<
From version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
To version < 11.1 >
edited by Edwin Chen
on 2023/05/11 20:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -47,7 +47,6 @@
47 47  
48 48  == 1.3 Specification ==
49 49  
50 -
51 51  (% style="color:#037691" %)**Common DC Characteristics:**
52 52  
53 53  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -84,7 +84,6 @@
84 84  
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 -
88 88  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89 89  
90 90  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -127,27 +127,21 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
138 +== Hole Option ==
146 146  
147 -
148 -== 1.9 Hole Option ==
149 -
150 -
151 151  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 152  
153 153  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -160,7 +160,7 @@
160 160  == 2.1 How it works ==
161 161  
162 162  
163 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 164  
165 165  
166 166  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,14 +168,14 @@
168 168  
169 169  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170 170  
171 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 172  
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
175 175  
176 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
180 180  
181 181  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -202,10 +202,10 @@
202 202  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203 203  
204 204  
205 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
206 206  
207 207  
208 -Press the button for 5 seconds to activate the SN50v3-LB.
197 +Press the button for 5 seconds to activate the S31x-LB.
209 209  
210 210  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
211 211  
... ... @@ -217,7 +217,7 @@
217 217  === 2.3.1 Device Status, FPORT~=5 ===
218 218  
219 219  
220 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
221 221  
222 222  The Payload format is as below.
223 223  
... ... @@ -225,44 +225,46 @@
225 225  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
226 226  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 227  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
228 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 229  
230 230  Example parse in TTNv3
231 231  
221 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
232 232  
233 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
234 234  
224 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 +
235 235  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236 236  
237 237  (% style="color:#037691" %)**Frequency Band**:
238 238  
239 -0x01: EU868
230 +*0x01: EU868
240 240  
241 -0x02: US915
232 +*0x02: US915
242 242  
243 -0x03: IN865
234 +*0x03: IN865
244 244  
245 -0x04: AU915
236 +*0x04: AU915
246 246  
247 -0x05: KZ865
238 +*0x05: KZ865
248 248  
249 -0x06: RU864
240 +*0x06: RU864
250 250  
251 -0x07: AS923
242 +*0x07: AS923
252 252  
253 -0x08: AS923-1
244 +*0x08: AS923-1
254 254  
255 -0x09: AS923-2
246 +*0x09: AS923-2
256 256  
257 -0x0a: AS923-3
248 +*0x0a: AS923-3
258 258  
259 -0x0b: CN470
250 +*0x0b: CN470
260 260  
261 -0x0c: EU433
252 +*0x0c: EU433
262 262  
263 -0x0d: KR920
254 +*0x0d: KR920
264 264  
265 -0x0e: MA869
256 +*0x0e: MA869
266 266  
267 267  
268 268  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,446 +283,41 @@
283 283  Ex2: 0x0B49 = 2889mV
284 284  
285 285  
286 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 +=== 2.3.2  Sensor Data. FPORT~=2 ===
287 287  
288 288  
289 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 +Sensor Data is uplink via FPORT=2
290 290  
291 -For example:
292 -
293 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 -
295 -
296 -(% style="color:red" %) **Important Notice:**
297 -
298 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
299 -
300 -2. All modes share the same Payload Explanation from HERE.
301 -
302 -3. By default, the device will send an uplink message every 20 minutes.
303 -
304 -
305 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
306 -
307 -
308 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309 -
310 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
311 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 -|Value|Bat|(% style="width:191px" %)(((
313 -Temperature(DS18B20)(PC13)
314 -)))|(% style="width:78px" %)(((
315 -ADC(PA4)
316 -)))|(% style="width:216px" %)(((
317 -Digital in(PB15)&Digital Interrupt(PA8)
318 -)))|(% style="width:308px" %)(((
319 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
320 -)))|(% style="width:154px" %)(((
321 -Humidity(SHT20 or SHT31)
322 -)))
323 -
324 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
325 -
326 -
327 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
328 -
329 -
330 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
331 -
332 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
333 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 -|Value|BAT|(% style="width:196px" %)(((
335 -Temperature(DS18B20)(PC13)
336 -)))|(% style="width:87px" %)(((
337 -ADC(PA4)
338 -)))|(% style="width:189px" %)(((
339 -Digital in(PB15) & Digital Interrupt(PA8)
340 -)))|(% style="width:208px" %)(((
341 -Distance measure by: 1) LIDAR-Lite V3HP
342 -Or 2) Ultrasonic Sensor
343 -)))|(% style="width:117px" %)Reserved
344 -
345 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
346 -
347 -
348 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
349 -
350 -[[image:image-20230512173758-5.png||height="563" width="712"]]
351 -
352 -
353 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
354 -
355 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
356 -
357 -[[image:image-20230512173903-6.png||height="596" width="715"]]
358 -
359 -
360 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
361 -
362 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
363 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 -|Value|BAT|(% style="width:183px" %)(((
365 -Temperature(DS18B20)(PC13)
366 -)))|(% style="width:173px" %)(((
367 -Digital in(PB15) & Digital Interrupt(PA8)
368 -)))|(% style="width:84px" %)(((
369 -ADC(PA4)
370 -)))|(% style="width:323px" %)(((
371 -Distance measure by:1)TF-Mini plus LiDAR
372 -Or 2) TF-Luna LiDAR
373 -)))|(% style="width:188px" %)Distance signal  strength
374 -
375 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
376 -
377 -
378 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
379 -
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
381 -
382 -[[image:image-20230512180609-7.png||height="555" width="802"]]
383 -
384 -
385 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
386 -
387 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
388 -
389 -[[image:image-20230610170047-1.png||height="452" width="799"]]
390 -
391 -
392 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
393 -
394 -
395 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396 -
397 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
398 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
282 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
399 399  **Size(bytes)**
400 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 -|Value|(% style="width:68px" %)(((
402 -ADC1(PA4)
403 -)))|(% style="width:75px" %)(((
404 -ADC2(PA5)
405 -)))|(((
406 -ADC3(PA8)
407 -)))|(((
408 -Digital Interrupt(PB15)
409 -)))|(% style="width:304px" %)(((
410 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
411 -)))|(% style="width:163px" %)(((
412 -Humidity(SHT20 or SHT31)
413 -)))|(% style="width:53px" %)Bat
414 -
415 -[[image:image-20230513110214-6.png]]
416 -
417 -
418 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
419 -
420 -
421 -This mode has total 11 bytes. As shown below:
422 -
423 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 -|Value|BAT|(% style="width:186px" %)(((
426 -Temperature1(DS18B20)(PC13)
427 -)))|(% style="width:82px" %)(((
428 -ADC(PA4)
429 -)))|(% style="width:210px" %)(((
430 -Digital in(PB15) & Digital Interrupt(PA8) 
431 -)))|(% style="width:191px" %)Temperature2(DS18B20)
432 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
433 -
434 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
435 -
436 -
437 -[[image:image-20230513134006-1.png||height="559" width="736"]]
438 -
439 -
440 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
441 -
442 -
443 -[[image:image-20230512164658-2.png||height="532" width="729"]]
444 -
445 -Each HX711 need to be calibrated before used. User need to do below two steps:
446 -
447 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
449 -1. (((
450 -Weight has 4 bytes, the unit is g.
451 -
452 -
453 -
285 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 +[[Battery>>||anchor="HBattery:"]]
288 +)))|(% style="width:130px" %)(((
289 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 +)))|(% style="width:91px" %)(((
291 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 +)))|(% style="width:103px" %)(((
293 +[[Temperature>>||anchor="HTemperature:"]]
294 +)))|(% style="width:80px" %)(((
295 +[[Humidity>>||anchor="HHumidity:"]]
454 454  )))
455 455  
456 -For example:
298 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
457 457  
458 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
300 +Sensor Battery Level.
459 459  
460 -Response:  Weight is 401 g
461 -
462 -Check the response of this command and adjust the value to match the real value for thing.
463 -
464 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
465 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 -**Size(bytes)**
467 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 -|Value|BAT|(% style="width:193px" %)(((
469 -Temperature(DS18B20)(PC13)
470 -)))|(% style="width:85px" %)(((
471 -ADC(PA4)
472 -)))|(% style="width:186px" %)(((
473 -Digital in(PB15) & Digital Interrupt(PA8)
474 -)))|(% style="width:100px" %)Weight
475 -
476 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477 -
478 -
479 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480 -
481 -
482 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483 -
484 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485 -
486 -[[image:image-20230512181814-9.png||height="543" width="697"]]
487 -
488 -
489 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 -
491 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 -|Value|BAT|(% style="width:256px" %)(((
494 -Temperature(DS18B20)(PC13)
495 -)))|(% style="width:108px" %)(((
496 -ADC(PA4)
497 -)))|(% style="width:126px" %)(((
498 -Digital in(PB15)
499 -)))|(% style="width:145px" %)(((
500 -Count(PA8)
501 -)))
502 -
503 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504 -
505 -
506 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507 -
508 -
509 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 -**Size(bytes)**
512 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 -|Value|BAT|(% style="width:188px" %)(((
514 -Temperature(DS18B20)
515 -(PC13)
516 -)))|(% style="width:83px" %)(((
517 -ADC(PA5)
518 -)))|(% style="width:184px" %)(((
519 -Digital Interrupt1(PA8)
520 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
521 -
522 -[[image:image-20230513111203-7.png||height="324" width="975"]]
523 -
524 -
525 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
526 -
527 -
528 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 -**Size(bytes)**
531 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 -|Value|BAT|(% style="width:207px" %)(((
533 -Temperature(DS18B20)
534 -(PC13)
535 -)))|(% style="width:94px" %)(((
536 -ADC1(PA4)
537 -)))|(% style="width:198px" %)(((
538 -Digital Interrupt(PB15)
539 -)))|(% style="width:84px" %)(((
540 -ADC2(PA5)
541 -)))|(% style="width:82px" %)(((
542 -ADC3(PA8)
543 -)))
544 -
545 -[[image:image-20230513111231-8.png||height="335" width="900"]]
546 -
547 -
548 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549 -
550 -
551 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 -**Size(bytes)**
554 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 -|Value|BAT|(((
556 -Temperature
557 -(DS18B20)(PC13)
558 -)))|(((
559 -Temperature2
560 -(DS18B20)(PB9)
561 -)))|(((
562 -Digital Interrupt
563 -(PB15)
564 -)))|(% style="width:193px" %)(((
565 -Temperature3
566 -(DS18B20)(PB8)
567 -)))|(% style="width:78px" %)(((
568 -Count1(PA8)
569 -)))|(% style="width:78px" %)(((
570 -Count2(PA4)
571 -)))
572 -
573 -[[image:image-20230513111255-9.png||height="341" width="899"]]
574 -
575 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
576 -
577 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
578 -
579 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
580 -
581 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
582 -
583 -
584 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
585 -
586 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
587 -
588 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 -
590 -
591 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 -
593 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594 -
595 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596 -
597 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
598 -
599 -
600 -===== 2.3.2.10.a  Uplink, PWM input capture =====
601 -
602 -
603 -[[image:image-20230817172209-2.png||height="439" width="683"]]
604 -
605 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 -|Value|Bat|(% style="width:191px" %)(((
608 -Temperature(DS18B20)(PC13)
609 -)))|(% style="width:78px" %)(((
610 -ADC(PA4)
611 -)))|(% style="width:135px" %)(((
612 -PWM_Setting
613 -&Digital Interrupt(PA8)
614 -)))|(% style="width:70px" %)(((
615 -Pulse period
616 -)))|(% style="width:89px" %)(((
617 -Duration of high level
618 -)))
619 -
620 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
621 -
622 -
623 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
624 -
625 -**Frequency:**
626 -
627 -(% class="MsoNormal" %)
628 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
629 -
630 -(% class="MsoNormal" %)
631 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 -
633 -
634 -(% class="MsoNormal" %)
635 -**Duty cycle:**
636 -
637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638 -
639 -[[image:image-20230818092200-1.png||height="344" width="627"]]
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
644 -
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 -
647 -a is the time delay of the output, the unit is ms.
648 -
649 -b is the output frequency, the unit is HZ.
650 -
651 -c is the duty cycle of the output, the unit is %.
652 -
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 -
655 -aa is the time delay of the output, the unit is ms.
656 -
657 -bb is the output frequency, the unit is HZ.
658 -
659 -cc is the duty cycle of the output, the unit is %.
660 -
661 -
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 -
664 -The oscilloscope displays as follows:
665 -
666 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 -
668 -
669 -===== 2.3.2.10.c  Downlink, PWM output =====
670 -
671 -
672 -[[image:image-20230817173800-3.png||height="412" width="685"]]
673 -
674 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675 -
676 - xx xx xx is the output frequency, the unit is HZ.
677 -
678 - yy is the duty cycle of the output, the unit is %.
679 -
680 - zz zz is the time delay of the output, the unit is ms.
681 -
682 -
683 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684 -
685 -The oscilloscope displays as follows:
686 -
687 -[[image:image-20230817173858-5.png||height="694" width="921"]]
688 -
689 -
690 -=== 2.3.3  ​Decode payload ===
691 -
692 -
693 -While using TTN V3 network, you can add the payload format to decode the payload.
694 -
695 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
696 -
697 -The payload decoder function for TTN V3 are here:
698 -
699 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
700 -
701 -
702 -==== 2.3.3.1 Battery Info ====
703 -
704 -
705 -Check the battery voltage for SN50v3-LB.
706 -
707 707  Ex1: 0x0B45 = 2885mV
708 708  
709 709  Ex2: 0x0B49 = 2889mV
710 710  
711 711  
712 -==== 2.3.3.2  Temperature (DS18B20) ====
713 713  
308 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
714 714  
715 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
310 +**Example**:
716 716  
717 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
718 -
719 -(% style="color:blue" %)**Connection:**
720 -
721 -[[image:image-20230512180718-8.png||height="538" width="647"]]
722 -
723 -
724 -(% style="color:blue" %)**Example**:
725 -
726 726  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
727 727  
728 728  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -730,261 +730,195 @@
730 730  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
731 731  
732 732  
733 -==== 2.3.3.3 Digital Input ====
319 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
734 734  
735 735  
736 -The digital input for pin PB15,
322 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
737 737  
738 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
739 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
740 740  
741 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
742 -(((
743 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
325 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
744 744  
745 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
746 746  
747 -
748 -)))
328 +**Example:**
749 749  
750 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
330 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
751 751  
332 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
752 752  
753 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
334 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
754 754  
755 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
336 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
756 756  
757 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
758 758  
339 +== 2.4 Payload Decoder file ==
759 759  
760 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
761 761  
342 +In TTN, use can add a custom payload so it shows friendly reading
762 762  
763 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
344 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
764 764  
765 -[[image:image-20230811113449-1.png||height="370" width="608"]]
346 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
766 766  
767 -==== 2.3.3.5 Digital Interrupt ====
768 768  
349 +== 2.5 Datalog Feature ==
769 769  
770 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
771 771  
772 -(% style="color:blue" %)** Interrupt connection method:**
352 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
773 773  
774 -[[image:image-20230513105351-5.png||height="147" width="485"]]
775 775  
355 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
776 776  
777 -(% style="color:blue" %)**Example to use with door sensor :**
778 778  
779 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
358 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
780 780  
781 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
360 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
782 782  
783 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
363 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
784 784  
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
785 785  
786 -(% style="color:blue" %)**Below is the installation example:**
367 +=== 2.5.2 Unix TimeStamp ===
787 787  
788 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
789 789  
790 -* (((
791 -One pin to SN50v3-LB's PA8 pin
792 -)))
793 -* (((
794 -The other pin to SN50v3-LB's VDD pin
795 -)))
370 +S31x-LB uses Unix TimeStamp format based on
796 796  
797 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
372 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
798 798  
799 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
374 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
800 800  
801 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
376 +Below is the converter example
802 802  
803 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
378 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
804 804  
805 -The above photos shows the two parts of the magnetic switch fitted to a door.
380 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
806 806  
807 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
808 808  
809 -The command is:
383 +=== 2.5.3 Set Device Time ===
810 810  
811 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
812 812  
813 -Below shows some screen captures in TTN V3:
386 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
814 814  
815 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
388 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
816 816  
390 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
817 817  
818 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
819 819  
820 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
393 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
821 821  
822 822  
823 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
396 +The Datalog uplinks will use below payload format.
824 824  
398 +**Retrieval data payload:**
825 825  
826 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
400 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 +**Size(bytes)**
403 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
827 827  
828 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
408 +**Poll message flag & Ext:**
829 829  
830 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
831 831  
412 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
832 832  
833 -Below is the connection to SHT20/ SHT31. The connection is as below:
414 +**Poll Message Flag**: 1: This message is a poll message reply.
834 834  
835 -[[image:image-20230610170152-2.png||height="501" width="846"]]
416 +* Poll Message Flag is set to 1.
836 836  
418 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
837 837  
838 -The device will be able to get the I2C sensor data now and upload to IoT Server.
420 +For example, in US915 band, the max payload for different DR is:
839 839  
840 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
422 +**a) DR0:** max is 11 bytes so one entry of data
841 841  
842 -Convert the read byte to decimal and divide it by ten.
424 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
843 843  
844 -**Example:**
426 +**c) DR2:** total payload includes 11 entries of data
845 845  
846 -Temperature:  Read:0116(H) = 278(D Value 278 /10=27.8℃;
428 +**d) DR3: **total payload includes 22 entries of data.
847 847  
848 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
430 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
849 849  
850 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
851 851  
852 -
853 -==== 2.3.3.7  ​Distance Reading ====
854 -
855 -
856 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
857 -
858 -
859 -==== 2.3.3.8 Ultrasonic Sensor ====
860 -
861 -
862 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
863 -
864 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
865 -
866 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
867 -
868 -The picture below shows the connection:
869 -
870 -[[image:image-20230512173903-6.png||height="596" width="715"]]
871 -
872 -
873 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
874 -
875 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
876 -
877 877  **Example:**
878 878  
879 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
435 +If S31x-LB has below data inside Flash:
880 880  
437 +[[image:1682646494051-944.png]]
881 881  
882 -==== 2.3.3.9  Battery Output - BAT pin ====
439 +If user sends below downlink command: 3160065F9760066DA705
883 883  
441 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
884 884  
885 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 + Stop time: 60066DA7= time 21/1/19 05:27:03
886 886  
887 887  
888 -==== 2.3.3.1 +5V Output ====
446 +**S31x-LB will uplink this payload.**
889 889  
448 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
890 890  
891 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
450 +(((
451 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 +)))
892 892  
893 -The 5V output time can be controlled by AT Command.
454 +(((
455 +Where the first 11 bytes is for the first entry:
456 +)))
894 894  
895 -(% style="color:blue" %)**AT+5VT=1000**
458 +(((
459 +7FFF089801464160065F97
460 +)))
896 896  
897 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
462 +(((
463 +**Ext sensor data**=0x7FFF/100=327.67
464 +)))
898 898  
899 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
466 +(((
467 +**Temp**=0x088E/100=22.00
468 +)))
900 900  
901 -
902 -==== 2.3.3.11  BH1750 Illumination Sensor ====
903 -
904 -
905 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
906 -
907 -[[image:image-20230512172447-4.png||height="416" width="712"]]
908 -
909 -
910 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
911 -
912 -
913 -==== 2.3.3.12  PWM MOD ====
914 -
915 -
916 -* (((
917 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
470 +(((
471 +**Hum**=0x014B/10=32.6
918 918  )))
919 -* (((
920 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 -)))
922 922  
923 - [[image:image-20230817183249-3.png||height="320" width="417"]]
924 -
925 -* (((
926 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
474 +(((
475 +**poll message flag & Ext**=0x41,means reply data,Ext=1
927 927  )))
928 -* (((
929 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 -)))
931 -* (((
932 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
933 933  
934 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935 -
936 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 -
938 -b) If the output duration is more than 30 seconds, better to use external power source. 
939 -
940 -
941 -
478 +(((
479 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
942 942  )))
943 943  
944 -==== 2.3.3.13  Working MOD ====
945 945  
483 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
946 946  
947 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
485 +== 2.6 Temperature Alarm Feature ==
948 948  
949 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
950 950  
951 -Case 7^^th^^ Byte >> 2 & 0x1f:
488 +S31x-LB work flow with Alarm feature.
952 952  
953 -* 0: MOD1
954 -* 1: MOD2
955 -* 2: MOD3
956 -* 3: MOD4
957 -* 4: MOD5
958 -* 5: MOD6
959 -* 6: MOD7
960 -* 7: MOD8
961 -* 8: MOD9
962 -* 9: MOD10
963 963  
964 -== 2.4 Payload Decoder file ==
491 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
965 965  
966 966  
967 -In TTN, use can add a custom payload so it shows friendly reading
494 +== 2.7 Frequency Plans ==
968 968  
969 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
970 970  
971 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
497 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
972 972  
973 -
974 -== 2.5 Frequency Plans ==
975 -
976 -
977 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
978 -
979 979  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
980 980  
981 981  
982 -= 3. Configure SN50v3-LB =
502 += 3. Configure S31x-LB =
983 983  
984 984  == 3.1 Configure Methods ==
985 985  
986 986  
987 -SN50v3-LB supports below configure method:
507 +S31x-LB supports below configure method:
988 988  
989 989  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
990 990  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1003,10 +1003,10 @@
1003 1003  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1004 1004  
1005 1005  
1006 -== 3.3 Commands special design for SN50v3-LB ==
526 +== 3.3 Commands special design for S31x-LB ==
1007 1007  
1008 1008  
1009 -These commands only valid for SN50v3-LB, as below:
529 +These commands only valid for S31x-LB, as below:
1010 1010  
1011 1011  
1012 1012  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1017,7 +1017,7 @@
1017 1017  (% style="color:blue" %)**AT Command: AT+TDC**
1018 1018  
1019 1019  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
540 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1021 1021  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1022 1022  30000
1023 1023  OK
... ... @@ -1040,250 +1040,118 @@
1040 1040  === 3.3.2 Get Device Status ===
1041 1041  
1042 1042  
1043 -Send a LoRaWAN downlink to ask the device to send its status.
563 +Send a LoRaWAN downlink to ask device send Alarm settings.
1044 1044  
1045 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
565 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1046 1046  
1047 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
567 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1048 1048  
1049 1049  
1050 -=== 3.3.3 Set Interrupt Mode ===
570 +=== 3.3.3 Set Temperature Alarm Threshold ===
1051 1051  
572 +* (% style="color:blue" %)**AT Command:**
1052 1052  
1053 -Feature, Set Interrupt mode for GPIO_EXIT.
574 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1054 1054  
1055 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
576 +* When min=0, and max≠0, Alarm higher than max
577 +* When min≠0, and max=0, Alarm lower than min
578 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1056 1056  
1057 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1058 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1059 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1060 -0
1061 -OK
1062 -the mode is 0 =Disable Interrupt
1063 -)))
1064 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1065 -Set Transmit Interval
1066 -0. (Disable Interrupt),
1067 -~1. (Trigger by rising and falling edge)
1068 -2. (Trigger by falling edge)
1069 -3. (Trigger by rising edge)
1070 -)))|(% style="width:157px" %)OK
1071 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1072 -Set Transmit Interval
1073 -trigger by rising edge.
1074 -)))|(% style="width:157px" %)OK
1075 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
580 +Example:
1076 1076  
1077 -(% style="color:blue" %)**Downlink Command: 0x06**
582 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1078 1078  
1079 -Format: Command Code (0x06) followed by 3 bytes.
584 +* (% style="color:blue" %)**Downlink Payload:**
1080 1080  
1081 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
586 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1082 1082  
1083 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1084 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1085 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
588 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1087 1087  
1088 -=== 3.3.4 Set Power Output Duration ===
1089 1089  
591 +=== 3.3.4 Set Humidity Alarm Threshold ===
1090 1090  
1091 -Control the output duration 5V . Before each sampling, device will
593 +* (% style="color:blue" %)**AT Command:**
1092 1092  
1093 -~1. first enable the power output to external sensor,
595 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1094 1094  
1095 -2. keep it on as per duration, read sensor value and construct uplink payload
597 +* When min=0, and max≠0, Alarm higher than max
598 +* When min≠0, and max=0, Alarm lower than min
599 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1096 1096  
1097 -3. final, close the power output.
601 +Example:
1098 1098  
1099 -(% style="color:blue" %)**AT Command: AT+5VT**
603 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1100 1100  
1101 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1102 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1103 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1104 -500(default)
1105 -OK
1106 -)))
1107 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1108 -Close after a delay of 1000 milliseconds.
1109 -)))|(% style="width:157px" %)OK
605 +* (% style="color:blue" %)**Downlink Payload:**
1110 1110  
1111 -(% style="color:blue" %)**Downlink Command: 0x07**
607 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1112 1112  
1113 -Format: Command Code (0x07) followed by 2 bytes.
609 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1114 1114  
1115 -The first and second bytes are the time to turn on.
1116 1116  
1117 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
612 +=== 3.3.5 Set Alarm Interval ===
1119 1119  
1120 -=== 3.3.5 Set Weighing parameters ===
614 +The shortest time of two Alarm packet. (unit: min)
1121 1121  
616 +* (% style="color:blue" %)**AT Command:**
1122 1122  
1123 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
618 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1124 1124  
1125 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
620 +* (% style="color:blue" %)**Downlink Payload:**
1126 1126  
1127 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1128 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1129 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1130 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1131 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
622 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1132 1132  
1133 -(% style="color:blue" %)**Downlink Command: 0x08**
1134 1134  
1135 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
625 +=== 3.3.6 Get Alarm settings ===
1136 1136  
1137 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1138 1138  
1139 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
628 +Send a LoRaWAN downlink to ask device send Alarm settings.
1140 1140  
1141 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1142 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
630 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1144 1144  
1145 -=== 3.3.6 Set Digital pulse count value ===
632 +**Example:**
1146 1146  
634 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1147 1147  
1148 -Feature: Set the pulse count value.
1149 1149  
1150 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
637 +**Explain:**
1151 1151  
1152 -(% style="color:blue" %)**AT Command: AT+SETCNT**
639 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1153 1153  
1154 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1155 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1156 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1157 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
641 +=== 3.3.7 Set Interrupt Mode ===
1158 1158  
1159 -(% style="color:blue" %)**Downlink Command: 0x09**
1160 1160  
1161 -Format: Command Code (0x09) followed by 5 bytes.
644 +Feature, Set Interrupt mode for GPIO_EXIT.
1162 1162  
1163 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
646 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1164 1164  
1165 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167 -
1168 -=== 3.3.7 Set Workmode ===
1169 -
1170 -
1171 -Feature: Switch working mode.
1172 -
1173 -(% style="color:blue" %)**AT Command: AT+MOD**
1174 -
1175 1175  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1176 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1177 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
649 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
650 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 +0
1178 1178  OK
653 +the mode is 0 =Disable Interrupt
1179 1179  )))
1180 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1181 -OK
1182 -Attention:Take effect after ATZ
1183 -)))
655 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 +Set Transmit Interval
657 +0. (Disable Interrupt),
658 +~1. (Trigger by rising and falling edge)
659 +2. (Trigger by falling edge)
660 +3. (Trigger by rising edge)
661 +)))|(% style="width:157px" %)OK
1184 1184  
1185 -(% style="color:blue" %)**Downlink Command: 0x0A**
663 +(% style="color:blue" %)**Downlink Command: 0x06**
1186 1186  
1187 -Format: Command Code (0x0A) followed by 1 bytes.
665 +Format: Command Code (0x06) followed by 3 bytes.
1188 1188  
1189 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1191 1191  
1192 -(% id="H3.3.8PWMsetting" %)
1193 -=== 3.3.8 PWM setting ===
669 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1194 1194  
672 += 4. Battery & Power Consumption =
1195 1195  
1196 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197 1197  
1198 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1199 -
1200 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 -0(default)
1204 -
1205 -OK
1206 -)))
1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 -OK
1209 -
1210 -)))
1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 -
1213 -(% style="color:blue" %)**Downlink Command: 0x0C**
1214 -
1215 -Format: Command Code (0x0C) followed by 1 bytes.
1216 -
1217 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 -
1220 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 -
1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 -
1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 -0,0,0(default)
1228 -
1229 -OK
1230 -)))
1231 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 -OK
1233 -
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 -
1238 -
1239 -)))|(% style="width:137px" %)(((
1240 -OK
1241 -)))
1242 -
1243 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 -AT+PWMOUT=a,b,c
1247 -
1248 -
1249 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 -Set PWM output time, output frequency and output duty cycle.
1251 -
1252 -(((
1253 -
1254 -)))
1255 -
1256 -(((
1257 -
1258 -)))
1259 -)))|(% style="width:242px" %)(((
1260 -a: Output time (unit: seconds)
1261 -
1262 -The value ranges from 0 to 65535.
1263 -
1264 -When a=65535, PWM will always output.
1265 -)))
1266 -|(% style="width:242px" %)(((
1267 -b: Output frequency (unit: HZ)
1268 -)))
1269 -|(% style="width:242px" %)(((
1270 -c: Output duty cycle (unit: %)
1271 -
1272 -The value ranges from 0 to 100.
1273 -)))
1274 -
1275 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 -
1277 -Format: Command Code (0x0B01) followed by 6 bytes.
1278 -
1279 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 -
1281 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 -
1284 -= 4. Battery & Power Cons =
1285 -
1286 -
1287 1287  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1288 1288  
1289 1289  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1293,43 +1293,24 @@
1293 1293  
1294 1294  
1295 1295  (% class="wikigeneratedid" %)
1296 -**User can change firmware SN50v3-LB to:**
684 +User can change firmware SN50v3-LB to:
1297 1297  
1298 1298  * Change Frequency band/ region.
1299 1299  * Update with new features.
1300 1300  * Fix bugs.
1301 1301  
1302 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
690 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1303 1303  
1304 -**Methods to Update Firmware:**
1305 1305  
1306 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
693 +Methods to Update Firmware:
1308 1308  
695 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
696 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
697 +
1309 1309  = 6. FAQ =
1310 1310  
1311 -== 6.1 Where can i find source code of SN50v3-LB? ==
1312 1312  
1313 1313  
1314 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1316 -
1317 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1318 -
1319 -
1320 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321 -
1322 -
1323 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1324 -
1325 -
1326 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 -
1328 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329 -
1330 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1331 -
1332 -
1333 1333  = 7. Order Info =
1334 1334  
1335 1335  
... ... @@ -1355,7 +1355,6 @@
1355 1355  
1356 1356  = 8. ​Packing Info =
1357 1357  
1358 -
1359 1359  (% style="color:#037691" %)**Package Includes**:
1360 1360  
1361 1361  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1371,5 +1371,4 @@
1371 1371  
1372 1372  
1373 1373  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1374 -
1375 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
742 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0