<
From version < 87.29 >
edited by Xiaoling
on 2024/01/03 16:05
To version < 87.2 >
edited by Xiaoling
on 2024/01/03 09:58
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Content
... ... @@ -19,18 +19,18 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
29 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
31 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
... ... @@ -43,8 +43,7 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
46 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
... ... @@ -51,7 +51,7 @@
51 51  
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
53 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
98 98  
98 +
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
100 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
115 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -148,7 +148,7 @@
148 148  == 1.9 Hole Option ==
149 149  
150 150  
151 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 152  
153 153  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154 154  
... ... @@ -155,12 +155,12 @@
155 155  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156 156  
157 157  
158 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 159  
160 160  == 2.1 How it works ==
161 161  
162 162  
163 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 164  
165 165  
166 166  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -171,9 +171,9 @@
171 171  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 172  
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 175  
176 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 178  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
... ... @@ -202,10 +202,10 @@
202 202  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203 203  
204 204  
205 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 206  
207 207  
208 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
208 +Press the button for 5 seconds to activate the SN50v3-LB.
209 209  
210 210  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
211 211  
... ... @@ -217,13 +217,13 @@
217 217  === 2.3.1 Device Status, FPORT~=5 ===
218 218  
219 219  
220 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
221 221  
222 222  The Payload format is as below.
223 223  
224 224  
225 225  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
226 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
226 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 227  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
228 228  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 229  
... ... @@ -230,7 +230,7 @@
230 230  Example parse in TTNv3
231 231  
232 232  
233 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
234 234  
235 235  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236 236  
... ... @@ -286,7 +286,7 @@
286 286  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
287 287  
288 288  
289 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
289 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
290 290  
291 291  For example:
292 292  
... ... @@ -295,7 +295,7 @@
295 295  
296 296  (% style="color:red" %) **Important Notice:**
297 297  
298 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
299 299  
300 300  2. All modes share the same Payload Explanation from HERE.
301 301  
... ... @@ -308,7 +308,7 @@
308 308  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309 309  
310 310  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
311 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
311 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 312  |Value|Bat|(% style="width:191px" %)(((
313 313  Temperature(DS18B20)(PC13)
314 314  )))|(% style="width:78px" %)(((
... ... @@ -330,7 +330,7 @@
330 330  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
331 331  
332 332  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
333 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
333 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 334  |Value|BAT|(% style="width:196px" %)(((
335 335  Temperature(DS18B20)(PC13)
336 336  )))|(% style="width:87px" %)(((
... ... @@ -360,7 +360,7 @@
360 360  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
361 361  
362 362  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
363 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
363 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 364  |Value|BAT|(% style="width:183px" %)(((
365 365  Temperature(DS18B20)(PC13)
366 366  )))|(% style="width:173px" %)(((
... ... @@ -395,9 +395,9 @@
395 395  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396 396  
397 397  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
398 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
398 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 399  **Size(bytes)**
400 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
400 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 401  |Value|(% style="width:68px" %)(((
402 402  ADC1(PA4)
403 403  )))|(% style="width:75px" %)(((
... ... @@ -421,7 +421,7 @@
421 421  This mode has total 11 bytes. As shown below:
422 422  
423 423  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
424 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 425  |Value|BAT|(% style="width:186px" %)(((
426 426  Temperature1(DS18B20)(PC13)
427 427  )))|(% style="width:82px" %)(((
... ... @@ -462,9 +462,9 @@
462 462  Check the response of this command and adjust the value to match the real value for thing.
463 463  
464 464  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
465 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
465 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 466  **Size(bytes)**
467 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
467 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 468  |Value|BAT|(% style="width:193px" %)(((
469 469  Temperature(DS18B20)(PC13)
470 470  )))|(% style="width:85px" %)(((
... ... @@ -489,7 +489,7 @@
489 489  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490 490  
491 491  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 493  |Value|BAT|(% style="width:256px" %)(((
494 494  Temperature(DS18B20)(PC13)
495 495  )))|(% style="width:108px" %)(((
... ... @@ -507,9 +507,9 @@
507 507  
508 508  
509 509  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 511  **Size(bytes)**
512 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 513  |Value|BAT|(% style="width:188px" %)(((
514 514  Temperature(DS18B20)
515 515  (PC13)
... ... @@ -526,9 +526,9 @@
526 526  
527 527  
528 528  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 530  **Size(bytes)**
531 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 532  |Value|BAT|(% style="width:207px" %)(((
533 533  Temperature(DS18B20)
534 534  (PC13)
... ... @@ -549,9 +549,9 @@
549 549  
550 550  
551 551  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 553  **Size(bytes)**
554 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 555  |Value|BAT|(((
556 556  Temperature
557 557  (DS18B20)(PC13)
... ... @@ -588,9 +588,8 @@
588 588  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 589  
590 590  
591 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 592  
593 -
594 594  (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595 595  
596 596  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
... ... @@ -604,7 +604,7 @@
604 604  [[image:image-20230817172209-2.png||height="439" width="683"]]
605 605  
606 606  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
608 608  |Value|Bat|(% style="width:191px" %)(((
609 609  Temperature(DS18B20)(PC13)
610 610  )))|(% style="width:78px" %)(((
... ... @@ -639,10 +639,8 @@
639 639  
640 640  [[image:image-20230818092200-1.png||height="344" width="627"]]
641 641  
642 -
643 643  ===== 2.3.2.10.b  Uplink, PWM output =====
644 644  
645 -
646 646  [[image:image-20230817172209-2.png||height="439" width="683"]]
647 647  
648 648  (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
... ... @@ -666,7 +666,7 @@
666 666  
667 667  The oscilloscope displays as follows:
668 668  
669 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
670 670  
671 671  
672 672  ===== 2.3.2.10.c  Downlink, PWM output =====
... ... @@ -687,7 +687,7 @@
687 687  
688 688  The oscilloscope displays as follows:
689 689  
690 -[[image:image-20230817173858-5.png||height="634" width="843"]]
687 +[[image:image-20230817173858-5.png||height="694" width="921"]]
691 691  
692 692  
693 693  === 2.3.3  ​Decode payload ===
... ... @@ -699,13 +699,13 @@
699 699  
700 700  The payload decoder function for TTN V3 are here:
701 701  
702 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
699 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703 703  
704 704  
705 705  ==== 2.3.3.1 Battery Info ====
706 706  
707 707  
708 -Check the battery voltage for SN50v3-LB/LS.
705 +Check the battery voltage for SN50v3-LB.
709 709  
710 710  Ex1: 0x0B45 = 2885mV
711 711  
... ... @@ -767,12 +767,10 @@
767 767  
768 768  [[image:image-20230811113449-1.png||height="370" width="608"]]
769 769  
770 -
771 -
772 772  ==== 2.3.3.5 Digital Interrupt ====
773 773  
774 774  
775 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
770 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
776 776  
777 777  (% style="color:blue" %)** Interrupt connection method:**
778 778  
... ... @@ -785,18 +785,18 @@
785 785  
786 786  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
787 787  
788 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
783 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
789 789  
790 790  
791 791  (% style="color:blue" %)**Below is the installation example:**
792 792  
793 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
788 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
794 794  
795 795  * (((
796 -One pin to SN50v3-LB/LS's PA8 pin
791 +One pin to SN50v3-LB's PA8 pin
797 797  )))
798 798  * (((
799 -The other pin to SN50v3-LB/LS's VDD pin
794 +The other pin to SN50v3-LB's VDD pin
800 800  )))
801 801  
802 802  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -832,7 +832,7 @@
832 832  
833 833  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
834 834  
835 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
830 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
836 836  
837 837  
838 838  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -866,7 +866,7 @@
866 866  
867 867  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
868 868  
869 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
864 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870 870  
871 871  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
872 872  
... ... @@ -875,7 +875,7 @@
875 875  [[image:image-20230512173903-6.png||height="596" width="715"]]
876 876  
877 877  
878 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
873 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
879 879  
880 880  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
881 881  
... ... @@ -887,13 +887,13 @@
887 887  ==== 2.3.3.9  Battery Output - BAT pin ====
888 888  
889 889  
890 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
885 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
891 891  
892 892  
893 893  ==== 2.3.3.10  +5V Output ====
894 894  
895 895  
896 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
891 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
897 897  
898 898  The 5V output time can be controlled by AT Command.
899 899  
... ... @@ -938,9 +938,12 @@
938 938  
939 939  For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
940 940  
941 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
936 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
942 942  
943 943  b) If the output duration is more than 30 seconds, better to use external power source. 
939 +
940 +
941 +
944 944  )))
945 945  
946 946  ==== 2.3.3.13  Working MOD ====
... ... @@ -976,17 +976,17 @@
976 976  == 2.5 Frequency Plans ==
977 977  
978 978  
979 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
977 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
980 980  
981 981  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
982 982  
983 983  
984 -= 3. Configure SN50v3-LB/LS =
982 += 3. Configure SN50v3-LB =
985 985  
986 986  == 3.1 Configure Methods ==
987 987  
988 988  
989 -SN50v3-LB/LS supports below configure method:
987 +SN50v3-LB supports below configure method:
990 990  
991 991  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
992 992  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1005,10 +1005,10 @@
1005 1005  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1006 1006  
1007 1007  
1008 -== 3.3 Commands special design for SN50v3-LB/LS ==
1006 +== 3.3 Commands special design for SN50v3-LB ==
1009 1009  
1010 1010  
1011 -These commands only valid for SN50v3-LB/LS, as below:
1009 +These commands only valid for SN50v3-LB, as below:
1012 1012  
1013 1013  
1014 1014  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1019,7 +1019,7 @@
1019 1019  (% style="color:blue" %)**AT Command: AT+TDC**
1020 1020  
1021 1021  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1020 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1023 1023  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1024 1024  30000
1025 1025  OK
... ... @@ -1054,10 +1054,10 @@
1054 1054  
1055 1055  Feature, Set Interrupt mode for GPIO_EXIT.
1056 1056  
1057 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1055 +(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1058 1058  
1059 1059  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1060 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1058 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1061 1061  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1062 1062  0
1063 1063  OK
... ... @@ -1101,7 +1101,7 @@
1101 1101  (% style="color:blue" %)**AT Command: AT+5VT**
1102 1102  
1103 1103  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1104 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1102 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1105 1105  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1106 1106  500(default)
1107 1107  OK
... ... @@ -1127,9 +1127,9 @@
1127 1127  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1128 1128  
1129 1129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1130 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1131 1131  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1132 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1130 +|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1133 1133  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1134 1134  
1135 1135  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1154,7 +1154,7 @@
1154 1154  (% style="color:blue" %)**AT Command: AT+SETCNT**
1155 1155  
1156 1156  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1157 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1155 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1158 1158  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1159 1159  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1160 1160  
... ... @@ -1175,7 +1175,7 @@
1175 1175  (% style="color:blue" %)**AT Command: AT+MOD**
1176 1176  
1177 1177  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1178 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1176 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1179 1179  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1180 1180  OK
1181 1181  )))
... ... @@ -1191,17 +1191,19 @@
1191 1191  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1192 1192  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1193 1193  
1192 +(% id="H3.3.8PWMsetting" %)
1194 1194  === 3.3.8 PWM setting ===
1195 1195  
1196 1196  
1197 -Feature: Set the time acquisition unit for PWM input capture.
1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1198 1198  
1199 1199  (% style="color:blue" %)**AT Command: AT+PWMSET**
1200 1200  
1201 1201  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1202 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1203 1203  |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1204 1204  0(default)
1204 +
1205 1205  OK
1206 1206  )))
1207 1207  |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
... ... @@ -1217,14 +1217,15 @@
1217 1217  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 1218  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 1219  
1220 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 1221  
1222 1222  (% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 1223  
1224 1224  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 1226  |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 1227  0,0,0(default)
1228 +
1228 1228  OK
1229 1229  )))
1230 1230  |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
... ... @@ -1240,7 +1240,7 @@
1240 1240  )))
1241 1241  
1242 1242  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1243 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1244 1244  |(% colspan="1" rowspan="3" style="width:155px" %)(((
1245 1245  AT+PWMOUT=a,b,c
1246 1246  
... ... @@ -1257,7 +1257,9 @@
1257 1257  )))
1258 1258  )))|(% style="width:242px" %)(((
1259 1259  a: Output time (unit: seconds)
1261 +
1260 1260  The value ranges from 0 to 65535.
1263 +
1261 1261  When a=65535, PWM will always output.
1262 1262  )))
1263 1263  |(% style="width:242px" %)(((
... ... @@ -1265,6 +1265,7 @@
1265 1265  )))
1266 1266  |(% style="width:242px" %)(((
1267 1267  c: Output duty cycle (unit: %)
1271 +
1268 1268  The value ranges from 0 to 100.
1269 1269  )))
1270 1270  
... ... @@ -1272,7 +1272,7 @@
1272 1272  
1273 1273  Format: Command Code (0x0B01) followed by 6 bytes.
1274 1274  
1275 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1279 +Downlink payload0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1276 1276  
1277 1277  * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1278 1278  * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
... ... @@ -1280,7 +1280,7 @@
1280 1280  = 4. Battery & Power Cons =
1281 1281  
1282 1282  
1283 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1287 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1284 1284  
1285 1285  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1286 1286  
... ... @@ -1289,7 +1289,7 @@
1289 1289  
1290 1290  
1291 1291  (% class="wikigeneratedid" %)
1292 -**User can change firmware SN50v3-LB/LS to:**
1296 +**User can change firmware SN50v3-LB to:**
1293 1293  
1294 1294  * Change Frequency band/ region.
1295 1295  * Update with new features.
... ... @@ -1304,22 +1304,22 @@
1304 1304  
1305 1305  = 6. FAQ =
1306 1306  
1307 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1311 +== 6.1 Where can i find source code of SN50v3-LB? ==
1308 1308  
1309 1309  
1310 1310  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1311 1311  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1312 1312  
1313 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1317 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1314 1314  
1315 1315  
1316 1316  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1317 1317  
1318 1318  
1319 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1323 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1320 1320  
1321 1321  
1322 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1326 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1323 1323  
1324 1324  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1325 1325  
... ... @@ -1329,7 +1329,7 @@
1329 1329  = 7. Order Info =
1330 1330  
1331 1331  
1332 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1336 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1333 1333  
1334 1334  (% style="color:red" %)**XX**(%%): The default frequency band
1335 1335  
... ... @@ -1354,7 +1354,7 @@
1354 1354  
1355 1355  (% style="color:#037691" %)**Package Includes**:
1356 1356  
1357 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1361 +* SN50v3-LB LoRaWAN Generic Node
1358 1358  
1359 1359  (% style="color:#037691" %)**Dimension and weight**:
1360 1360  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0