<
From version < 87.26 >
edited by Xiaoling
on 2024/01/03 15:02
To version < 86.1 >
edited by Xiaoling
on 2024/01/03 09:55
>
Change comment: Uploaded new attachment "image-20240103095513-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,13 +3,8 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 11  **Table of Contents:**
12 12  
13 13  {{toc/}}
... ... @@ -19,18 +19,18 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
... ... @@ -43,8 +43,7 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
41 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
... ... @@ -51,7 +51,7 @@
51 51  
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built- in Battery , 2.5v ~~ 3.6v
48 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -98,7 +98,7 @@
98 98  
99 99  
100 100  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
101 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
102 102  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
103 103  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
104 104  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -113,7 +113,7 @@
113 113  == 1.6 BLE connection ==
114 114  
115 115  
116 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
117 117  
118 118  
119 119  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -149,7 +149,7 @@
149 149  == 1.9 Hole Option ==
150 150  
151 151  
152 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 153  
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
155 155  
... ... @@ -156,12 +156,12 @@
156 156  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
157 157  
158 158  
159 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
153 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
160 160  
161 161  == 2.1 How it works ==
162 162  
163 163  
164 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
165 165  
166 166  
167 167  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -172,9 +172,9 @@
172 172  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
173 173  
174 174  
175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
169 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
176 176  
177 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
171 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
178 178  
179 179  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
180 180  
... ... @@ -203,10 +203,10 @@
203 203  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204 204  
205 205  
206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
200 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
208 208  
209 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
203 +Press the button for 5 seconds to activate the SN50v3-LB.
210 210  
211 211  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 212  
... ... @@ -218,13 +218,13 @@
218 218  === 2.3.1 Device Status, FPORT~=5 ===
219 219  
220 220  
221 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
215 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
222 222  
223 223  The Payload format is as below.
224 224  
225 225  
226 226  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
227 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
221 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
228 228  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
229 229  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
230 230  
... ... @@ -231,7 +231,7 @@
231 231  Example parse in TTNv3
232 232  
233 233  
234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
228 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
235 235  
236 236  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
237 237  
... ... @@ -287,7 +287,7 @@
287 287  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
288 288  
289 289  
290 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
284 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
291 291  
292 292  For example:
293 293  
... ... @@ -296,7 +296,7 @@
296 296  
297 297  (% style="color:red" %) **Important Notice:**
298 298  
299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
293 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
300 300  
301 301  2. All modes share the same Payload Explanation from HERE.
302 302  
... ... @@ -309,7 +309,7 @@
309 309  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310 310  
311 311  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
312 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
306 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
313 313  |Value|Bat|(% style="width:191px" %)(((
314 314  Temperature(DS18B20)(PC13)
315 315  )))|(% style="width:78px" %)(((
... ... @@ -331,7 +331,7 @@
331 331  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
332 332  
333 333  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
334 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
328 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
335 335  |Value|BAT|(% style="width:196px" %)(((
336 336  Temperature(DS18B20)(PC13)
337 337  )))|(% style="width:87px" %)(((
... ... @@ -361,7 +361,7 @@
361 361  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362 362  
363 363  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
364 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
365 365  |Value|BAT|(% style="width:183px" %)(((
366 366  Temperature(DS18B20)(PC13)
367 367  )))|(% style="width:173px" %)(((
... ... @@ -396,9 +396,9 @@
396 396  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
397 397  
398 398  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
393 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
400 400  **Size(bytes)**
401 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
395 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
402 402  |Value|(% style="width:68px" %)(((
403 403  ADC1(PA4)
404 404  )))|(% style="width:75px" %)(((
... ... @@ -422,7 +422,7 @@
422 422  This mode has total 11 bytes. As shown below:
423 423  
424 424  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
425 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
419 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
426 426  |Value|BAT|(% style="width:186px" %)(((
427 427  Temperature1(DS18B20)(PC13)
428 428  )))|(% style="width:82px" %)(((
... ... @@ -463,9 +463,9 @@
463 463  Check the response of this command and adjust the value to match the real value for thing.
464 464  
465 465  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
460 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
467 467  **Size(bytes)**
468 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
462 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 469  |Value|BAT|(% style="width:193px" %)(((
470 470  Temperature(DS18B20)(PC13)
471 471  )))|(% style="width:85px" %)(((
... ... @@ -490,7 +490,7 @@
490 490  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
491 491  
492 492  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 494  |Value|BAT|(% style="width:256px" %)(((
495 495  Temperature(DS18B20)(PC13)
496 496  )))|(% style="width:108px" %)(((
... ... @@ -508,9 +508,9 @@
508 508  
509 509  
510 510  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
512 512  **Size(bytes)**
513 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
514 514  |Value|BAT|(% style="width:188px" %)(((
515 515  Temperature(DS18B20)
516 516  (PC13)
... ... @@ -527,9 +527,9 @@
527 527  
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
531 531  **Size(bytes)**
532 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
533 533  |Value|BAT|(% style="width:207px" %)(((
534 534  Temperature(DS18B20)
535 535  (PC13)
... ... @@ -550,9 +550,9 @@
550 550  
551 551  
552 552  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
554 554  **Size(bytes)**
555 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
556 556  |Value|BAT|(((
557 557  Temperature
558 558  (DS18B20)(PC13)
... ... @@ -589,9 +589,8 @@
589 589  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
590 590  
591 591  
592 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
586 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
593 593  
594 -
595 595  (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 596  
597 597  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
... ... @@ -605,7 +605,7 @@
605 605  [[image:image-20230817172209-2.png||height="439" width="683"]]
606 606  
607 607  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
601 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
609 609  |Value|Bat|(% style="width:191px" %)(((
610 610  Temperature(DS18B20)(PC13)
611 611  )))|(% style="width:78px" %)(((
... ... @@ -640,10 +640,8 @@
640 640  
641 641  [[image:image-20230818092200-1.png||height="344" width="627"]]
642 642  
643 -
644 644  ===== 2.3.2.10.b  Uplink, PWM output =====
645 645  
646 -
647 647  [[image:image-20230817172209-2.png||height="439" width="683"]]
648 648  
649 649  (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
... ... @@ -667,7 +667,7 @@
667 667  
668 668  The oscilloscope displays as follows:
669 669  
670 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
661 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
671 671  
672 672  
673 673  ===== 2.3.2.10.c  Downlink, PWM output =====
... ... @@ -688,7 +688,7 @@
688 688  
689 689  The oscilloscope displays as follows:
690 690  
691 -[[image:image-20230817173858-5.png||height="634" width="843"]]
682 +[[image:image-20230817173858-5.png||height="694" width="921"]]
692 692  
693 693  
694 694  === 2.3.3  ​Decode payload ===
... ... @@ -700,13 +700,13 @@
700 700  
701 701  The payload decoder function for TTN V3 are here:
702 702  
703 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
694 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
704 704  
705 705  
706 706  ==== 2.3.3.1 Battery Info ====
707 707  
708 708  
709 -Check the battery voltage for SN50v3-LB/LS.
700 +Check the battery voltage for SN50v3-LB.
710 710  
711 711  Ex1: 0x0B45 = 2885mV
712 712  
... ... @@ -768,12 +768,10 @@
768 768  
769 769  [[image:image-20230811113449-1.png||height="370" width="608"]]
770 770  
771 -
772 -
773 773  ==== 2.3.3.5 Digital Interrupt ====
774 774  
775 775  
776 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
765 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
777 777  
778 778  (% style="color:blue" %)** Interrupt connection method:**
779 779  
... ... @@ -786,18 +786,18 @@
786 786  
787 787  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
788 788  
789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
778 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
790 790  
791 791  
792 792  (% style="color:blue" %)**Below is the installation example:**
793 793  
794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
783 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
795 795  
796 796  * (((
797 -One pin to SN50v3-LB/LS's PA8 pin
786 +One pin to SN50v3-LB's PA8 pin
798 798  )))
799 799  * (((
800 -The other pin to SN50v3-LB/LS's VDD pin
789 +The other pin to SN50v3-LB's VDD pin
801 801  )))
802 802  
803 803  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -833,7 +833,7 @@
833 833  
834 834  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
835 835  
836 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
825 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
837 837  
838 838  
839 839  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -867,7 +867,7 @@
867 867  
868 868  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
869 869  
870 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
859 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
871 871  
872 872  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
873 873  
... ... @@ -876,7 +876,7 @@
876 876  [[image:image-20230512173903-6.png||height="596" width="715"]]
877 877  
878 878  
879 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
868 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
880 880  
881 881  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
882 882  
... ... @@ -888,13 +888,13 @@
888 888  ==== 2.3.3.9  Battery Output - BAT pin ====
889 889  
890 890  
891 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
880 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
892 892  
893 893  
894 894  ==== 2.3.3.10  +5V Output ====
895 895  
896 896  
897 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
886 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
898 898  
899 899  The 5V output time can be controlled by AT Command.
900 900  
... ... @@ -939,9 +939,12 @@
939 939  
940 940  For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 941  
942 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
931 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
943 943  
944 944  b) If the output duration is more than 30 seconds, better to use external power source. 
934 +
935 +
936 +
945 945  )))
946 946  
947 947  ==== 2.3.3.13  Working MOD ====
... ... @@ -977,17 +977,17 @@
977 977  == 2.5 Frequency Plans ==
978 978  
979 979  
980 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
972 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
981 981  
982 982  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
983 983  
984 984  
985 -= 3. Configure SN50v3-LB/LS =
977 += 3. Configure SN50v3-LB =
986 986  
987 987  == 3.1 Configure Methods ==
988 988  
989 989  
990 -SN50v3-LB/LS supports below configure method:
982 +SN50v3-LB supports below configure method:
991 991  
992 992  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
993 993  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1006,10 +1006,10 @@
1006 1006  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1007 1007  
1008 1008  
1009 -== 3.3 Commands special design for SN50v3-LB/LS ==
1001 +== 3.3 Commands special design for SN50v3-LB ==
1010 1010  
1011 1011  
1012 -These commands only valid for SN50v3-LB/LS, as below:
1004 +These commands only valid for SN50v3-LB, as below:
1013 1013  
1014 1014  
1015 1015  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1020,7 +1020,7 @@
1020 1020  (% style="color:blue" %)**AT Command: AT+TDC**
1021 1021  
1022 1022  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1015 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1024 1024  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1025 1025  30000
1026 1026  OK
... ... @@ -1055,10 +1055,10 @@
1055 1055  
1056 1056  Feature, Set Interrupt mode for GPIO_EXIT.
1057 1057  
1058 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1050 +(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1059 1059  
1060 1060  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1061 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1062 1062  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1063 1063  0
1064 1064  OK
... ... @@ -1102,7 +1102,7 @@
1102 1102  (% style="color:blue" %)**AT Command: AT+5VT**
1103 1103  
1104 1104  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1105 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1097 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1106 1106  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1107 1107  500(default)
1108 1108  OK
... ... @@ -1128,9 +1128,9 @@
1128 1128  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1129 1129  
1130 1130  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1131 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1123 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1132 1132  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1133 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1125 +|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1134 1134  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1135 1135  
1136 1136  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1155,7 +1155,7 @@
1155 1155  (% style="color:blue" %)**AT Command: AT+SETCNT**
1156 1156  
1157 1157  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1158 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1150 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1159 1159  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1160 1160  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1161 1161  
... ... @@ -1176,7 +1176,7 @@
1176 1176  (% style="color:blue" %)**AT Command: AT+MOD**
1177 1177  
1178 1178  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1179 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1180 1180  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1181 1181  OK
1182 1182  )))
... ... @@ -1192,17 +1192,19 @@
1192 1192  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1193 1193  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1194 1194  
1187 +(% id="H3.3.8PWMsetting" %)
1195 1195  === 3.3.8 PWM setting ===
1196 1196  
1197 1197  
1198 -Feature: Set the time acquisition unit for PWM input capture.
1191 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1199 1199  
1200 1200  (% style="color:blue" %)**AT Command: AT+PWMSET**
1201 1201  
1202 1202  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1203 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1196 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1204 1204  |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1205 1205  0(default)
1199 +
1206 1206  OK
1207 1207  )))
1208 1208  |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
... ... @@ -1218,14 +1218,15 @@
1218 1218  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1219 1219  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1220 1220  
1221 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1215 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1222 1222  
1223 1223  (% style="color:blue" %)**AT Command: AT+PWMOUT**
1224 1224  
1225 1225  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1226 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1220 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1227 1227  |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1228 1228  0,0,0(default)
1223 +
1229 1229  OK
1230 1230  )))
1231 1231  |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
... ... @@ -1241,7 +1241,7 @@
1241 1241  )))
1242 1242  
1243 1243  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1239 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 1245  |(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 1246  AT+PWMOUT=a,b,c
1247 1247  
... ... @@ -1258,7 +1258,9 @@
1258 1258  )))
1259 1259  )))|(% style="width:242px" %)(((
1260 1260  a: Output time (unit: seconds)
1256 +
1261 1261  The value ranges from 0 to 65535.
1258 +
1262 1262  When a=65535, PWM will always output.
1263 1263  )))
1264 1264  |(% style="width:242px" %)(((
... ... @@ -1266,6 +1266,7 @@
1266 1266  )))
1267 1267  |(% style="width:242px" %)(((
1268 1268  c: Output duty cycle (unit: %)
1266 +
1269 1269  The value ranges from 0 to 100.
1270 1270  )))
1271 1271  
... ... @@ -1273,7 +1273,7 @@
1273 1273  
1274 1274  Format: Command Code (0x0B01) followed by 6 bytes.
1275 1275  
1276 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1274 +Downlink payload0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1277 1277  
1278 1278  * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1279 1279  * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
... ... @@ -1281,7 +1281,7 @@
1281 1281  = 4. Battery & Power Cons =
1282 1282  
1283 1283  
1284 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1282 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1285 1285  
1286 1286  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1287 1287  
... ... @@ -1290,7 +1290,7 @@
1290 1290  
1291 1291  
1292 1292  (% class="wikigeneratedid" %)
1293 -**User can change firmware SN50v3-LB/LS to:**
1291 +**User can change firmware SN50v3-LB to:**
1294 1294  
1295 1295  * Change Frequency band/ region.
1296 1296  * Update with new features.
... ... @@ -1305,22 +1305,22 @@
1305 1305  
1306 1306  = 6. FAQ =
1307 1307  
1308 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1306 +== 6.1 Where can i find source code of SN50v3-LB? ==
1309 1309  
1310 1310  
1311 1311  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1312 1312  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1313 1313  
1314 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1312 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1315 1315  
1316 1316  
1317 1317  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1318 1318  
1319 1319  
1320 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1318 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1321 1321  
1322 1322  
1323 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1321 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1324 1324  
1325 1325  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1326 1326  
... ... @@ -1330,7 +1330,7 @@
1330 1330  = 7. Order Info =
1331 1331  
1332 1332  
1333 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1331 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1334 1334  
1335 1335  (% style="color:red" %)**XX**(%%): The default frequency band
1336 1336  
... ... @@ -1355,7 +1355,7 @@
1355 1355  
1356 1356  (% style="color:#037691" %)**Package Includes**:
1357 1357  
1358 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1356 +* SN50v3-LB LoRaWAN Generic Node
1359 1359  
1360 1360  (% style="color:#037691" %)**Dimension and weight**:
1361 1361  
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0