Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS--LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -19,18 +19,18 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is SN50v3-LB /LSLoRaWAN Generic Node ==22 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 23 23 24 24 25 -(% style="color:blue" %)**SN50V3-LB /LS**(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAhLi/SOCl2 battery**(%%)or (% style="color:blue" %)**solar powered + li-on battery**(%%)for long term use.SN50V3-LB/LSis designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.25 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LSwireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.27 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 28 28 29 - SN50V3-LB/LS has a powerful(% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has(% style="color:blue" %)**multiplex I/O pins**(%%)to connect to different sensors.29 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 30 30 31 - SN50V3-LB/LS has a(% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support(% style="color:blue" %)**OTA upgrade**(%%)via private LoRa protocol for easy maintaining.31 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 32 32 33 -SN50V3-LB /LSis the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.33 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 35 35 == 1.2 Features == 36 36 ... ... @@ -43,8 +43,7 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 46 +* 8500mAh Battery for long term use 48 48 49 49 == 1.3 Specification == 50 50 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-in battery , 2.5v ~~ 3.6v53 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -98,7 +98,7 @@ 98 98 99 99 100 100 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 101 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**100 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 102 102 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 103 103 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 104 104 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -113,7 +113,7 @@ 113 113 == 1.6 BLE connection == 114 114 115 115 116 -SN50v3-LB /LSsupports BLE remote configure.115 +SN50v3-LB supports BLE remote configure. 117 117 118 118 119 119 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -149,7 +149,7 @@ 149 149 == 1.9 Hole Option == 150 150 151 151 152 -SN50v3-LB /LShas different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:151 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 153 153 154 154 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 155 155 ... ... @@ -156,12 +156,12 @@ 156 156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 157 157 158 158 159 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =158 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 160 160 161 161 == 2.1 How it works == 162 162 163 163 164 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.163 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 165 165 166 166 167 167 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -172,9 +172,9 @@ 172 172 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 173 173 174 174 175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 176 176 177 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:176 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 178 178 179 179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 180 180 ... ... @@ -203,10 +203,10 @@ 203 203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 204 204 205 205 206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB /LS205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 207 207 208 208 209 -Press the button for 5 seconds to activate the SN50v3-LB /LS.208 +Press the button for 5 seconds to activate the SN50v3-LB. 210 210 211 211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 212 212 ... ... @@ -218,13 +218,13 @@ 218 218 === 2.3.1 Device Status, FPORT~=5 === 219 219 220 220 221 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB /LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 222 222 223 223 The Payload format is as below. 224 224 225 225 226 226 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 227 -|(% colspan="6" style="background-color:# 4f81bd; color:white" %)**Device Status (FPORT=5)**226 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 228 228 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 229 229 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 230 230 ... ... @@ -231,7 +231,7 @@ 231 231 Example parse in TTNv3 232 232 233 233 234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB /LS, this value is 0x1C233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 235 235 236 236 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 237 237 ... ... @@ -287,7 +287,7 @@ 287 287 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 288 288 289 289 290 -SN50v3-LB /LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LSto different working modes.289 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 291 291 292 292 For example: 293 293 ... ... @@ -296,7 +296,7 @@ 296 296 297 297 (% style="color:red" %) **Important Notice:** 298 298 299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB /LStransmit in DR0 with 12 bytes payload.298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 300 300 301 301 2. All modes share the same Payload Explanation from HERE. 302 302 ... ... @@ -309,7 +309,7 @@ 309 309 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 310 310 311 311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 312 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**311 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 313 313 |Value|Bat|(% style="width:191px" %)((( 314 314 Temperature(DS18B20)(PC13) 315 315 )))|(% style="width:78px" %)((( ... ... @@ -331,7 +331,7 @@ 331 331 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 332 332 333 333 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 334 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**333 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 335 335 |Value|BAT|(% style="width:196px" %)((( 336 336 Temperature(DS18B20)(PC13) 337 337 )))|(% style="width:87px" %)((( ... ... @@ -361,7 +361,7 @@ 361 361 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 362 362 363 363 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 364 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**363 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 365 365 |Value|BAT|(% style="width:183px" %)((( 366 366 Temperature(DS18B20)(PC13) 367 367 )))|(% style="width:173px" %)((( ... ... @@ -396,9 +396,9 @@ 396 396 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 397 397 398 398 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 399 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((398 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 400 400 **Size(bytes)** 401 -)))|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1400 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 402 402 |Value|(% style="width:68px" %)((( 403 403 ADC1(PA4) 404 404 )))|(% style="width:75px" %)((( ... ... @@ -422,7 +422,7 @@ 422 422 This mode has total 11 bytes. As shown below: 423 423 424 424 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 425 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**424 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 426 426 |Value|BAT|(% style="width:186px" %)((( 427 427 Temperature1(DS18B20)(PC13) 428 428 )))|(% style="width:82px" %)((( ... ... @@ -463,9 +463,9 @@ 463 463 Check the response of this command and adjust the value to match the real value for thing. 464 464 465 465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 466 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((465 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 467 467 **Size(bytes)** 468 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**467 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 469 469 |Value|BAT|(% style="width:193px" %)((( 470 470 Temperature(DS18B20)(PC13) 471 471 )))|(% style="width:85px" %)((( ... ... @@ -490,7 +490,7 @@ 490 490 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 491 491 492 492 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 493 -|=(% style="width: 60px;background-color:# 4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 494 494 |Value|BAT|(% style="width:256px" %)((( 495 495 Temperature(DS18B20)(PC13) 496 496 )))|(% style="width:108px" %)((( ... ... @@ -508,9 +508,9 @@ 508 508 509 509 510 510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 511 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 512 512 **Size(bytes)** 513 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 514 514 |Value|BAT|(% style="width:188px" %)((( 515 515 Temperature(DS18B20) 516 516 (PC13) ... ... @@ -527,9 +527,9 @@ 527 527 528 528 529 529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 531 531 **Size(bytes)** 532 -)))|=(% style="width: 30px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 533 533 |Value|BAT|(% style="width:207px" %)((( 534 534 Temperature(DS18B20) 535 535 (PC13) ... ... @@ -550,9 +550,9 @@ 550 550 551 551 552 552 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 554 554 **Size(bytes)** 555 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 556 556 |Value|BAT|((( 557 557 Temperature 558 558 (DS18B20)(PC13) ... ... @@ -589,9 +589,8 @@ 589 589 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 590 590 591 591 592 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) (%style="display:none" %) (%%)====591 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 593 593 594 - 595 595 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 596 596 597 597 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. ... ... @@ -605,7 +605,7 @@ 605 605 [[image:image-20230817172209-2.png||height="439" width="683"]] 606 606 607 607 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 608 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 609 609 |Value|Bat|(% style="width:191px" %)((( 610 610 Temperature(DS18B20)(PC13) 611 611 )))|(% style="width:78px" %)((( ... ... @@ -640,10 +640,8 @@ 640 640 641 641 [[image:image-20230818092200-1.png||height="344" width="627"]] 642 642 643 - 644 644 ===== 2.3.2.10.b Uplink, PWM output ===== 645 645 646 - 647 647 [[image:image-20230817172209-2.png||height="439" width="683"]] 648 648 649 649 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** ... ... @@ -667,7 +667,7 @@ 667 667 668 668 The oscilloscope displays as follows: 669 669 670 -[[image:image-20231213102404-1.jpeg||height=" 688" width="821"]]666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 671 671 672 672 673 673 ===== 2.3.2.10.c Downlink, PWM output ===== ... ... @@ -688,7 +688,7 @@ 688 688 689 689 The oscilloscope displays as follows: 690 690 691 -[[image:image-20230817173858-5.png||height="6 34" width="843"]]687 +[[image:image-20230817173858-5.png||height="694" width="921"]] 692 692 693 693 694 694 === 2.3.3 Decode payload === ... ... @@ -700,13 +700,13 @@ 700 700 701 701 The payload decoder function for TTN V3 are here: 702 702 703 -SN50v3-LB /LSTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]699 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 704 704 705 705 706 706 ==== 2.3.3.1 Battery Info ==== 707 707 708 708 709 -Check the battery voltage for SN50v3-LB /LS.705 +Check the battery voltage for SN50v3-LB. 710 710 711 711 Ex1: 0x0B45 = 2885mV 712 712 ... ... @@ -768,12 +768,10 @@ 768 768 769 769 [[image:image-20230811113449-1.png||height="370" width="608"]] 770 770 771 - 772 - 773 773 ==== 2.3.3.5 Digital Interrupt ==== 774 774 775 775 776 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB /LSwill send a packet to the server.770 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 777 777 778 778 (% style="color:blue" %)** Interrupt connection method:** 779 779 ... ... @@ -786,18 +786,18 @@ 786 786 787 787 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 788 788 789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB /LSinterrupt interface to detect the status for the door or window.783 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 790 790 791 791 792 792 (% style="color:blue" %)**Below is the installation example:** 793 793 794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB /LSas follows:788 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 795 795 796 796 * ((( 797 -One pin to SN50v3-LB /LS's PA8 pin791 +One pin to SN50v3-LB's PA8 pin 798 798 ))) 799 799 * ((( 800 -The other pin to SN50v3-LB /LS's VDD pin794 +The other pin to SN50v3-LB's VDD pin 801 801 ))) 802 802 803 803 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -833,7 +833,7 @@ 833 833 834 834 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 835 835 836 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB /LSwill be a good reference.**830 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 837 837 838 838 839 839 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -867,7 +867,7 @@ 867 867 868 868 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 869 869 870 -The SN50v3-LB /LSdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.864 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 871 871 872 872 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 873 873 ... ... @@ -876,7 +876,7 @@ 876 876 [[image:image-20230512173903-6.png||height="596" width="715"]] 877 877 878 878 879 -Connect to the SN50v3-LB /LSand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).873 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 880 880 881 881 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 882 882 ... ... @@ -888,13 +888,13 @@ 888 888 ==== 2.3.3.9 Battery Output - BAT pin ==== 889 889 890 890 891 -The BAT pin of SN50v3-LB /LSis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LSwill run out very soon.885 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 892 892 893 893 894 894 ==== 2.3.3.10 +5V Output ==== 895 895 896 896 897 -SN50v3-LB /LSwill enable +5V output before all sampling and disable the +5v after all sampling.891 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 898 898 899 899 The 5V output time can be controlled by AT Command. 900 900 ... ... @@ -939,9 +939,12 @@ 939 939 940 940 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 941 941 942 -a) If real-time control output is required, the SN50v3-LB /LSis already operating in class C and an external power supply must be used.936 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 943 943 944 944 b) If the output duration is more than 30 seconds, better to use external power source. 939 + 940 + 941 + 945 945 ))) 946 946 947 947 ==== 2.3.3.13 Working MOD ==== ... ... @@ -977,17 +977,17 @@ 977 977 == 2.5 Frequency Plans == 978 978 979 979 980 -The SN50v3-LB /LSuses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.977 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 981 981 982 982 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 983 983 984 984 985 -= 3. Configure SN50v3-LB /LS=982 += 3. Configure SN50v3-LB = 986 986 987 987 == 3.1 Configure Methods == 988 988 989 989 990 -SN50v3-LB /LSsupports below configure method:987 +SN50v3-LB supports below configure method: 991 991 992 992 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 993 993 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -1006,10 +1006,10 @@ 1006 1006 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1007 1007 1008 1008 1009 -== 3.3 Commands special design for SN50v3-LB /LS==1006 +== 3.3 Commands special design for SN50v3-LB == 1010 1010 1011 1011 1012 -These commands only valid for SN50v3-LB /LS, as below:1009 +These commands only valid for SN50v3-LB, as below: 1013 1013 1014 1014 1015 1015 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1020,7 +1020,7 @@ 1020 1020 (% style="color:blue" %)**AT Command: AT+TDC** 1021 1021 1022 1022 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1023 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**1020 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 1024 1024 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1025 1025 30000 1026 1026 OK ... ... @@ -1055,10 +1055,10 @@ 1055 1055 1056 1056 Feature, Set Interrupt mode for GPIO_EXIT. 1057 1057 1058 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1055 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1059 1059 1060 1060 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1061 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1058 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1062 1062 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1063 1063 0 1064 1064 OK ... ... @@ -1102,7 +1102,7 @@ 1102 1102 (% style="color:blue" %)**AT Command: AT+5VT** 1103 1103 1104 1104 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1105 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1102 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1106 1106 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1107 1107 500(default) 1108 1108 OK ... ... @@ -1128,9 +1128,9 @@ 1128 1128 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1129 1129 1130 1130 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1131 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1132 1132 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1133 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1130 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1134 1134 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1135 1135 1136 1136 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1155,7 +1155,7 @@ 1155 1155 (% style="color:blue" %)**AT Command: AT+SETCNT** 1156 1156 1157 1157 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1158 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1155 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1159 1159 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1160 1160 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1161 1161 ... ... @@ -1176,7 +1176,7 @@ 1176 1176 (% style="color:blue" %)**AT Command: AT+MOD** 1177 1177 1178 1178 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1179 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1176 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1180 1180 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1181 1181 OK 1182 1182 ))) ... ... @@ -1192,17 +1192,19 @@ 1192 1192 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1193 1193 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1194 1194 1192 +(% id="H3.3.8PWMsetting" %) 1195 1195 === 3.3.8 PWM setting === 1196 1196 1197 1197 1198 -Feature: Set the time acquisition unit for PWM input capture. 1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1199 1199 1200 1200 (% style="color:blue" %)**AT Command: AT+PWMSET** 1201 1201 1202 1202 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1203 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1204 1204 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1205 1205 0(default) 1204 + 1206 1206 OK 1207 1207 ))) 1208 1208 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( ... ... @@ -1218,15 +1218,15 @@ 1218 1218 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1219 1219 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1220 1220 1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1221 1221 1222 -**Feature: Set PWM output time, output frequency and output duty cycle.** 1223 - 1224 1224 (% style="color:blue" %)**AT Command: AT+PWMOUT** 1225 1225 1226 1226 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1227 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color:#4F81BD;color:white" %)**Response**1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1228 1228 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1229 1229 0,0,0(default) 1228 + 1230 1230 OK 1231 1231 ))) 1232 1232 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( ... ... @@ -1242,7 +1242,7 @@ 1242 1242 ))) 1243 1243 1244 1244 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1245 -|=(% style="width: 155px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1246 1246 |(% colspan="1" rowspan="3" style="width:155px" %)((( 1247 1247 AT+PWMOUT=a,b,c 1248 1248 ... ... @@ -1259,7 +1259,9 @@ 1259 1259 ))) 1260 1260 )))|(% style="width:242px" %)((( 1261 1261 a: Output time (unit: seconds) 1261 + 1262 1262 The value ranges from 0 to 65535. 1263 + 1263 1263 When a=65535, PWM will always output. 1264 1264 ))) 1265 1265 |(% style="width:242px" %)((( ... ... @@ -1267,6 +1267,7 @@ 1267 1267 ))) 1268 1268 |(% style="width:242px" %)((( 1269 1269 c: Output duty cycle (unit: %) 1271 + 1270 1270 The value ranges from 0 to 100. 1271 1271 ))) 1272 1272 ... ... @@ -1274,7 +1274,7 @@ 1274 1274 1275 1275 Format: Command Code (0x0B01) followed by 6 bytes. 1276 1276 1277 -Downlink payload :0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1278 1278 1279 1279 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1280 1280 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 ... ... @@ -1282,7 +1282,7 @@ 1282 1282 = 4. Battery & Power Cons = 1283 1283 1284 1284 1285 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.1287 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1286 1286 1287 1287 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1288 1288 ... ... @@ -1291,7 +1291,7 @@ 1291 1291 1292 1292 1293 1293 (% class="wikigeneratedid" %) 1294 -**User can change firmware SN50v3-LB /LSto:**1296 +**User can change firmware SN50v3-LB to:** 1295 1295 1296 1296 * Change Frequency band/ region. 1297 1297 * Update with new features. ... ... @@ -1306,22 +1306,22 @@ 1306 1306 1307 1307 = 6. FAQ = 1308 1308 1309 -== 6.1 Where can i find source code of SN50v3-LB /LS? ==1311 +== 6.1 Where can i find source code of SN50v3-LB? == 1310 1310 1311 1311 1312 1312 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1313 1313 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1314 1314 1315 -== 6.2 How to generate PWM Output in SN50v3-LB /LS? ==1317 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1316 1316 1317 1317 1318 1318 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1319 1319 1320 1320 1321 -== 6.3 How to put several sensors to a SN50v3-LB /LS? ==1323 +== 6.3 How to put several sensors to a SN50v3-LB? == 1322 1322 1323 1323 1324 -When we want to put several sensors to A SN50v3-LB /LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.1326 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1325 1325 1326 1326 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1327 1327 ... ... @@ -1331,7 +1331,7 @@ 1331 1331 = 7. Order Info = 1332 1332 1333 1333 1334 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**1336 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1335 1335 1336 1336 (% style="color:red" %)**XX**(%%): The default frequency band 1337 1337 ... ... @@ -1356,7 +1356,7 @@ 1356 1356 1357 1357 (% style="color:#037691" %)**Package Includes**: 1358 1358 1359 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node1361 +* SN50v3-LB LoRaWAN Generic Node 1360 1360 1361 1361 (% style="color:#037691" %)**Dimension and weight**: 1362 1362