<
From version < 87.20 >
edited by Xiaoling
on 2024/01/03 14:19
To version < 7.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,11 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 99  
100 100  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
101 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
102 102  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
103 103  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
104 104  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -113,7 +113,7 @@
113 113  == 1.6 BLE connection ==
114 114  
115 115  
116 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
117 117  
118 118  
119 119  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -128,40 +128,33 @@
128 128  == 1.7 Pin Definitions ==
129 129  
130 130  
131 -[[image:image-20230610163213-1.png||height="404" width="699"]]
132 132  
133 133  
134 134  == 1.8 Mechanical ==
135 135  
136 -=== 1.8.1 for LB version ===
137 137  
130 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
138 138  
139 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
140 140  
141 -
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 -=== 1.8.2 for LS version ===
145 145  
146 -[[image:image-20231231203439-3.png||height="385" width="886"]]
137 +== Hole Option ==
147 147  
139 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
148 148  
149 -== 1.9 Hole Option ==
150 -
151 -
152 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 -
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
155 155  
156 156  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
157 157  
158 158  
159 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
146 += 2. Configure S31x-LB to connect to LoRaWAN network =
160 160  
161 161  == 2.1 How it works ==
162 162  
163 163  
164 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
165 165  
166 166  
167 167  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -169,14 +169,14 @@
169 169  
170 170  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
171 171  
172 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
173 173  
174 174  
175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
162 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
176 176  
177 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
164 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
178 178  
179 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
166 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
180 180  
181 181  
182 182  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -203,10 +203,10 @@
203 203  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204 204  
205 205  
206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
193 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
207 207  
208 208  
209 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
196 +Press the button for 5 seconds to activate the S31x-LB.
210 210  
211 211  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 212  
... ... @@ -218,52 +218,54 @@
218 218  === 2.3.1 Device Status, FPORT~=5 ===
219 219  
220 220  
221 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
208 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
222 222  
223 223  The Payload format is as below.
224 224  
225 225  
226 226  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
227 -|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
214 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
228 228  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
229 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
216 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
230 230  
231 231  Example parse in TTNv3
232 232  
220 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
233 233  
234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
235 235  
223 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
224 +
236 236  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
237 237  
238 238  (% style="color:#037691" %)**Frequency Band**:
239 239  
240 -0x01: EU868
229 +*0x01: EU868
241 241  
242 -0x02: US915
231 +*0x02: US915
243 243  
244 -0x03: IN865
233 +*0x03: IN865
245 245  
246 -0x04: AU915
235 +*0x04: AU915
247 247  
248 -0x05: KZ865
237 +*0x05: KZ865
249 249  
250 -0x06: RU864
239 +*0x06: RU864
251 251  
252 -0x07: AS923
241 +*0x07: AS923
253 253  
254 -0x08: AS923-1
243 +*0x08: AS923-1
255 255  
256 -0x09: AS923-2
245 +*0x09: AS923-2
257 257  
258 -0x0a: AS923-3
247 +*0x0a: AS923-3
259 259  
260 -0x0b: CN470
249 +*0x0b: CN470
261 261  
262 -0x0c: EU433
251 +*0x0c: EU433
263 263  
264 -0x0d: KR920
253 +*0x0d: KR920
265 265  
266 -0x0e: MA869
255 +*0x0e: MA869
267 267  
268 268  
269 269  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -284,449 +284,41 @@
284 284  Ex2: 0x0B49 = 2889mV
285 285  
286 286  
287 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 +=== 2.3.2  Sensor Data. FPORT~=2 ===
288 288  
289 289  
290 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
279 +Sensor Data is uplink via FPORT=2
291 291  
292 -For example:
293 -
294 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
295 -
296 -
297 -(% style="color:red" %) **Important Notice:**
298 -
299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
300 -
301 -2. All modes share the same Payload Explanation from HERE.
302 -
303 -3. By default, the device will send an uplink message every 20 minutes.
304 -
305 -
306 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
307 -
308 -
309 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310 -
311 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
312 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
313 -|Value|Bat|(% style="width:191px" %)(((
314 -Temperature(DS18B20)(PC13)
315 -)))|(% style="width:78px" %)(((
316 -ADC(PA4)
317 -)))|(% style="width:216px" %)(((
318 -Digital in(PB15)&Digital Interrupt(PA8)
319 -)))|(% style="width:308px" %)(((
320 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
321 -)))|(% style="width:154px" %)(((
322 -Humidity(SHT20 or SHT31)
323 -)))
324 -
325 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
326 -
327 -
328 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
329 -
330 -
331 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
332 -
333 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
334 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**
335 -|Value|BAT|(% style="width:196px" %)(((
336 -Temperature(DS18B20)(PC13)
337 -)))|(% style="width:87px" %)(((
338 -ADC(PA4)
339 -)))|(% style="width:189px" %)(((
340 -Digital in(PB15) & Digital Interrupt(PA8)
341 -)))|(% style="width:208px" %)(((
342 -Distance measure by: 1) LIDAR-Lite V3HP
343 -Or 2) Ultrasonic Sensor
344 -)))|(% style="width:117px" %)Reserved
345 -
346 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
347 -
348 -
349 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
350 -
351 -[[image:image-20230512173758-5.png||height="563" width="712"]]
352 -
353 -
354 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
355 -
356 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
357 -
358 -[[image:image-20230512173903-6.png||height="596" width="715"]]
359 -
360 -
361 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362 -
363 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
364 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
365 -|Value|BAT|(% style="width:183px" %)(((
366 -Temperature(DS18B20)(PC13)
367 -)))|(% style="width:173px" %)(((
368 -Digital in(PB15) & Digital Interrupt(PA8)
369 -)))|(% style="width:84px" %)(((
370 -ADC(PA4)
371 -)))|(% style="width:323px" %)(((
372 -Distance measure by:1)TF-Mini plus LiDAR
373 -Or 2) TF-Luna LiDAR
374 -)))|(% style="width:188px" %)Distance signal  strength
375 -
376 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
377 -
378 -
379 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
380 -
381 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
382 -
383 -[[image:image-20230512180609-7.png||height="555" width="802"]]
384 -
385 -
386 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
387 -
388 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
389 -
390 -[[image:image-20230610170047-1.png||height="452" width="799"]]
391 -
392 -
393 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
394 -
395 -
396 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
397 -
398 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
281 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
282 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
400 400  **Size(bytes)**
401 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
402 -|Value|(% style="width:68px" %)(((
403 -ADC1(PA4)
404 -)))|(% style="width:75px" %)(((
405 -ADC2(PA5)
406 -)))|(((
407 -ADC3(PA8)
408 -)))|(((
409 -Digital Interrupt(PB15)
410 -)))|(% style="width:304px" %)(((
411 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
412 -)))|(% style="width:163px" %)(((
413 -Humidity(SHT20 or SHT31)
414 -)))|(% style="width:53px" %)Bat
415 -
416 -[[image:image-20230513110214-6.png]]
417 -
418 -
419 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
420 -
421 -
422 -This mode has total 11 bytes. As shown below:
423 -
424 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
425 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**
426 -|Value|BAT|(% style="width:186px" %)(((
427 -Temperature1(DS18B20)(PC13)
428 -)))|(% style="width:82px" %)(((
429 -ADC(PA4)
430 -)))|(% style="width:210px" %)(((
431 -Digital in(PB15) & Digital Interrupt(PA8) 
432 -)))|(% style="width:191px" %)Temperature2(DS18B20)
433 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
434 -
435 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
436 -
437 -
438 -[[image:image-20230513134006-1.png||height="559" width="736"]]
439 -
440 -
441 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
442 -
443 -
444 -[[image:image-20230512164658-2.png||height="532" width="729"]]
445 -
446 -Each HX711 need to be calibrated before used. User need to do below two steps:
447 -
448 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
450 -1. (((
451 -Weight has 4 bytes, the unit is g.
452 -
453 -
454 -
284 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
285 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
286 +[[Battery>>||anchor="HBattery:"]]
287 +)))|(% style="width:130px" %)(((
288 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
289 +)))|(% style="width:91px" %)(((
290 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
291 +)))|(% style="width:103px" %)(((
292 +[[Temperature>>||anchor="HTemperature:"]]
293 +)))|(% style="width:80px" %)(((
294 +[[Humidity>>||anchor="HHumidity:"]]
455 455  )))
456 456  
457 -For example:
297 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
458 458  
459 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
299 +Sensor Battery Level.
460 460  
461 -Response:  Weight is 401 g
462 -
463 -Check the response of this command and adjust the value to match the real value for thing.
464 -
465 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
467 -**Size(bytes)**
468 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
469 -|Value|BAT|(% style="width:193px" %)(((
470 -Temperature(DS18B20)(PC13)
471 -)))|(% style="width:85px" %)(((
472 -ADC(PA4)
473 -)))|(% style="width:186px" %)(((
474 -Digital in(PB15) & Digital Interrupt(PA8)
475 -)))|(% style="width:100px" %)Weight
476 -
477 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478 -
479 -
480 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481 -
482 -
483 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
484 -
485 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
486 -
487 -[[image:image-20230512181814-9.png||height="543" width="697"]]
488 -
489 -
490 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
491 -
492 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
494 -|Value|BAT|(% style="width:256px" %)(((
495 -Temperature(DS18B20)(PC13)
496 -)))|(% style="width:108px" %)(((
497 -ADC(PA4)
498 -)))|(% style="width:126px" %)(((
499 -Digital in(PB15)
500 -)))|(% style="width:145px" %)(((
501 -Count(PA8)
502 -)))
503 -
504 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
505 -
506 -
507 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
508 -
509 -
510 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
512 -**Size(bytes)**
513 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
514 -|Value|BAT|(% style="width:188px" %)(((
515 -Temperature(DS18B20)
516 -(PC13)
517 -)))|(% style="width:83px" %)(((
518 -ADC(PA5)
519 -)))|(% style="width:184px" %)(((
520 -Digital Interrupt1(PA8)
521 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
522 -
523 -[[image:image-20230513111203-7.png||height="324" width="975"]]
524 -
525 -
526 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
527 -
528 -
529 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
531 -**Size(bytes)**
532 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
533 -|Value|BAT|(% style="width:207px" %)(((
534 -Temperature(DS18B20)
535 -(PC13)
536 -)))|(% style="width:94px" %)(((
537 -ADC1(PA4)
538 -)))|(% style="width:198px" %)(((
539 -Digital Interrupt(PB15)
540 -)))|(% style="width:84px" %)(((
541 -ADC2(PA5)
542 -)))|(% style="width:82px" %)(((
543 -ADC3(PA8)
544 -)))
545 -
546 -[[image:image-20230513111231-8.png||height="335" width="900"]]
547 -
548 -
549 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
550 -
551 -
552 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
554 -**Size(bytes)**
555 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
556 -|Value|BAT|(((
557 -Temperature
558 -(DS18B20)(PC13)
559 -)))|(((
560 -Temperature2
561 -(DS18B20)(PB9)
562 -)))|(((
563 -Digital Interrupt
564 -(PB15)
565 -)))|(% style="width:193px" %)(((
566 -Temperature3
567 -(DS18B20)(PB8)
568 -)))|(% style="width:78px" %)(((
569 -Count1(PA8)
570 -)))|(% style="width:78px" %)(((
571 -Count2(PA4)
572 -)))
573 -
574 -[[image:image-20230513111255-9.png||height="341" width="899"]]
575 -
576 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
577 -
578 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
579 -
580 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
581 -
582 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
583 -
584 -
585 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
586 -
587 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
588 -
589 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
590 -
591 -
592 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
593 -
594 -
595 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 -
597 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
598 -
599 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
600 -
601 -
602 -===== 2.3.2.10.a  Uplink, PWM input capture =====
603 -
604 -
605 -[[image:image-20230817172209-2.png||height="439" width="683"]]
606 -
607 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2**
609 -|Value|Bat|(% style="width:191px" %)(((
610 -Temperature(DS18B20)(PC13)
611 -)))|(% style="width:78px" %)(((
612 -ADC(PA4)
613 -)))|(% style="width:135px" %)(((
614 -PWM_Setting
615 -&Digital Interrupt(PA8)
616 -)))|(% style="width:70px" %)(((
617 -Pulse period
618 -)))|(% style="width:89px" %)(((
619 -Duration of high level
620 -)))
621 -
622 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
623 -
624 -
625 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
626 -
627 -**Frequency:**
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
631 -
632 -(% class="MsoNormal" %)
633 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
634 -
635 -
636 -(% class="MsoNormal" %)
637 -**Duty cycle:**
638 -
639 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 -
641 -[[image:image-20230818092200-1.png||height="344" width="627"]]
642 -
643 -
644 -===== 2.3.2.10.b  Uplink, PWM output =====
645 -
646 -
647 -[[image:image-20230817172209-2.png||height="439" width="683"]]
648 -
649 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 -
651 -a is the time delay of the output, the unit is ms.
652 -
653 -b is the output frequency, the unit is HZ.
654 -
655 -c is the duty cycle of the output, the unit is %.
656 -
657 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 -
659 -aa is the time delay of the output, the unit is ms.
660 -
661 -bb is the output frequency, the unit is HZ.
662 -
663 -cc is the duty cycle of the output, the unit is %.
664 -
665 -
666 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 -
668 -The oscilloscope displays as follows:
669 -
670 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 -
672 -
673 -===== 2.3.2.10.c  Downlink, PWM output =====
674 -
675 -
676 -[[image:image-20230817173800-3.png||height="412" width="685"]]
677 -
678 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
679 -
680 - xx xx xx is the output frequency, the unit is HZ.
681 -
682 - yy is the duty cycle of the output, the unit is %.
683 -
684 - zz zz is the time delay of the output, the unit is ms.
685 -
686 -
687 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
688 -
689 -The oscilloscope displays as follows:
690 -
691 -[[image:image-20230817173858-5.png||height="634" width="843"]]
692 -
693 -
694 -=== 2.3.3  ​Decode payload ===
695 -
696 -
697 -While using TTN V3 network, you can add the payload format to decode the payload.
698 -
699 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
700 -
701 -The payload decoder function for TTN V3 are here:
702 -
703 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
704 -
705 -
706 -==== 2.3.3.1 Battery Info ====
707 -
708 -
709 -Check the battery voltage for SN50v3-LB/LS.
710 -
711 711  Ex1: 0x0B45 = 2885mV
712 712  
713 713  Ex2: 0x0B49 = 2889mV
714 714  
715 715  
716 -==== 2.3.3.2  Temperature (DS18B20) ====
717 717  
307 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
718 718  
719 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
309 +**Example**:
720 720  
721 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
722 -
723 -(% style="color:blue" %)**Connection:**
724 -
725 -[[image:image-20230512180718-8.png||height="538" width="647"]]
726 -
727 -
728 -(% style="color:blue" %)**Example**:
729 -
730 730  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
731 731  
732 732  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -734,261 +734,195 @@
734 734  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
735 735  
736 736  
737 -==== 2.3.3.3 Digital Input ====
318 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
738 738  
739 739  
740 -The digital input for pin PB15,
321 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
741 741  
742 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
743 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
744 744  
745 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
746 -(((
747 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
324 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
748 748  
749 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
750 750  
751 -
752 -)))
327 +**Example:**
753 753  
754 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
329 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
755 755  
331 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
756 756  
757 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
333 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
758 758  
759 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
335 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
760 760  
761 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
762 762  
338 +== 2.4 Payload Decoder file ==
763 763  
764 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
765 765  
341 +In TTN, use can add a custom payload so it shows friendly reading
766 766  
767 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
343 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
768 768  
769 -[[image:image-20230811113449-1.png||height="370" width="608"]]
345 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
770 770  
771 771  
348 +== 2.5 Datalog Feature ==
772 772  
773 -==== 2.3.3.5 Digital Interrupt ====
774 774  
351 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
775 775  
776 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
777 777  
778 -(% style="color:blue" %)** Interrupt connection method:**
354 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
779 779  
780 -[[image:image-20230513105351-5.png||height="147" width="485"]]
781 781  
357 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
782 782  
783 -(% style="color:blue" %)**Example to use with door sensor :**
359 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
360 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
784 784  
785 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
362 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
786 786  
787 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
788 788  
789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
366 +=== 2.5.2 Unix TimeStamp ===
790 790  
791 791  
792 -(% style="color:blue" %)**Below is the installation example:**
369 +S31x-LB uses Unix TimeStamp format based on
793 793  
794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
371 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
795 795  
796 -* (((
797 -One pin to SN50v3-LB/LS's PA8 pin
798 -)))
799 -* (((
800 -The other pin to SN50v3-LB/LS's VDD pin
801 -)))
373 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
802 802  
803 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
375 +Below is the converter example
804 804  
805 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
806 806  
807 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
379 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
808 808  
809 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
810 810  
811 -The above photos shows the two parts of the magnetic switch fitted to a door.
382 +=== 2.5.3 Set Device Time ===
812 812  
813 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
814 814  
815 -The command is:
385 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
816 816  
817 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
387 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
818 818  
819 -Below shows some screen captures in TTN V3:
389 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
820 820  
821 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
822 822  
392 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
823 823  
824 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
825 825  
826 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
395 +The Datalog uplinks will use below payload format.
827 827  
397 +**Retrieval data payload:**
828 828  
829 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
399 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
400 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
401 +**Size(bytes)**
402 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
403 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
404 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
405 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
830 830  
407 +**Poll message flag & Ext:**
831 831  
832 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
409 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
833 833  
834 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
411 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
835 835  
836 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
413 +**Poll Message Flag**: 1: This message is a poll message reply.
837 837  
415 +* Poll Message Flag is set to 1.
838 838  
839 -Below is the connection to SHT20/ SHT31. The connection is as below:
417 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
840 840  
841 -[[image:image-20230610170152-2.png||height="501" width="846"]]
419 +For example, in US915 band, the max payload for different DR is:
842 842  
421 +**a) DR0:** max is 11 bytes so one entry of data
843 843  
844 -The device will be able to get the I2C sensor data now and upload to IoT Server.
423 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
845 845  
846 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
425 +**c) DR2:** total payload includes 11 entries of data
847 847  
848 -Convert the read byte to decimal and divide it by ten.
427 +**d) DR3: **total payload includes 22 entries of data.
849 849  
850 -**Example:**
429 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
851 851  
852 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
853 853  
854 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
855 -
856 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
857 -
858 -
859 -==== 2.3.3.7  ​Distance Reading ====
860 -
861 -
862 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
863 -
864 -
865 -==== 2.3.3.8 Ultrasonic Sensor ====
866 -
867 -
868 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
869 -
870 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
871 -
872 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
873 -
874 -The picture below shows the connection:
875 -
876 -[[image:image-20230512173903-6.png||height="596" width="715"]]
877 -
878 -
879 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
880 -
881 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
882 -
883 883  **Example:**
884 884  
885 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
434 +If S31x-LB has below data inside Flash:
886 886  
436 +[[image:1682646494051-944.png]]
887 887  
888 -==== 2.3.3.9  Battery Output - BAT pin ====
438 +If user sends below downlink command: 3160065F9760066DA705
889 889  
440 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
890 890  
891 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
442 + Stop time: 60066DA7= time 21/1/19 05:27:03
892 892  
893 893  
894 -==== 2.3.3.1 +5V Output ====
445 +**S31x-LB will uplink this payload.**
895 895  
447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
896 896  
897 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
449 +(((
450 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
451 +)))
898 898  
899 -The 5V output time can be controlled by AT Command.
453 +(((
454 +Where the first 11 bytes is for the first entry:
455 +)))
900 900  
901 -(% style="color:blue" %)**AT+5VT=1000**
457 +(((
458 +7FFF089801464160065F97
459 +)))
902 902  
903 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
461 +(((
462 +**Ext sensor data**=0x7FFF/100=327.67
463 +)))
904 904  
905 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
465 +(((
466 +**Temp**=0x088E/100=22.00
467 +)))
906 906  
907 -
908 -==== 2.3.3.11  BH1750 Illumination Sensor ====
909 -
910 -
911 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
912 -
913 -[[image:image-20230512172447-4.png||height="416" width="712"]]
914 -
915 -
916 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
917 -
918 -
919 -==== 2.3.3.12  PWM MOD ====
920 -
921 -
922 -* (((
923 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
469 +(((
470 +**Hum**=0x014B/10=32.6
924 924  )))
925 -* (((
926 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 -)))
928 928  
929 - [[image:image-20230817183249-3.png||height="320" width="417"]]
930 -
931 -* (((
932 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
473 +(((
474 +**poll message flag & Ext**=0x41,means reply data,Ext=1
933 933  )))
934 -* (((
935 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 -)))
937 -* (((
938 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
939 939  
940 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 -
942 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 -
944 -b) If the output duration is more than 30 seconds, better to use external power source. 
477 +(((
478 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
945 945  )))
946 946  
947 947  
948 -==== 2.3.3.13  Working MOD ====
482 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
949 949  
484 +== 2.6 Temperature Alarm Feature ==
950 950  
951 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
952 952  
953 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
487 +S31x-LB work flow with Alarm feature.
954 954  
955 -Case 7^^th^^ Byte >> 2 & 0x1f:
956 956  
957 -* 0: MOD1
958 -* 1: MOD2
959 -* 2: MOD3
960 -* 3: MOD4
961 -* 4: MOD5
962 -* 5: MOD6
963 -* 6: MOD7
964 -* 7: MOD8
965 -* 8: MOD9
966 -* 9: MOD10
490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
967 967  
968 -== 2.4 Payload Decoder file ==
969 969  
493 +== 2.7 Frequency Plans ==
970 970  
971 -In TTN, use can add a custom payload so it shows friendly reading
972 972  
973 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
496 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
974 974  
975 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
976 -
977 -
978 -== 2.5 Frequency Plans ==
979 -
980 -
981 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
982 -
983 983  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
984 984  
985 985  
986 -= 3. Configure SN50v3-LB/LS =
501 += 3. Configure S31x-LB =
987 987  
988 988  == 3.1 Configure Methods ==
989 989  
990 990  
991 -SN50v3-LB/LS supports below configure method:
506 +S31x-LB supports below configure method:
992 992  
993 993  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
994 994  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1007,10 +1007,10 @@
1007 1007  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1008 1008  
1009 1009  
1010 -== 3.3 Commands special design for SN50v3-LB/LS ==
525 +== 3.3 Commands special design for S31x-LB ==
1011 1011  
1012 1012  
1013 -These commands only valid for SN50v3-LB/LS, as below:
528 +These commands only valid for S31x-LB, as below:
1014 1014  
1015 1015  
1016 1016  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1021,7 +1021,7 @@
1021 1021  (% style="color:blue" %)**AT Command: AT+TDC**
1022 1022  
1023 1023  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1024 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
539 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1025 1025  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1026 1026  30000
1027 1027  OK
... ... @@ -1044,251 +1044,120 @@
1044 1044  === 3.3.2 Get Device Status ===
1045 1045  
1046 1046  
1047 -Send a LoRaWAN downlink to ask the device to send its status.
562 +Send a LoRaWAN downlink to ask device send Alarm settings.
1048 1048  
1049 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
564 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1050 1050  
1051 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
566 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1052 1052  
1053 1053  
1054 -=== 3.3.3 Set Interrupt Mode ===
569 +=== 3.3.3 Set Temperature Alarm Threshold ===
1055 1055  
571 +* (% style="color:blue" %)**AT Command:**
1056 1056  
1057 -Feature, Set Interrupt mode for GPIO_EXIT.
573 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1058 1058  
1059 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
575 +* When min=0, and max≠0, Alarm higher than max
576 +* When min≠0, and max=0, Alarm lower than min
577 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1060 1060  
1061 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1062 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1063 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1064 -0
1065 -OK
1066 -the mode is 0 =Disable Interrupt
1067 -)))
1068 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1069 -Set Transmit Interval
1070 -0. (Disable Interrupt),
1071 -~1. (Trigger by rising and falling edge)
1072 -2. (Trigger by falling edge)
1073 -3. (Trigger by rising edge)
1074 -)))|(% style="width:157px" %)OK
1075 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1076 -Set Transmit Interval
1077 -trigger by rising edge.
1078 -)))|(% style="width:157px" %)OK
1079 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
579 +Example:
1080 1080  
1081 -(% style="color:blue" %)**Downlink Command: 0x06**
581 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1082 1082  
1083 -Format: Command Code (0x06) followed by 3 bytes.
583 +* (% style="color:blue" %)**Downlink Payload:**
1084 1084  
1085 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
585 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1086 1086  
1087 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1088 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1089 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1090 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
587 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1091 1091  
1092 -=== 3.3.4 Set Power Output Duration ===
1093 1093  
590 +=== 3.3.4 Set Humidity Alarm Threshold ===
1094 1094  
1095 -Control the output duration 5V . Before each sampling, device will
592 +* (% style="color:blue" %)**AT Command:**
1096 1096  
1097 -~1. first enable the power output to external sensor,
594 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1098 1098  
1099 -2. keep it on as per duration, read sensor value and construct uplink payload
596 +* When min=0, and max≠0, Alarm higher than max
597 +* When min≠0, and max=0, Alarm lower than min
598 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1100 1100  
1101 -3. final, close the power output.
600 +Example:
1102 1102  
1103 -(% style="color:blue" %)**AT Command: AT+5VT**
602 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1104 1104  
1105 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1106 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1107 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1108 -500(default)
1109 -OK
1110 -)))
1111 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1112 -Close after a delay of 1000 milliseconds.
1113 -)))|(% style="width:157px" %)OK
604 +* (% style="color:blue" %)**Downlink Payload:**
1114 1114  
1115 -(% style="color:blue" %)**Downlink Command: 0x07**
606 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1116 1116  
1117 -Format: Command Code (0x07) followed by 2 bytes.
608 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1118 1118  
1119 -The first and second bytes are the time to turn on.
1120 1120  
1121 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1122 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
611 +=== 3.3.5 Set Alarm Interval ===
1123 1123  
1124 -=== 3.3.5 Set Weighing parameters ===
613 +The shortest time of two Alarm packet. (unit: min)
1125 1125  
615 +* (% style="color:blue" %)**AT Command:**
1126 1126  
1127 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
617 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1128 1128  
1129 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
619 +* (% style="color:blue" %)**Downlink Payload:**
1130 1130  
1131 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1132 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1133 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1134 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1135 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
621 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1136 1136  
1137 -(% style="color:blue" %)**Downlink Command: 0x08**
1138 1138  
1139 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
624 +=== 3.3.6 Get Alarm settings ===
1140 1140  
1141 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1142 1142  
1143 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
627 +Send a LoRaWAN downlink to ask device send Alarm settings.
1144 1144  
1145 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1146 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1147 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
629 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1148 1148  
1149 -=== 3.3.6 Set Digital pulse count value ===
631 +**Example:**
1150 1150  
633 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1151 1151  
1152 -Feature: Set the pulse count value.
1153 1153  
1154 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
636 +**Explain:**
1155 1155  
1156 -(% style="color:blue" %)**AT Command: AT+SETCNT**
638 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1157 1157  
1158 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1159 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1160 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1161 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
640 +=== 3.3.7 Set Interrupt Mode ===
1162 1162  
1163 -(% style="color:blue" %)**Downlink Command: 0x09**
1164 1164  
1165 -Format: Command Code (0x09) followed by 5 bytes.
643 +Feature, Set Interrupt mode for GPIO_EXIT.
1166 1166  
1167 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
645 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1168 1168  
1169 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1170 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1171 -
1172 -=== 3.3.7 Set Workmode ===
1173 -
1174 -
1175 -Feature: Switch working mode.
1176 -
1177 -(% style="color:blue" %)**AT Command: AT+MOD**
1178 -
1179 1179  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1180 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1181 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
648 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
649 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
650 +0
1182 1182  OK
652 +the mode is 0 =Disable Interrupt
1183 1183  )))
1184 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1185 -OK
1186 -Attention:Take effect after ATZ
1187 -)))
654 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
655 +Set Transmit Interval
656 +0. (Disable Interrupt),
657 +~1. (Trigger by rising and falling edge)
658 +2. (Trigger by falling edge)
659 +3. (Trigger by rising edge)
660 +)))|(% style="width:157px" %)OK
1188 1188  
1189 -(% style="color:blue" %)**Downlink Command: 0x0A**
662 +(% style="color:blue" %)**Downlink Command: 0x06**
1190 1190  
1191 -Format: Command Code (0x0A) followed by 1 bytes.
664 +Format: Command Code (0x06) followed by 3 bytes.
1192 1192  
1193 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1194 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
666 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1195 1195  
668 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
669 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1196 1196  
1197 -=== 3.3.8 PWM setting ===
671 += 4. Battery & Power Consumption =
1198 1198  
1199 1199  
1200 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
674 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1201 1201  
1202 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1203 -
1204 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1206 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 -0(default)
1208 -OK
1209 -)))
1210 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1211 -OK
1212 -
1213 -)))
1214 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1215 -
1216 -(% style="color:blue" %)**Downlink Command: 0x0C**
1217 -
1218 -Format: Command Code (0x0C) followed by 1 bytes.
1219 -
1220 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1221 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1222 -
1223 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1224 -
1225 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1226 -
1227 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1228 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 135px; background-color: #4F81BD;color:white" %)**Response**
1229 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1230 -0,0,0(default)
1231 -
1232 -OK
1233 -)))
1234 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1235 -OK
1236 -
1237 -)))
1238 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1239 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1240 -
1241 -
1242 -)))|(% style="width:137px" %)(((
1243 -OK
1244 -)))
1245 -
1246 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1247 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1248 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1249 -AT+PWMOUT=a,b,c
1250 -
1251 -
1252 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1253 -Set PWM output time, output frequency and output duty cycle.
1254 -
1255 -(((
1256 -
1257 -)))
1258 -
1259 -(((
1260 -
1261 -)))
1262 -)))|(% style="width:242px" %)(((
1263 -a: Output time (unit: seconds)
1264 -
1265 -The value ranges from 0 to 65535.
1266 -
1267 -When a=65535, PWM will always output.
1268 -)))
1269 -|(% style="width:242px" %)(((
1270 -b: Output frequency (unit: HZ)
1271 -)))
1272 -|(% style="width:242px" %)(((
1273 -c: Output duty cycle (unit: %)
1274 -
1275 -The value ranges from 0 to 100.
1276 -)))
1277 -
1278 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1279 -
1280 -Format: Command Code (0x0B01) followed by 6 bytes.
1281 -
1282 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1283 -
1284 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1285 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1286 -
1287 -= 4. Battery & Power Cons =
1288 -
1289 -
1290 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1291 -
1292 1292  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1293 1293  
1294 1294  
... ... @@ -1296,78 +1296,63 @@
1296 1296  
1297 1297  
1298 1298  (% class="wikigeneratedid" %)
1299 -**User can change firmware SN50v3-LB/LS to:**
683 +User can change firmware S31x-LB to:
1300 1300  
1301 1301  * Change Frequency band/ region.
1302 1302  * Update with new features.
1303 1303  * Fix bugs.
1304 1304  
1305 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
689 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1306 1306  
1307 -**Methods to Update Firmware:**
1308 1308  
1309 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1310 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
692 +Methods to Update Firmware:
1311 1311  
694 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
695 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
696 +
1312 1312  = 6. FAQ =
1313 1313  
1314 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1315 1315  
1316 1316  
1317 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1318 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1319 -
1320 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1321 -
1322 -
1323 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1324 -
1325 -
1326 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1327 -
1328 -
1329 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1330 -
1331 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1332 -
1333 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1334 -
1335 -
1336 1336  = 7. Order Info =
1337 1337  
1338 1338  
1339 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
704 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1340 1340  
1341 1341  (% style="color:red" %)**XX**(%%): The default frequency band
1342 1342  
1343 1343  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
709 +
1344 1344  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
711 +
1345 1345  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
713 +
1346 1346  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
715 +
1347 1347  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
717 +
1348 1348  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
719 +
1349 1349  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
721 +
1350 1350  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1351 1351  
1352 -(% style="color:red" %)**YY: ** (%%)Hole Option
724 += =
1353 1353  
1354 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1355 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1356 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1357 -* (% style="color:red" %)**NH**(%%): No Hole
1358 -
1359 1359  = 8. ​Packing Info =
1360 1360  
1361 -
1362 1362  (% style="color:#037691" %)**Package Includes**:
1363 1363  
1364 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
730 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1365 1365  
1366 1366  (% style="color:#037691" %)**Dimension and weight**:
1367 1367  
1368 1368  * Device Size: cm
735 +
1369 1369  * Device Weight: g
737 +
1370 1370  * Package Size / pcs : cm
739 +
1371 1371  * Weight / pcs : g
1372 1372  
1373 1373  = 9. Support =
... ... @@ -1374,5 +1374,4 @@
1374 1374  
1375 1375  
1376 1376  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1377 -
1378 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
746 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230511203450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -679.1 KB
Content
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0