<
From version < 87.2 >
edited by Xiaoling
on 2024/01/03 09:58
To version < 57.1 >
edited by Edwin Chen
on 2023/08/10 12:17
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,15 +3,10 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
6 +**Table of Contents:**
8 8  
9 -
10 -
11 -**Table of Contents:**
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -24,7 +24,7 @@
24 24  
25 25  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 28  
29 29  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
... ... @@ -32,6 +32,7 @@
32 32  
33 33  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
30 +
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -45,6 +45,7 @@
45 45  * Downlink to change configure
46 46  * 8500mAh Battery for long term use
47 47  
44 +
48 48  == 1.3 Specification ==
49 49  
50 50  
... ... @@ -82,6 +82,7 @@
82 82  * Sleep Mode: 5uA @ 3.3v
83 83  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
84 84  
82 +
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,7 +93,7 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
94 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 97  
98 98  
99 99  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -109,6 +109,7 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
110 +
112 112  == 1.6 BLE connection ==
113 113  
114 114  
... ... @@ -132,19 +132,14 @@
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
137 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
140 -
141 141  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142 142  
143 -=== 1.8.2 for LS version ===
144 144  
145 -[[image:image-20231231203439-3.png||height="385" width="886"]]
146 -
147 -
148 148  == 1.9 Hole Option ==
149 149  
150 150  
... ... @@ -476,6 +476,7 @@
476 476  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477 477  
478 478  
473 +
479 479  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480 480  
481 481  
... ... @@ -588,105 +588,6 @@
588 588  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 589  
590 590  
591 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 -
593 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594 -
595 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596 -
597 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
598 -
599 -
600 -===== 2.3.2.10.a  Uplink, PWM input capture =====
601 -
602 -
603 -[[image:image-20230817172209-2.png||height="439" width="683"]]
604 -
605 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 -|Value|Bat|(% style="width:191px" %)(((
608 -Temperature(DS18B20)(PC13)
609 -)))|(% style="width:78px" %)(((
610 -ADC(PA4)
611 -)))|(% style="width:135px" %)(((
612 -PWM_Setting
613 -&Digital Interrupt(PA8)
614 -)))|(% style="width:70px" %)(((
615 -Pulse period
616 -)))|(% style="width:89px" %)(((
617 -Duration of high level
618 -)))
619 -
620 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
621 -
622 -
623 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
624 -
625 -**Frequency:**
626 -
627 -(% class="MsoNormal" %)
628 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
629 -
630 -(% class="MsoNormal" %)
631 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 -
633 -
634 -(% class="MsoNormal" %)
635 -**Duty cycle:**
636 -
637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638 -
639 -[[image:image-20230818092200-1.png||height="344" width="627"]]
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
644 -
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 -
647 -a is the time delay of the output, the unit is ms.
648 -
649 -b is the output frequency, the unit is HZ.
650 -
651 -c is the duty cycle of the output, the unit is %.
652 -
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 -
655 -aa is the time delay of the output, the unit is ms.
656 -
657 -bb is the output frequency, the unit is HZ.
658 -
659 -cc is the duty cycle of the output, the unit is %.
660 -
661 -
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 -
664 -The oscilloscope displays as follows:
665 -
666 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 -
668 -
669 -===== 2.3.2.10.c  Downlink, PWM output =====
670 -
671 -
672 -[[image:image-20230817173800-3.png||height="412" width="685"]]
673 -
674 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675 -
676 - xx xx xx is the output frequency, the unit is HZ.
677 -
678 - yy is the duty cycle of the output, the unit is %.
679 -
680 - zz zz is the time delay of the output, the unit is ms.
681 -
682 -
683 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684 -
685 -The oscilloscope displays as follows:
686 -
687 -[[image:image-20230817173858-5.png||height="694" width="921"]]
688 -
689 -
690 690  === 2.3.3  ​Decode payload ===
691 691  
692 692  
... ... @@ -760,10 +760,6 @@
760 760  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
761 761  
762 762  
763 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
764 -
765 -[[image:image-20230811113449-1.png||height="370" width="608"]]
766 -
767 767  ==== 2.3.3.5 Digital Interrupt ====
768 768  
769 769  
... ... @@ -910,40 +910,9 @@
910 910  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
911 911  
912 912  
913 -==== 2.3.3.12  PWM MOD ====
805 +==== 2.3.3.12  Working MOD ====
914 914  
915 915  
916 -* (((
917 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
918 -)))
919 -* (((
920 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 -)))
922 -
923 - [[image:image-20230817183249-3.png||height="320" width="417"]]
924 -
925 -* (((
926 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 -)))
928 -* (((
929 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 -)))
931 -* (((
932 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
933 -
934 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935 -
936 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 -
938 -b) If the output duration is more than 30 seconds, better to use external power source. 
939 -
940 -
941 -
942 -)))
943 -
944 -==== 2.3.3.13  Working MOD ====
945 -
946 -
947 947  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
948 948  
949 949  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -959,8 +959,8 @@
959 959  * 6: MOD7
960 960  * 7: MOD8
961 961  * 8: MOD9
962 -* 9: MOD10
963 963  
824 +
964 964  == 2.4 Payload Decoder file ==
965 965  
966 966  
... ... @@ -990,6 +990,7 @@
990 990  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
991 991  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
992 992  
854 +
993 993  == 3.2 General Commands ==
994 994  
995 995  
... ... @@ -1037,6 +1037,7 @@
1037 1037  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1038 1038  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1039 1039  
902 +
1040 1040  === 3.3.2 Get Device Status ===
1041 1041  
1042 1042  
... ... @@ -1085,6 +1085,7 @@
1085 1085  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 1086  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1087 1087  
951 +
1088 1088  === 3.3.4 Set Power Output Duration ===
1089 1089  
1090 1090  
... ... @@ -1117,6 +1117,7 @@
1117 1117  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 1118  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1119 1119  
984 +
1120 1120  === 3.3.5 Set Weighing parameters ===
1121 1121  
1122 1122  
... ... @@ -1142,6 +1142,7 @@
1142 1142  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 1143  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1144 1144  
1010 +
1145 1145  === 3.3.6 Set Digital pulse count value ===
1146 1146  
1147 1147  
... ... @@ -1165,6 +1165,7 @@
1165 1165  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 1166  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167 1167  
1034 +
1168 1168  === 3.3.7 Set Workmode ===
1169 1169  
1170 1170  
... ... @@ -1189,101 +1189,10 @@
1189 1189  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 1190  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191 1191  
1192 -(% id="H3.3.8PWMsetting" %)
1193 -=== 3.3.8 PWM setting ===
1194 1194  
1060 += 4. Battery & Power Consumption =
1195 1195  
1196 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197 1197  
1198 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1199 -
1200 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 -0(default)
1204 -
1205 -OK
1206 -)))
1207 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 -OK
1209 -
1210 -)))
1211 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 -
1213 -(% style="color:blue" %)**Downlink Command: 0x0C**
1214 -
1215 -Format: Command Code (0x0C) followed by 1 bytes.
1216 -
1217 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 -
1220 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 -
1222 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 -
1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 -0,0,0(default)
1228 -
1229 -OK
1230 -)))
1231 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 -OK
1233 -
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 -
1238 -
1239 -)))|(% style="width:137px" %)(((
1240 -OK
1241 -)))
1242 -
1243 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 -AT+PWMOUT=a,b,c
1247 -
1248 -
1249 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 -Set PWM output time, output frequency and output duty cycle.
1251 -
1252 -(((
1253 -
1254 -)))
1255 -
1256 -(((
1257 -
1258 -)))
1259 -)))|(% style="width:242px" %)(((
1260 -a: Output time (unit: seconds)
1261 -
1262 -The value ranges from 0 to 65535.
1263 -
1264 -When a=65535, PWM will always output.
1265 -)))
1266 -|(% style="width:242px" %)(((
1267 -b: Output frequency (unit: HZ)
1268 -)))
1269 -|(% style="width:242px" %)(((
1270 -c: Output duty cycle (unit: %)
1271 -
1272 -The value ranges from 0 to 100.
1273 -)))
1274 -
1275 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 -
1277 -Format: Command Code (0x0B01) followed by 6 bytes.
1278 -
1279 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 -
1281 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 -
1284 -= 4. Battery & Power Cons =
1285 -
1286 -
1287 1287  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1288 1288  
1289 1289  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1306,6 +1306,7 @@
1306 1306  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 1307  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1308 1308  
1085 +
1309 1309  = 6. FAQ =
1310 1310  
1311 1311  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1314,6 +1314,7 @@
1314 1314  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 1315  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1316 1316  
1094 +
1317 1317  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1318 1318  
1319 1319  
... ... @@ -1322,7 +1322,6 @@
1322 1322  
1323 1323  == 6.3 How to put several sensors to a SN50v3-LB? ==
1324 1324  
1325 -
1326 1326  When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 1327  
1328 1328  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
... ... @@ -1353,6 +1353,7 @@
1353 1353  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1354 1354  * (% style="color:red" %)**NH**(%%): No Hole
1355 1355  
1133 +
1356 1356  = 8. ​Packing Info =
1357 1357  
1358 1358  
... ... @@ -1367,6 +1367,7 @@
1367 1367  * Package Size / pcs : cm
1368 1368  * Weight / pcs : g
1369 1369  
1148 +
1370 1370  = 9. Support =
1371 1371  
1372 1372  
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0