<
From version < 87.19 >
edited by Xiaoling
on 2024/01/03 14:17
To version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -22,7 +22,7 @@
22 22  == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 27  (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28 28  
... ... @@ -43,8 +43,7 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
46 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
... ... @@ -51,7 +51,7 @@
51 51  
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
53 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -98,7 +98,7 @@
98 98  
99 99  
100 100  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
101 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
100 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
102 102  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
103 103  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
104 104  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -113,7 +113,7 @@
113 113  == 1.6 BLE connection ==
114 114  
115 115  
116 -SN50v3-LB/LS supports BLE remote configure.
115 +SN50v3-LB supports BLE remote configure.
117 117  
118 118  
119 119  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -149,7 +149,7 @@
149 149  == 1.9 Hole Option ==
150 150  
151 151  
152 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 153  
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
155 155  
... ... @@ -156,12 +156,12 @@
156 156  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
157 157  
158 158  
159 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
160 160  
161 161  == 2.1 How it works ==
162 162  
163 163  
164 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
165 165  
166 166  
167 167  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -172,9 +172,9 @@
172 172  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
173 173  
174 174  
175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
176 176  
177 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
178 178  
179 179  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
180 180  
... ... @@ -203,10 +203,10 @@
203 203  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204 204  
205 205  
206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
208 208  
209 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
208 +Press the button for 5 seconds to activate the SN50v3-LB.
210 210  
211 211  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 212  
... ... @@ -218,13 +218,13 @@
218 218  === 2.3.1 Device Status, FPORT~=5 ===
219 219  
220 220  
221 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
222 222  
223 223  The Payload format is as below.
224 224  
225 225  
226 226  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
227 -|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
226 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
228 228  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
229 229  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
230 230  
... ... @@ -231,7 +231,7 @@
231 231  Example parse in TTNv3
232 232  
233 233  
234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
235 235  
236 236  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
237 237  
... ... @@ -287,7 +287,7 @@
287 287  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
288 288  
289 289  
290 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
289 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
291 291  
292 292  For example:
293 293  
... ... @@ -296,7 +296,7 @@
296 296  
297 297  (% style="color:red" %) **Important Notice:**
298 298  
299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
300 300  
301 301  2. All modes share the same Payload Explanation from HERE.
302 302  
... ... @@ -309,7 +309,7 @@
309 309  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310 310  
311 311  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
312 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
311 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
313 313  |Value|Bat|(% style="width:191px" %)(((
314 314  Temperature(DS18B20)(PC13)
315 315  )))|(% style="width:78px" %)(((
... ... @@ -331,7 +331,7 @@
331 331  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
332 332  
333 333  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
334 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**
333 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
335 335  |Value|BAT|(% style="width:196px" %)(((
336 336  Temperature(DS18B20)(PC13)
337 337  )))|(% style="width:87px" %)(((
... ... @@ -361,7 +361,7 @@
361 361  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362 362  
363 363  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
364 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
363 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
365 365  |Value|BAT|(% style="width:183px" %)(((
366 366  Temperature(DS18B20)(PC13)
367 367  )))|(% style="width:173px" %)(((
... ... @@ -396,9 +396,9 @@
396 396  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
397 397  
398 398  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
398 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
400 400  **Size(bytes)**
401 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
400 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
402 402  |Value|(% style="width:68px" %)(((
403 403  ADC1(PA4)
404 404  )))|(% style="width:75px" %)(((
... ... @@ -422,7 +422,7 @@
422 422  This mode has total 11 bytes. As shown below:
423 423  
424 424  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
425 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**
424 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
426 426  |Value|BAT|(% style="width:186px" %)(((
427 427  Temperature1(DS18B20)(PC13)
428 428  )))|(% style="width:82px" %)(((
... ... @@ -463,9 +463,9 @@
463 463  Check the response of this command and adjust the value to match the real value for thing.
464 464  
465 465  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
465 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
467 467  **Size(bytes)**
468 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
467 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 469  |Value|BAT|(% style="width:193px" %)(((
470 470  Temperature(DS18B20)(PC13)
471 471  )))|(% style="width:85px" %)(((
... ... @@ -490,7 +490,7 @@
490 490  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
491 491  
492 492  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 494  |Value|BAT|(% style="width:256px" %)(((
495 495  Temperature(DS18B20)(PC13)
496 496  )))|(% style="width:108px" %)(((
... ... @@ -508,9 +508,9 @@
508 508  
509 509  
510 510  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
512 512  **Size(bytes)**
513 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
514 514  |Value|BAT|(% style="width:188px" %)(((
515 515  Temperature(DS18B20)
516 516  (PC13)
... ... @@ -527,9 +527,9 @@
527 527  
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
531 531  **Size(bytes)**
532 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
533 533  |Value|BAT|(% style="width:207px" %)(((
534 534  Temperature(DS18B20)
535 535  (PC13)
... ... @@ -550,9 +550,9 @@
550 550  
551 551  
552 552  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
554 554  **Size(bytes)**
555 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
556 556  |Value|BAT|(((
557 557  Temperature
558 558  (DS18B20)(PC13)
... ... @@ -589,9 +589,8 @@
589 589  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
590 590  
591 591  
592 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
593 593  
594 -
595 595  (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 596  
597 597  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
... ... @@ -605,7 +605,7 @@
605 605  [[image:image-20230817172209-2.png||height="439" width="683"]]
606 606  
607 607  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2**
606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
609 609  |Value|Bat|(% style="width:191px" %)(((
610 610  Temperature(DS18B20)(PC13)
611 611  )))|(% style="width:78px" %)(((
... ... @@ -640,10 +640,8 @@
640 640  
641 641  [[image:image-20230818092200-1.png||height="344" width="627"]]
642 642  
643 -
644 644  ===== 2.3.2.10.b  Uplink, PWM output =====
645 645  
646 -
647 647  [[image:image-20230817172209-2.png||height="439" width="683"]]
648 648  
649 649  (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
... ... @@ -667,7 +667,7 @@
667 667  
668 668  The oscilloscope displays as follows:
669 669  
670 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
671 671  
672 672  
673 673  ===== 2.3.2.10.c  Downlink, PWM output =====
... ... @@ -688,7 +688,7 @@
688 688  
689 689  The oscilloscope displays as follows:
690 690  
691 -[[image:image-20230817173858-5.png||height="634" width="843"]]
687 +[[image:image-20230817173858-5.png||height="694" width="921"]]
692 692  
693 693  
694 694  === 2.3.3  ​Decode payload ===
... ... @@ -700,13 +700,13 @@
700 700  
701 701  The payload decoder function for TTN V3 are here:
702 702  
703 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
699 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
704 704  
705 705  
706 706  ==== 2.3.3.1 Battery Info ====
707 707  
708 708  
709 -Check the battery voltage for SN50v3-LB/LS.
705 +Check the battery voltage for SN50v3-LB.
710 710  
711 711  Ex1: 0x0B45 = 2885mV
712 712  
... ... @@ -768,12 +768,10 @@
768 768  
769 769  [[image:image-20230811113449-1.png||height="370" width="608"]]
770 770  
771 -
772 -
773 773  ==== 2.3.3.5 Digital Interrupt ====
774 774  
775 775  
776 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
770 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
777 777  
778 778  (% style="color:blue" %)** Interrupt connection method:**
779 779  
... ... @@ -786,18 +786,18 @@
786 786  
787 787  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
788 788  
789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
783 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
790 790  
791 791  
792 792  (% style="color:blue" %)**Below is the installation example:**
793 793  
794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
788 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
795 795  
796 796  * (((
797 -One pin to SN50v3-LB/LS's PA8 pin
791 +One pin to SN50v3-LB's PA8 pin
798 798  )))
799 799  * (((
800 -The other pin to SN50v3-LB/LS's VDD pin
794 +The other pin to SN50v3-LB's VDD pin
801 801  )))
802 802  
803 803  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -833,7 +833,7 @@
833 833  
834 834  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
835 835  
836 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
830 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
837 837  
838 838  
839 839  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -867,7 +867,7 @@
867 867  
868 868  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
869 869  
870 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
864 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
871 871  
872 872  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
873 873  
... ... @@ -876,7 +876,7 @@
876 876  [[image:image-20230512173903-6.png||height="596" width="715"]]
877 877  
878 878  
879 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
873 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
880 880  
881 881  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
882 882  
... ... @@ -888,13 +888,13 @@
888 888  ==== 2.3.3.9  Battery Output - BAT pin ====
889 889  
890 890  
891 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
885 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
892 892  
893 893  
894 894  ==== 2.3.3.10  +5V Output ====
895 895  
896 896  
897 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
891 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
898 898  
899 899  The 5V output time can be controlled by AT Command.
900 900  
... ... @@ -939,12 +939,14 @@
939 939  
940 940  For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 941  
942 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
936 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
943 943  
944 944  b) If the output duration is more than 30 seconds, better to use external power source. 
945 -)))
946 946  
947 947  
941 +
942 +)))
943 +
948 948  ==== 2.3.3.13  Working MOD ====
949 949  
950 950  
... ... @@ -978,17 +978,17 @@
978 978  == 2.5 Frequency Plans ==
979 979  
980 980  
981 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
977 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
982 982  
983 983  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
984 984  
985 985  
986 -= 3. Configure SN50v3-LB/LS =
982 += 3. Configure SN50v3-LB =
987 987  
988 988  == 3.1 Configure Methods ==
989 989  
990 990  
991 -SN50v3-LB/LS supports below configure method:
987 +SN50v3-LB supports below configure method:
992 992  
993 993  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
994 994  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1007,10 +1007,10 @@
1007 1007  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1008 1008  
1009 1009  
1010 -== 3.3 Commands special design for SN50v3-LB/LS ==
1006 +== 3.3 Commands special design for SN50v3-LB ==
1011 1011  
1012 1012  
1013 -These commands only valid for SN50v3-LB/LS, as below:
1009 +These commands only valid for SN50v3-LB, as below:
1014 1014  
1015 1015  
1016 1016  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1021,7 +1021,7 @@
1021 1021  (% style="color:blue" %)**AT Command: AT+TDC**
1022 1022  
1023 1023  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1024 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1020 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1025 1025  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1026 1026  30000
1027 1027  OK
... ... @@ -1056,10 +1056,10 @@
1056 1056  
1057 1057  Feature, Set Interrupt mode for GPIO_EXIT.
1058 1058  
1059 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1055 +(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1060 1060  
1061 1061  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1062 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1058 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1063 1063  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1064 1064  0
1065 1065  OK
... ... @@ -1103,7 +1103,7 @@
1103 1103  (% style="color:blue" %)**AT Command: AT+5VT**
1104 1104  
1105 1105  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1106 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1102 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1107 1107  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1108 1108  500(default)
1109 1109  OK
... ... @@ -1129,9 +1129,9 @@
1129 1129  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1130 1130  
1131 1131  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1132 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1133 1133  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1134 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1130 +|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1135 1135  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1136 1136  
1137 1137  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1156,7 +1156,7 @@
1156 1156  (% style="color:blue" %)**AT Command: AT+SETCNT**
1157 1157  
1158 1158  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1159 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1155 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1160 1160  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1161 1161  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1162 1162  
... ... @@ -1177,7 +1177,7 @@
1177 1177  (% style="color:blue" %)**AT Command: AT+MOD**
1178 1178  
1179 1179  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1180 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1176 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1181 1181  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1182 1182  OK
1183 1183  )))
... ... @@ -1193,7 +1193,7 @@
1193 1193  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1194 1194  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1195 1195  
1196 -
1192 +(% id="H3.3.8PWMsetting" %)
1197 1197  === 3.3.8 PWM setting ===
1198 1198  
1199 1199  
... ... @@ -1202,9 +1202,10 @@
1202 1202  (% style="color:blue" %)**AT Command: AT+PWMSET**
1203 1203  
1204 1204  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1206 1206  |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 1207  0(default)
1204 +
1208 1208  OK
1209 1209  )))
1210 1210  |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
... ... @@ -1225,7 +1225,7 @@
1225 1225  (% style="color:blue" %)**AT Command: AT+PWMOUT**
1226 1226  
1227 1227  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1228 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 137px; background-color: #4F81BD;color:white" %)**Response**
1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1229 1229  |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1230 1230  0,0,0(default)
1231 1231  
... ... @@ -1244,7 +1244,7 @@
1244 1244  )))
1245 1245  
1246 1246  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1247 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1248 1248  |(% colspan="1" rowspan="3" style="width:155px" %)(((
1249 1249  AT+PWMOUT=a,b,c
1250 1250  
... ... @@ -1279,7 +1279,7 @@
1279 1279  
1280 1280  Format: Command Code (0x0B01) followed by 6 bytes.
1281 1281  
1282 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1279 +Downlink payload0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1283 1283  
1284 1284  * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1285 1285  * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
... ... @@ -1287,7 +1287,7 @@
1287 1287  = 4. Battery & Power Cons =
1288 1288  
1289 1289  
1290 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1287 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1291 1291  
1292 1292  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1293 1293  
... ... @@ -1296,7 +1296,7 @@
1296 1296  
1297 1297  
1298 1298  (% class="wikigeneratedid" %)
1299 -**User can change firmware SN50v3-LB/LS to:**
1296 +**User can change firmware SN50v3-LB to:**
1300 1300  
1301 1301  * Change Frequency band/ region.
1302 1302  * Update with new features.
... ... @@ -1311,22 +1311,22 @@
1311 1311  
1312 1312  = 6. FAQ =
1313 1313  
1314 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1311 +== 6.1 Where can i find source code of SN50v3-LB? ==
1315 1315  
1316 1316  
1317 1317  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1318 1318  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1319 1319  
1320 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1317 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1321 1321  
1322 1322  
1323 1323  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1324 1324  
1325 1325  
1326 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1323 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1327 1327  
1328 1328  
1329 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1326 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1330 1330  
1331 1331  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1332 1332  
... ... @@ -1336,7 +1336,7 @@
1336 1336  = 7. Order Info =
1337 1337  
1338 1338  
1339 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1336 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1340 1340  
1341 1341  (% style="color:red" %)**XX**(%%): The default frequency band
1342 1342  
... ... @@ -1361,7 +1361,7 @@
1361 1361  
1362 1362  (% style="color:#037691" %)**Package Includes**:
1363 1363  
1364 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1361 +* SN50v3-LB LoRaWAN Generic Node
1365 1365  
1366 1366  (% style="color:#037691" %)**Dimension and weight**:
1367 1367  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0