Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS--LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,15 +3,10 @@ 1 - 2 - 3 3 (% style="text-align:center" %) 4 -[[image:image-202 40103095714-2.png]]2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 5 5 6 6 7 7 6 +**Table of Contents:** 8 8 9 - 10 - 11 -**Table of Contents:** 12 - 13 13 {{toc/}} 14 14 15 15 ... ... @@ -19,19 +19,20 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is SN50v3-LB /LSLoRaWAN Generic Node ==17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 23 23 24 24 25 -(% style="color:blue" %)**SN50V3-LB /LS**(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAhLi/SOCl2 battery**(%%)or (% style="color:blue" %)**solar powered + li-on battery**(%%)for long term use.SN50V3-LB/LSis designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LSwireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 28 28 29 - SN50V3-LB/LS has a powerful(% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has(% style="color:blue" %)**multiplex I/O pins**(%%)to connect to different sensors.24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 30 30 31 - SN50V3-LB/LS has a(% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support(% style="color:blue" %)**OTA upgrade**(%%)via private LoRa protocol for easy maintaining.26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 32 32 33 -SN50V3-LB /LSis the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 30 + 35 35 == 1.2 Features == 36 36 37 37 ... ... @@ -43,8 +43,7 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 42 +* 8500mAh Battery for long term use 48 48 49 49 == 1.3 Specification == 50 50 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-in battery , 2.5v ~~ 3.6v49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -94,11 +94,11 @@ 94 94 == 1.5 Button & LEDs == 95 95 96 96 97 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] [[image:image-20231231203148-2.png||height="456" width="316"]]92 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 98 98 99 99 100 100 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 101 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**96 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 102 102 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 103 103 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 104 104 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -113,7 +113,7 @@ 113 113 == 1.6 BLE connection == 114 114 115 115 116 -SN50v3-LB /LSsupports BLE remote configure.111 +SN50v3-LB supports BLE remote configure. 117 117 118 118 119 119 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -133,23 +133,18 @@ 133 133 134 134 == 1.8 Mechanical == 135 135 136 -=== 1.8.1 for LB version === 137 137 132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 138 138 139 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]134 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 140 140 141 - 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 -=== 1.8.2 for LS version === 145 145 146 -[[image:image-20231231203439-3.png||height="385" width="886"]] 147 - 148 - 149 149 == 1.9 Hole Option == 150 150 151 151 152 -SN50v3-LB /LShas different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:142 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 153 153 154 154 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 155 155 ... ... @@ -156,12 +156,12 @@ 156 156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 157 157 158 158 159 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =149 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 160 160 161 161 == 2.1 How it works == 162 162 163 163 164 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 165 165 166 166 167 167 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -172,9 +172,9 @@ 172 172 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 173 173 174 174 175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.165 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 176 176 177 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:167 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 178 178 179 179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 180 180 ... ... @@ -203,10 +203,10 @@ 203 203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 204 204 205 205 206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB /LS196 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 207 207 208 208 209 -Press the button for 5 seconds to activate the SN50v3-LB /LS.199 +Press the button for 5 seconds to activate the SN50v3-LB. 210 210 211 211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 212 212 ... ... @@ -218,13 +218,13 @@ 218 218 === 2.3.1 Device Status, FPORT~=5 === 219 219 220 220 221 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB /LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 222 222 223 223 The Payload format is as below. 224 224 225 225 226 226 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 227 -|(% colspan="6" style="background-color:# 4F81BD;color:white" %)**Device Status (FPORT=5)**217 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 228 228 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 229 229 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 230 230 ... ... @@ -231,7 +231,7 @@ 231 231 Example parse in TTNv3 232 232 233 233 234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB /LS, this value is 0x1C224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 235 235 236 236 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 237 237 ... ... @@ -287,7 +287,7 @@ 287 287 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 288 288 289 289 290 -SN50v3-LB /LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LSto different working modes.280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 291 291 292 292 For example: 293 293 ... ... @@ -296,7 +296,7 @@ 296 296 297 297 (% style="color:red" %) **Important Notice:** 298 298 299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB /LStransmit in DR0 with 12 bytes payload.289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 300 300 301 301 2. All modes share the same Payload Explanation from HERE. 302 302 ... ... @@ -309,7 +309,7 @@ 309 309 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 310 310 311 311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 312 -|(% style="background-color:# 4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 313 313 |Value|Bat|(% style="width:191px" %)((( 314 314 Temperature(DS18B20)(PC13) 315 315 )))|(% style="width:78px" %)((( ... ... @@ -331,7 +331,7 @@ 331 331 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 332 332 333 333 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 334 -|(% style="background-color:# 4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**324 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 335 335 |Value|BAT|(% style="width:196px" %)((( 336 336 Temperature(DS18B20)(PC13) 337 337 )))|(% style="width:87px" %)((( ... ... @@ -361,7 +361,7 @@ 361 361 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 362 362 363 363 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 364 -|(% style="background-color:# 4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**354 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 365 365 |Value|BAT|(% style="width:183px" %)((( 366 366 Temperature(DS18B20)(PC13) 367 367 )))|(% style="width:173px" %)((( ... ... @@ -396,9 +396,9 @@ 396 396 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 397 397 398 398 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 399 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((389 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 400 400 **Size(bytes)** 401 -)))|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1391 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 402 402 |Value|(% style="width:68px" %)((( 403 403 ADC1(PA4) 404 404 )))|(% style="width:75px" %)((( ... ... @@ -422,7 +422,7 @@ 422 422 This mode has total 11 bytes. As shown below: 423 423 424 424 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 425 -|(% style="background-color:# 4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**415 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 426 426 |Value|BAT|(% style="width:186px" %)((( 427 427 Temperature1(DS18B20)(PC13) 428 428 )))|(% style="width:82px" %)((( ... ... @@ -463,9 +463,9 @@ 463 463 Check the response of this command and adjust the value to match the real value for thing. 464 464 465 465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 466 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((456 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 467 467 **Size(bytes)** 468 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**458 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 469 469 |Value|BAT|(% style="width:193px" %)((( 470 470 Temperature(DS18B20)(PC13) 471 471 )))|(% style="width:85px" %)((( ... ... @@ -490,7 +490,7 @@ 490 490 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 491 491 492 492 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 493 -|=(% style="width: 60px;background-color:# 4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**483 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 494 494 |Value|BAT|(% style="width:256px" %)((( 495 495 Temperature(DS18B20)(PC13) 496 496 )))|(% style="width:108px" %)((( ... ... @@ -508,9 +508,9 @@ 508 508 509 509 510 510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 511 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((501 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 512 512 **Size(bytes)** 513 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2503 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 514 514 |Value|BAT|(% style="width:188px" %)((( 515 515 Temperature(DS18B20) 516 516 (PC13) ... ... @@ -527,9 +527,9 @@ 527 527 528 528 529 529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((520 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 531 531 **Size(bytes)** 532 -)))|=(% style="width: 30px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2522 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 533 533 |Value|BAT|(% style="width:207px" %)((( 534 534 Temperature(DS18B20) 535 535 (PC13) ... ... @@ -550,9 +550,9 @@ 550 550 551 551 552 552 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((543 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 554 554 **Size(bytes)** 555 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4545 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 556 556 |Value|BAT|((( 557 557 Temperature 558 558 (DS18B20)(PC13) ... ... @@ -589,23 +589,19 @@ 589 589 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 590 590 591 591 592 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) (%style="display:none" %) (%%)====582 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 593 593 594 - 595 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 596 - 597 597 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 598 598 599 -[[It should be noted when using PWM mode.>> ||anchor="H2.3.3.12A0PWMMOD"]]586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 600 600 601 601 602 602 ===== 2.3.2.10.a Uplink, PWM input capture ===== 603 603 604 - 605 605 [[image:image-20230817172209-2.png||height="439" width="683"]] 606 606 607 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 515px" %)608 -|(% style="background-color:# 4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2**593 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 594 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 609 609 |Value|Bat|(% style="width:191px" %)((( 610 610 Temperature(DS18B20)(PC13) 611 611 )))|(% style="width:78px" %)((( ... ... @@ -612,6 +612,7 @@ 612 612 ADC(PA4) 613 613 )))|(% style="width:135px" %)((( 614 614 PWM_Setting 601 + 615 615 &Digital Interrupt(PA8) 616 616 )))|(% style="width:70px" %)((( 617 617 Pulse period ... ... @@ -622,57 +622,15 @@ 622 622 [[image:image-20230817170702-1.png||height="161" width="1044"]] 623 623 624 624 625 - Whenthe device detectshefollowingPWMsignal,decoder willconverts thepulseperiod andhigh-leveldurationto frequencyandduty cycle.612 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0) ==> Corresponding downlink: 0B AA** 626 626 627 - **Frequency:**614 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 628 628 629 -(% class="MsoNormal" %) 630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 616 +When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 631 631 632 -(% class="MsoNormal" %) 633 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 634 634 619 +===== 2.3.2.10.b Downlink, PWM output ===== 635 635 636 -(% class="MsoNormal" %) 637 -**Duty cycle:** 638 - 639 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 640 - 641 -[[image:image-20230818092200-1.png||height="344" width="627"]] 642 - 643 - 644 -===== 2.3.2.10.b Uplink, PWM output ===== 645 - 646 - 647 -[[image:image-20230817172209-2.png||height="439" width="683"]] 648 - 649 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 650 - 651 -a is the time delay of the output, the unit is ms. 652 - 653 -b is the output frequency, the unit is HZ. 654 - 655 -c is the duty cycle of the output, the unit is %. 656 - 657 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 658 - 659 -aa is the time delay of the output, the unit is ms. 660 - 661 -bb is the output frequency, the unit is HZ. 662 - 663 -cc is the duty cycle of the output, the unit is %. 664 - 665 - 666 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 667 - 668 -The oscilloscope displays as follows: 669 - 670 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 671 - 672 - 673 -===== 2.3.2.10.c Downlink, PWM output ===== 674 - 675 - 676 676 [[image:image-20230817173800-3.png||height="412" width="685"]] 677 677 678 678 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -688,7 +688,7 @@ 688 688 689 689 The oscilloscope displays as follows: 690 690 691 -[[image:image-20230817173858-5.png||height="6 34" width="843"]]636 +[[image:image-20230817173858-5.png||height="694" width="921"]] 692 692 693 693 694 694 === 2.3.3 Decode payload === ... ... @@ -700,13 +700,13 @@ 700 700 701 701 The payload decoder function for TTN V3 are here: 702 702 703 -SN50v3-LB /LSTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]648 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 704 704 705 705 706 706 ==== 2.3.3.1 Battery Info ==== 707 707 708 708 709 -Check the battery voltage for SN50v3-LB /LS.654 +Check the battery voltage for SN50v3-LB. 710 710 711 711 Ex1: 0x0B45 = 2885mV 712 712 ... ... @@ -768,12 +768,10 @@ 768 768 769 769 [[image:image-20230811113449-1.png||height="370" width="608"]] 770 770 771 - 772 - 773 773 ==== 2.3.3.5 Digital Interrupt ==== 774 774 775 775 776 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB /LSwill send a packet to the server.719 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 777 777 778 778 (% style="color:blue" %)** Interrupt connection method:** 779 779 ... ... @@ -786,18 +786,18 @@ 786 786 787 787 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 788 788 789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB /LSinterrupt interface to detect the status for the door or window.732 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 790 790 791 791 792 792 (% style="color:blue" %)**Below is the installation example:** 793 793 794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB /LSas follows:737 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 795 795 796 796 * ((( 797 -One pin to SN50v3-LB /LS's PA8 pin740 +One pin to SN50v3-LB's PA8 pin 798 798 ))) 799 799 * ((( 800 -The other pin to SN50v3-LB /LS's VDD pin743 +The other pin to SN50v3-LB's VDD pin 801 801 ))) 802 802 803 803 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -833,7 +833,7 @@ 833 833 834 834 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 835 835 836 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB /LSwill be a good reference.**779 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 837 837 838 838 839 839 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -867,7 +867,7 @@ 867 867 868 868 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 869 869 870 -The SN50v3-LB /LSdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.813 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 871 871 872 872 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 873 873 ... ... @@ -876,7 +876,7 @@ 876 876 [[image:image-20230512173903-6.png||height="596" width="715"]] 877 877 878 878 879 -Connect to the SN50v3-LB /LSand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).822 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 880 880 881 881 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 882 882 ... ... @@ -888,13 +888,13 @@ 888 888 ==== 2.3.3.9 Battery Output - BAT pin ==== 889 889 890 890 891 -The BAT pin of SN50v3-LB /LSis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LSwill run out very soon.834 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 892 892 893 893 894 894 ==== 2.3.3.10 +5V Output ==== 895 895 896 896 897 -SN50v3-LB /LSwill enable +5V output before all sampling and disable the +5v after all sampling.840 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 898 898 899 899 The 5V output time can be controlled by AT Command. 900 900 ... ... @@ -932,19 +932,11 @@ 932 932 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 933 933 ))) 934 934 * ((( 935 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 936 -))) 937 -* ((( 938 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 878 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 939 939 940 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 941 - 942 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 943 - 944 -b) If the output duration is more than 30 seconds, better to use external power source. 880 + 945 945 ))) 946 946 947 - 948 948 ==== 2.3.3.13 Working MOD ==== 949 949 950 950 ... ... @@ -978,17 +978,17 @@ 978 978 == 2.5 Frequency Plans == 979 979 980 980 981 -The SN50v3-LB /LSuses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.916 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 982 982 983 983 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 984 984 985 985 986 -= 3. Configure SN50v3-LB /LS=921 += 3. Configure SN50v3-LB = 987 987 988 988 == 3.1 Configure Methods == 989 989 990 990 991 -SN50v3-LB /LSsupports below configure method:926 +SN50v3-LB supports below configure method: 992 992 993 993 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 994 994 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -1007,10 +1007,10 @@ 1007 1007 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1008 1008 1009 1009 1010 -== 3.3 Commands special design for SN50v3-LB /LS==945 +== 3.3 Commands special design for SN50v3-LB == 1011 1011 1012 1012 1013 -These commands only valid for SN50v3-LB /LS, as below:948 +These commands only valid for SN50v3-LB, as below: 1014 1014 1015 1015 1016 1016 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1021,7 +1021,7 @@ 1021 1021 (% style="color:blue" %)**AT Command: AT+TDC** 1022 1022 1023 1023 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1024 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**959 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 1025 1025 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1026 1026 30000 1027 1027 OK ... ... @@ -1056,10 +1056,10 @@ 1056 1056 1057 1057 Feature, Set Interrupt mode for GPIO_EXIT. 1058 1058 1059 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**994 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1060 1060 1061 1061 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1062 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**997 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1063 1063 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1064 1064 0 1065 1065 OK ... ... @@ -1103,7 +1103,7 @@ 1103 1103 (% style="color:blue" %)**AT Command: AT+5VT** 1104 1104 1105 1105 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1106 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1041 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1107 1107 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1108 1108 500(default) 1109 1109 OK ... ... @@ -1129,7 +1129,7 @@ 1129 1129 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1130 1130 1131 1131 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1132 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1067 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1133 1133 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1134 1134 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1135 1135 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1156,7 +1156,7 @@ 1156 1156 (% style="color:blue" %)**AT Command: AT+SETCNT** 1157 1157 1158 1158 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1159 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1094 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1160 1160 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1161 1161 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1162 1162 ... ... @@ -1177,7 +1177,7 @@ 1177 1177 (% style="color:blue" %)**AT Command: AT+MOD** 1178 1178 1179 1179 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1180 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1115 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1181 1181 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1182 1182 OK 1183 1183 ))) ... ... @@ -1193,103 +1193,11 @@ 1193 1193 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1194 1194 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1195 1195 1196 -(% id="H3.3.8PWMsetting" %) 1197 -=== 3.3.8 PWM setting === 1131 += 4. Battery & Power Consumption = 1198 1198 1199 1199 1200 - (%class="mark" %)Feature:Setthetimeacquisition unitforPWMinputcapture.1134 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1201 1201 1202 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1203 - 1204 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1205 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1206 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1207 -0(default) 1208 - 1209 -OK 1210 -))) 1211 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1212 -OK 1213 - 1214 -))) 1215 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1216 - 1217 -(% style="color:blue" %)**Downlink Command: 0x0C** 1218 - 1219 -Format: Command Code (0x0C) followed by 1 bytes. 1220 - 1221 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1222 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1223 - 1224 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1225 - 1226 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1227 - 1228 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1229 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1230 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1231 -0,0,0(default) 1232 - 1233 -OK 1234 -))) 1235 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1236 -OK 1237 - 1238 -))) 1239 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1240 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1241 - 1242 - 1243 -)))|(% style="width:137px" %)((( 1244 -OK 1245 -))) 1246 - 1247 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1248 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1249 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1250 -AT+PWMOUT=a,b,c 1251 - 1252 - 1253 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1254 -Set PWM output time, output frequency and output duty cycle. 1255 - 1256 -((( 1257 - 1258 -))) 1259 - 1260 -((( 1261 - 1262 -))) 1263 -)))|(% style="width:242px" %)((( 1264 -a: Output time (unit: seconds) 1265 - 1266 -The value ranges from 0 to 65535. 1267 - 1268 -When a=65535, PWM will always output. 1269 -))) 1270 -|(% style="width:242px" %)((( 1271 -b: Output frequency (unit: HZ) 1272 -))) 1273 -|(% style="width:242px" %)((( 1274 -c: Output duty cycle (unit: %) 1275 - 1276 -The value ranges from 0 to 100. 1277 -))) 1278 - 1279 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1280 - 1281 -Format: Command Code (0x0B01) followed by 6 bytes. 1282 - 1283 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1284 - 1285 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1286 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1287 - 1288 -= 4. Battery & Power Cons = 1289 - 1290 - 1291 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1292 - 1293 1293 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1294 1294 1295 1295 ... ... @@ -1297,7 +1297,7 @@ 1297 1297 1298 1298 1299 1299 (% class="wikigeneratedid" %) 1300 -**User can change firmware SN50v3-LB /LSto:**1143 +**User can change firmware SN50v3-LB to:** 1301 1301 1302 1302 * Change Frequency band/ region. 1303 1303 * Update with new features. ... ... @@ -1312,22 +1312,22 @@ 1312 1312 1313 1313 = 6. FAQ = 1314 1314 1315 -== 6.1 Where can i find source code of SN50v3-LB /LS? ==1158 +== 6.1 Where can i find source code of SN50v3-LB? == 1316 1316 1317 1317 1318 1318 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1319 1319 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1320 1320 1321 -== 6.2 How to generate PWM Output in SN50v3-LB /LS? ==1164 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1322 1322 1323 1323 1324 1324 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1325 1325 1326 1326 1327 -== 6.3 How to put several sensors to a SN50v3-LB /LS? ==1170 +== 6.3 How to put several sensors to a SN50v3-LB? == 1328 1328 1329 1329 1330 -When we want to put several sensors to A SN50v3-LB /LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.1173 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1331 1331 1332 1332 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1333 1333 ... ... @@ -1337,7 +1337,7 @@ 1337 1337 = 7. Order Info = 1338 1338 1339 1339 1340 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**1183 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1341 1341 1342 1342 (% style="color:red" %)**XX**(%%): The default frequency band 1343 1343 ... ... @@ -1362,7 +1362,7 @@ 1362 1362 1363 1363 (% style="color:#037691" %)**Package Includes**: 1364 1364 1365 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node1208 +* SN50v3-LB LoRaWAN Generic Node 1366 1366 1367 1367 (% style="color:#037691" %)**Dimension and weight**: 1368 1368
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content