<
From version < 87.15 >
edited by Xiaoling
on 2024/01/03 14:13
To version < 35.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111255-9.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,11 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 99  
100 100  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
101 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
102 102  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
103 103  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
104 104  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -113,7 +113,7 @@
113 113  == 1.6 BLE connection ==
114 114  
115 115  
116 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
117 117  
118 118  
119 119  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -128,40 +128,34 @@
128 128  == 1.7 Pin Definitions ==
129 129  
130 130  
131 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
132 132  
133 133  
134 134  == 1.8 Mechanical ==
135 135  
136 -=== 1.8.1 for LB version ===
137 137  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
138 138  
139 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
140 140  
141 -
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 -=== 1.8.2 for LS version ===
145 145  
146 -[[image:image-20231231203439-3.png||height="385" width="886"]]
138 +== Hole Option ==
147 147  
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
148 148  
149 -== 1.9 Hole Option ==
150 -
151 -
152 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 -
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
155 155  
156 156  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
157 157  
158 158  
159 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
160 160  
161 161  == 2.1 How it works ==
162 162  
163 163  
164 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
165 165  
166 166  
167 167  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -169,12 +169,12 @@
169 169  
170 170  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
171 171  
172 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
173 173  
174 174  
175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
176 176  
177 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
178 178  
179 179  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
180 180  
... ... @@ -203,10 +203,10 @@
203 203  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204 204  
205 205  
206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
208 208  
209 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
197 +Press the button for 5 seconds to activate the SN50v3-LB.
210 210  
211 211  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 212  
... ... @@ -218,52 +218,52 @@
218 218  === 2.3.1 Device Status, FPORT~=5 ===
219 219  
220 220  
221 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
222 222  
223 223  The Payload format is as below.
224 224  
225 225  
226 226  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
227 -|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
228 228  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
229 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
230 230  
231 231  Example parse in TTNv3
232 232  
233 233  
234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
235 235  
236 236  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
237 237  
238 238  (% style="color:#037691" %)**Frequency Band**:
239 239  
240 -0x01: EU868
228 +*0x01: EU868
241 241  
242 -0x02: US915
230 +*0x02: US915
243 243  
244 -0x03: IN865
232 +*0x03: IN865
245 245  
246 -0x04: AU915
234 +*0x04: AU915
247 247  
248 -0x05: KZ865
236 +*0x05: KZ865
249 249  
250 -0x06: RU864
238 +*0x06: RU864
251 251  
252 -0x07: AS923
240 +*0x07: AS923
253 253  
254 -0x08: AS923-1
242 +*0x08: AS923-1
255 255  
256 -0x09: AS923-2
244 +*0x09: AS923-2
257 257  
258 -0x0a: AS923-3
246 +*0x0a: AS923-3
259 259  
260 -0x0b: CN470
248 +*0x0b: CN470
261 261  
262 -0x0c: EU433
250 +*0x0c: EU433
263 263  
264 -0x0d: KR920
252 +*0x0d: KR920
265 265  
266 -0x0e: MA869
254 +*0x0e: MA869
267 267  
268 268  
269 269  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -287,199 +287,186 @@
287 287  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
288 288  
289 289  
290 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
291 291  
292 292  For example:
293 293  
294 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
295 295  
296 296  
297 297  (% style="color:red" %) **Important Notice:**
298 298  
299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
300 300  
301 -2. All modes share the same Payload Explanation from HERE.
302 -
303 -3. By default, the device will send an uplink message every 20 minutes.
304 -
305 -
306 306  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
307 307  
308 -
309 309  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310 310  
311 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
312 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
313 -|Value|Bat|(% style="width:191px" %)(((
314 -Temperature(DS18B20)(PC13)
315 -)))|(% style="width:78px" %)(((
316 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
317 317  )))|(% style="width:216px" %)(((
318 -Digital in(PB15)&Digital Interrupt(PA8)
319 -)))|(% style="width:308px" %)(((
320 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
321 -)))|(% style="width:154px" %)(((
322 -Humidity(SHT20 or SHT31)
323 -)))
305 +Digital in & Digital Interrupt
324 324  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
325 325  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
326 326  
327 327  
328 328  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
329 329  
330 -
331 331  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
332 332  
333 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
334 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**
335 -|Value|BAT|(% style="width:196px" %)(((
336 -Temperature(DS18B20)(PC13)
337 -)))|(% style="width:87px" %)(((
338 -ADC(PA4)
339 -)))|(% style="width:189px" %)(((
340 -Digital in(PB15) & Digital Interrupt(PA8)
341 -)))|(% style="width:208px" %)(((
342 -Distance measure by: 1) LIDAR-Lite V3HP
343 -Or 2) Ultrasonic Sensor
344 -)))|(% style="width:117px" %)Reserved
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
345 345  
346 346  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
347 347  
329 +**Connection of LIDAR-Lite V3HP:**
348 348  
349 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
350 -
351 351  [[image:image-20230512173758-5.png||height="563" width="712"]]
352 352  
333 +**Connection to Ultrasonic Sensor:**
353 353  
354 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
355 -
356 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
357 -
358 358  [[image:image-20230512173903-6.png||height="596" width="715"]]
359 359  
360 -
361 361  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362 362  
363 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
364 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
365 -|Value|BAT|(% style="width:183px" %)(((
366 -Temperature(DS18B20)(PC13)
367 -)))|(% style="width:173px" %)(((
368 -Digital in(PB15) & Digital Interrupt(PA8)
369 -)))|(% style="width:84px" %)(((
370 -ADC(PA4)
371 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
372 372  Distance measure by:1)TF-Mini plus LiDAR
373 -Or 2) TF-Luna LiDAR
374 -)))|(% style="width:188px" %)Distance signal  strength
344 +Or 
345 +2) TF-Luna LiDAR
346 +)))|Distance signal  strength
375 375  
376 376  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
377 377  
378 -
379 379  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
380 380  
381 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
382 382  
383 383  [[image:image-20230512180609-7.png||height="555" width="802"]]
384 384  
385 -
386 386  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
387 387  
388 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
389 389  
390 -[[image:image-20230610170047-1.png||height="452" width="799"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
391 391  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
392 392  
364 +
393 393  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
394 394  
395 -
396 396  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
397 397  
398 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
369 +|=(((
400 400  **Size(bytes)**
401 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
402 -|Value|(% style="width:68px" %)(((
403 -ADC1(PA4)
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
404 404  )))|(% style="width:75px" %)(((
405 -ADC2(PA5)
406 -)))|(((
407 -ADC3(PA8)
408 -)))|(((
409 -Digital Interrupt(PB15)
410 -)))|(% style="width:304px" %)(((
411 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
412 -)))|(% style="width:163px" %)(((
413 -Humidity(SHT20 or SHT31)
414 -)))|(% style="width:53px" %)Bat
377 +ADC2
415 415  
416 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
417 417  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
418 418  
386 +
419 419  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
420 420  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
421 421  
422 422  This mode has total 11 bytes. As shown below:
423 423  
424 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
425 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**
426 -|Value|BAT|(% style="width:186px" %)(((
427 -Temperature1(DS18B20)(PC13)
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
428 428  )))|(% style="width:82px" %)(((
429 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
430 430  )))|(% style="width:210px" %)(((
431 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
432 432  )))|(% style="width:191px" %)Temperature2(DS18B20)
433 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
434 434  
435 435  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
436 436  
437 437  
438 -[[image:image-20230513134006-1.png||height="559" width="736"]]
439 -
440 -
441 441  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
442 442  
443 -
444 444  [[image:image-20230512164658-2.png||height="532" width="729"]]
445 445  
446 446  Each HX711 need to be calibrated before used. User need to do below two steps:
447 447  
448 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
450 450  1. (((
451 451  Weight has 4 bytes, the unit is g.
452 -
453 -
454 -
455 455  )))
456 456  
457 457  For example:
458 458  
459 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
460 460  
461 461  Response:  Weight is 401 g
462 462  
463 463  Check the response of this command and adjust the value to match the real value for thing.
464 464  
465 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
433 +(% style="width:982px" %)
434 +|=(((
467 467  **Size(bytes)**
468 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
469 -|Value|BAT|(% style="width:193px" %)(((
470 -Temperature(DS18B20)(PC13)
471 -)))|(% style="width:85px" %)(((
472 -ADC(PA4)
473 -)))|(% style="width:186px" %)(((
474 -Digital in(PB15) & Digital Interrupt(PA8)
475 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
476 476  
440 +(PC13)
441 +
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
445 +
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
449 +
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
452 +
477 477  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478 478  
479 479  
480 480  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481 481  
482 -
483 483  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
484 484  
485 485  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -486,214 +486,86 @@
486 486  
487 487  [[image:image-20230512181814-9.png||height="543" width="697"]]
488 488  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
489 489  
490 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
491 491  
492 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
494 -|Value|BAT|(% style="width:256px" %)(((
495 -Temperature(DS18B20)(PC13)
496 -)))|(% style="width:108px" %)(((
497 -ADC(PA4)
498 -)))|(% style="width:126px" %)(((
499 -Digital in(PB15)
500 -)))|(% style="width:145px" %)(((
501 -Count(PA8)
502 -)))
503 -
504 504  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
505 505  
506 506  
507 507  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
508 508  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
509 509  
510 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
478 +|=(((
512 512  **Size(bytes)**
513 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
514 -|Value|BAT|(% style="width:188px" %)(((
515 -Temperature(DS18B20)
516 -(PC13)
517 -)))|(% style="width:83px" %)(((
518 -ADC(PA5)
519 -)))|(% style="width:184px" %)(((
520 -Digital Interrupt1(PA8)
521 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
522 522  
523 -[[image:image-20230513111203-7.png||height="324" width="975"]]
524 -
525 -
526 526  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
527 527  
528 -
529 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
487 +|=(((
531 531  **Size(bytes)**
532 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
533 -|Value|BAT|(% style="width:207px" %)(((
534 -Temperature(DS18B20)
535 -(PC13)
536 -)))|(% style="width:94px" %)(((
537 -ADC1(PA4)
538 -)))|(% style="width:198px" %)(((
539 -Digital Interrupt(PB15)
540 -)))|(% style="width:84px" %)(((
541 -ADC2(PA5)
542 -)))|(% style="width:82px" %)(((
543 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
544 544  )))
545 545  
546 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
547 547  
548 548  
549 549  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
550 550  
551 -
552 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
506 +|=(((
554 554  **Size(bytes)**
555 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
556 -|Value|BAT|(((
557 -Temperature
558 -(DS18B20)(PC13)
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
559 559  )))|(((
560 -Temperature2
561 -(DS18B20)(PB9)
512 +Temperature2(PA9)
562 562  )))|(((
563 -Digital Interrupt
564 -(PB15)
565 -)))|(% style="width:193px" %)(((
566 -Temperature3
567 -(DS18B20)(PB8)
568 -)))|(% style="width:78px" %)(((
569 -Count1(PA8)
570 -)))|(% style="width:78px" %)(((
571 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
572 572  )))
573 573  
574 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
575 575  
576 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
577 577  
578 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
579 579  
580 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
581 581  
582 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
583 583  
534 +**AT+SETCNT=aa,bb** 
584 584  
585 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
586 586  
587 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
588 588  
589 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
590 590  
591 591  
592 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
593 -
594 -
595 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 -
597 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
598 -
599 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
600 -
601 -
602 -===== 2.3.2.10.a  Uplink, PWM input capture =====
603 -
604 -
605 -[[image:image-20230817172209-2.png||height="439" width="683"]]
606 -
607 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2**
609 -|Value|Bat|(% style="width:191px" %)(((
610 -Temperature(DS18B20)(PC13)
611 -)))|(% style="width:78px" %)(((
612 -ADC(PA4)
613 -)))|(% style="width:135px" %)(((
614 -PWM_Setting
615 -&Digital Interrupt(PA8)
616 -)))|(% style="width:70px" %)(((
617 -Pulse period
618 -)))|(% style="width:89px" %)(((
619 -Duration of high level
620 -)))
621 -
622 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
623 -
624 -
625 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
626 -
627 -**Frequency:**
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
631 -
632 -(% class="MsoNormal" %)
633 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
634 -
635 -
636 -(% class="MsoNormal" %)
637 -**Duty cycle:**
638 -
639 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 -
641 -[[image:image-20230818092200-1.png||height="344" width="627"]]
642 -
643 -
644 -===== 2.3.2.10.b  Uplink, PWM output =====
645 -
646 -
647 -[[image:image-20230817172209-2.png||height="439" width="683"]]
648 -
649 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 -
651 -a is the time delay of the output, the unit is ms.
652 -
653 -b is the output frequency, the unit is HZ.
654 -
655 -c is the duty cycle of the output, the unit is %.
656 -
657 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 -
659 -aa is the time delay of the output, the unit is ms.
660 -
661 -bb is the output frequency, the unit is HZ.
662 -
663 -cc is the duty cycle of the output, the unit is %.
664 -
665 -
666 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 -
668 -The oscilloscope displays as follows:
669 -
670 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 -
672 -
673 -===== 2.3.2.10.c  Downlink, PWM output =====
674 -
675 -
676 -[[image:image-20230817173800-3.png||height="412" width="685"]]
677 -
678 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
679 -
680 - xx xx xx is the output frequency, the unit is HZ.
681 -
682 - yy is the duty cycle of the output, the unit is %.
683 -
684 - zz zz is the time delay of the output, the unit is ms.
685 -
686 -
687 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
688 -
689 -The oscilloscope displays as follows:
690 -
691 -[[image:image-20230817173858-5.png||height="634" width="843"]]
692 -
693 -
694 694  === 2.3.3  ​Decode payload ===
695 695  
696 -
697 697  While using TTN V3 network, you can add the payload format to decode the payload.
698 698  
699 699  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -700,14 +700,13 @@
700 700  
701 701  The payload decoder function for TTN V3 are here:
702 702  
703 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
704 704  
705 705  
706 706  ==== 2.3.3.1 Battery Info ====
707 707  
555 +Check the battery voltage for SN50v3.
708 708  
709 -Check the battery voltage for SN50v3-LB/LS.
710 -
711 711  Ex1: 0x0B45 = 2885mV
712 712  
713 713  Ex2: 0x0B49 = 2889mV
... ... @@ -715,18 +715,16 @@
715 715  
716 716  ==== 2.3.3.2  Temperature (DS18B20) ====
717 717  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
718 718  
719 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
720 720  
721 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
722 722  
723 -(% style="color:blue" %)**Connection:**
724 -
725 725  [[image:image-20230512180718-8.png||height="538" width="647"]]
726 726  
572 +**Example**:
727 727  
728 -(% style="color:blue" %)**Example**:
729 -
730 730  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
731 731  
732 732  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -736,7 +736,6 @@
736 736  
737 737  ==== 2.3.3.3 Digital Input ====
738 738  
739 -
740 740  The digital input for pin PB15,
741 741  
742 742  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -744,67 +744,51 @@
744 744  
745 745  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
746 746  (((
747 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
748 -
749 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
750 -
751 -
590 +Note:The maximum voltage input supports 3.6V.
752 752  )))
753 753  
593 +(% class="wikigeneratedid" %)
754 754  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
755 755  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
756 756  
757 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
758 -
759 759  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
760 760  
761 761  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
762 762  
763 763  
764 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
765 -
766 -
767 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
768 -
769 -[[image:image-20230811113449-1.png||height="370" width="608"]]
770 -
771 -
772 -
773 773  ==== 2.3.3.5 Digital Interrupt ====
774 774  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
775 775  
776 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
607 +**~ Interrupt connection method:**
777 777  
778 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
779 779  
780 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
781 781  
782 -
783 -(% style="color:blue" %)**Example to use with door sensor :**
784 -
785 785  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
786 786  
787 787  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
788 788  
789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
790 790  
619 +**~ Below is the installation example:**
791 791  
792 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
793 793  
794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
795 -
796 796  * (((
797 -One pin to SN50v3-LB/LS's PA8 pin
624 +One pin to LSN50's PB14 pin
798 798  )))
799 799  * (((
800 -The other pin to SN50v3-LB/LS's VDD pin
627 +The other pin to LSN50's VCC pin
801 801  )))
802 802  
803 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
804 804  
805 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
806 806  
807 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
808 808  
809 809  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
810 810  
... ... @@ -814,33 +814,29 @@
814 814  
815 815  The command is:
816 816  
817 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
818 818  
819 819  Below shows some screen captures in TTN V3:
820 820  
821 821  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
822 822  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
823 823  
824 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
825 -
826 826  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
827 827  
828 828  
829 829  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
830 830  
831 -
832 832  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
833 833  
834 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
835 835  
836 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
837 837  
838 -
839 839  Below is the connection to SHT20/ SHT31. The connection is as below:
840 840  
841 -[[image:image-20230610170152-2.png||height="501" width="846"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
842 842  
843 -
844 844  The device will be able to get the I2C sensor data now and upload to IoT Server.
845 845  
846 846  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -858,26 +858,20 @@
858 858  
859 859  ==== 2.3.3.7  ​Distance Reading ====
860 860  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
861 861  
862 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
863 863  
864 -
865 865  ==== 2.3.3.8 Ultrasonic Sensor ====
866 866  
867 -
868 868  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
869 869  
870 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
871 871  
872 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
873 -
874 874  The picture below shows the connection:
875 875  
876 -[[image:image-20230512173903-6.png||height="596" width="715"]]
877 877  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
878 878  
879 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
880 -
881 881  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
882 882  
883 883  **Example:**
... ... @@ -884,70 +884,50 @@
884 884  
885 885  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
886 886  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
887 887  
888 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
889 889  
708 +You can see the serial output in ULT mode as below:
890 890  
891 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
892 892  
712 +**In TTN V3 server:**
893 893  
894 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
895 895  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
896 896  
897 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
898 898  
899 -The 5V output time can be controlled by AT Command.
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
900 900  
901 -(% style="color:blue" %)**AT+5VT=1000**
902 902  
903 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
723 +==== 2.3.3.10  +5V Output ====
904 904  
905 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
906 906  
727 +The 5V output time can be controlled by AT Command.
907 907  
908 -==== 2.3.3.11  BH1750 Illumination Sensor ====
729 +**AT+5VT=1000**
909 909  
731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
910 910  
911 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
912 912  
913 -[[image:image-20230512172447-4.png||height="416" width="712"]]
914 914  
915 915  
916 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
737 +==== 2.3.3.11  BH1750 Illumination Sensor ====
917 917  
739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
918 918  
919 -==== 2.3.3.12  PWM MOD ====
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
920 920  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
921 921  
922 -* (((
923 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 -)))
925 -* (((
926 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 -)))
928 928  
929 - [[image:image-20230817183249-3.png||height="320" width="417"]]
746 +==== 2.3.3.12  Working MOD ====
930 930  
931 -* (((
932 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
933 -)))
934 -* (((
935 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 -)))
937 -* (((
938 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
939 -
940 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 -
942 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 -
944 -b) If the output duration is more than 30 seconds, better to use external power source. 
945 -)))
946 -
947 -
948 -==== 2.3.3.13  Working MOD ====
949 -
950 -
951 951  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
952 952  
953 953  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -960,10 +960,6 @@
960 960  * 3: MOD4
961 961  * 4: MOD5
962 962  * 5: MOD6
963 -* 6: MOD7
964 -* 7: MOD8
965 -* 8: MOD9
966 -* 9: MOD10
967 967  
968 968  == 2.4 Payload Decoder file ==
969 969  
... ... @@ -972,23 +972,24 @@
972 972  
973 973  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
974 974  
975 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
976 976  
977 977  
771 +
978 978  == 2.5 Frequency Plans ==
979 979  
980 980  
981 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
775 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
982 982  
983 983  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
984 984  
985 985  
986 -= 3. Configure SN50v3-LB/LS =
780 += 3. Configure SN50v3-LB =
987 987  
988 988  == 3.1 Configure Methods ==
989 989  
990 990  
991 -SN50v3-LB/LS supports below configure method:
785 +SN50v3-LB supports below configure method:
992 992  
993 993  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
994 994  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1007,10 +1007,10 @@
1007 1007  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1008 1008  
1009 1009  
1010 -== 3.3 Commands special design for SN50v3-LB/LS ==
804 +== 3.3 Commands special design for SN50v3-LB ==
1011 1011  
1012 1012  
1013 -These commands only valid for SN50v3-LB/LS, as below:
807 +These commands only valid for S31x-LB, as below:
1014 1014  
1015 1015  
1016 1016  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1021,7 +1021,7 @@
1021 1021  (% style="color:blue" %)**AT Command: AT+TDC**
1022 1022  
1023 1023  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1024 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1025 1025  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1026 1026  30000
1027 1027  OK
... ... @@ -1043,29 +1043,28 @@
1043 1043  
1044 1044  === 3.3.2 Get Device Status ===
1045 1045  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
1046 1046  
1047 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1048 1048  
1049 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1050 1050  
1051 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1052 1052  
847 +=== 3.3.7 Set Interrupt Mode ===
1053 1053  
1054 -=== 3.3.3 Set Interrupt Mode ===
1055 1055  
1056 -
1057 1057  Feature, Set Interrupt mode for GPIO_EXIT.
1058 1058  
1059 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1060 1060  
1061 1061  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1062 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1063 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1064 1064  0
1065 1065  OK
1066 1066  the mode is 0 =Disable Interrupt
1067 1067  )))
1068 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1069 1069  Set Transmit Interval
1070 1070  0. (Disable Interrupt),
1071 1071  ~1. (Trigger by rising and falling edge)
... ... @@ -1072,11 +1072,6 @@
1072 1072  2. (Trigger by falling edge)
1073 1073  3. (Trigger by rising edge)
1074 1074  )))|(% style="width:157px" %)OK
1075 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1076 -Set Transmit Interval
1077 -trigger by rising edge.
1078 -)))|(% style="width:157px" %)OK
1079 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1080 1080  
1081 1081  (% style="color:blue" %)**Downlink Command: 0x06**
1082 1082  
... ... @@ -1084,212 +1084,14 @@
1084 1084  
1085 1085  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1086 1086  
1087 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1088 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1089 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1090 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1091 1091  
1092 -=== 3.3.4 Set Power Output Duration ===
878 += 4. Battery & Power Consumption =
1093 1093  
1094 1094  
1095 -Control the output duration 5V . Before each sampling, device will
881 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1096 1096  
1097 -~1. first enable the power output to external sensor,
1098 -
1099 -2. keep it on as per duration, read sensor value and construct uplink payload
1100 -
1101 -3. final, close the power output.
1102 -
1103 -(% style="color:blue" %)**AT Command: AT+5VT**
1104 -
1105 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1106 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1107 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1108 -500(default)
1109 -OK
1110 -)))
1111 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1112 -Close after a delay of 1000 milliseconds.
1113 -)))|(% style="width:157px" %)OK
1114 -
1115 -(% style="color:blue" %)**Downlink Command: 0x07**
1116 -
1117 -Format: Command Code (0x07) followed by 2 bytes.
1118 -
1119 -The first and second bytes are the time to turn on.
1120 -
1121 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1122 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1123 -
1124 -=== 3.3.5 Set Weighing parameters ===
1125 -
1126 -
1127 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1128 -
1129 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1130 -
1131 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1132 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1133 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1134 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1135 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1136 -
1137 -(% style="color:blue" %)**Downlink Command: 0x08**
1138 -
1139 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1140 -
1141 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1142 -
1143 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1144 -
1145 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1146 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1147 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1148 -
1149 -=== 3.3.6 Set Digital pulse count value ===
1150 -
1151 -
1152 -Feature: Set the pulse count value.
1153 -
1154 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1155 -
1156 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1157 -
1158 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1159 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1160 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1161 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1162 -
1163 -(% style="color:blue" %)**Downlink Command: 0x09**
1164 -
1165 -Format: Command Code (0x09) followed by 5 bytes.
1166 -
1167 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1168 -
1169 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1170 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1171 -
1172 -=== 3.3.7 Set Workmode ===
1173 -
1174 -
1175 -Feature: Switch working mode.
1176 -
1177 -(% style="color:blue" %)**AT Command: AT+MOD**
1178 -
1179 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1180 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1181 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1182 -OK
1183 -)))
1184 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1185 -OK
1186 -Attention:Take effect after ATZ
1187 -)))
1188 -
1189 -(% style="color:blue" %)**Downlink Command: 0x0A**
1190 -
1191 -Format: Command Code (0x0A) followed by 1 bytes.
1192 -
1193 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1194 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1195 -
1196 -(% id="H3.3.8PWMsetting" %)
1197 -=== 3.3.8 PWM setting ===
1198 -
1199 -
1200 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1201 -
1202 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1203 -
1204 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1206 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 -0(default)
1208 -
1209 -OK
1210 -)))
1211 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1212 -OK
1213 -
1214 -)))
1215 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1216 -
1217 -(% style="color:blue" %)**Downlink Command: 0x0C**
1218 -
1219 -Format: Command Code (0x0C) followed by 1 bytes.
1220 -
1221 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1222 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1223 -
1224 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1225 -
1226 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1227 -
1228 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1229 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1230 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1231 -0,0,0(default)
1232 -
1233 -OK
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1236 -OK
1237 -
1238 -)))
1239 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1240 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1241 -
1242 -
1243 -)))|(% style="width:137px" %)(((
1244 -OK
1245 -)))
1246 -
1247 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1248 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1249 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1250 -AT+PWMOUT=a,b,c
1251 -
1252 -
1253 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1254 -Set PWM output time, output frequency and output duty cycle.
1255 -
1256 -(((
1257 -
1258 -)))
1259 -
1260 -(((
1261 -
1262 -)))
1263 -)))|(% style="width:242px" %)(((
1264 -a: Output time (unit: seconds)
1265 -
1266 -The value ranges from 0 to 65535.
1267 -
1268 -When a=65535, PWM will always output.
1269 -)))
1270 -|(% style="width:242px" %)(((
1271 -b: Output frequency (unit: HZ)
1272 -)))
1273 -|(% style="width:242px" %)(((
1274 -c: Output duty cycle (unit: %)
1275 -
1276 -The value ranges from 0 to 100.
1277 -)))
1278 -
1279 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1280 -
1281 -Format: Command Code (0x0B01) followed by 6 bytes.
1282 -
1283 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1284 -
1285 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1286 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1287 -
1288 -= 4. Battery & Power Cons =
1289 -
1290 -
1291 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1292 -
1293 1293  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1294 1294  
1295 1295  
... ... @@ -1297,47 +1297,32 @@
1297 1297  
1298 1298  
1299 1299  (% class="wikigeneratedid" %)
1300 -**User can change firmware SN50v3-LB/LS to:**
890 +User can change firmware SN50v3-LB to:
1301 1301  
1302 1302  * Change Frequency band/ region.
1303 1303  * Update with new features.
1304 1304  * Fix bugs.
1305 1305  
1306 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1307 1307  
1308 -**Methods to Update Firmware:**
1309 1309  
1310 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1311 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
899 +Methods to Update Firmware:
1312 1312  
901 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
903 +
1313 1313  = 6. FAQ =
1314 1314  
1315 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
906 +== 6.1 Where can i find source code of SN50v3-LB? ==
1316 1316  
1317 -
1318 1318  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1319 1319  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1320 1320  
1321 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1322 1322  
1323 -
1324 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1325 -
1326 -
1327 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1328 -
1329 -
1330 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1331 -
1332 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1333 -
1334 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1335 -
1336 -
1337 1337  = 7. Order Info =
1338 1338  
1339 1339  
1340 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
915 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1341 1341  
1342 1342  (% style="color:red" %)**XX**(%%): The default frequency band
1343 1343  
... ... @@ -1359,10 +1359,9 @@
1359 1359  
1360 1360  = 8. ​Packing Info =
1361 1361  
1362 -
1363 1363  (% style="color:#037691" %)**Package Includes**:
1364 1364  
1365 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
939 +* SN50v3-LB LoRaWAN Generic Node
1366 1366  
1367 1367  (% style="color:#037691" %)**Dimension and weight**:
1368 1368  
... ... @@ -1375,5 +1375,4 @@
1375 1375  
1376 1376  
1377 1377  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1378 -
1379 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0