Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS-- LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,40 +1,37 @@ 1 - 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 2 2 3 -(% style="text-align:center" %) 4 -[[image:image-20240103095714-2.png]] 5 5 6 6 5 +**Table of Contents:** 7 7 7 +{{toc/}} 8 8 9 9 10 10 11 -**Table of Contents:** 12 12 13 -{{toc/}} 14 14 15 15 14 += 1. Introduction = 16 16 16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 18 18 19 19 20 -= 1 .Introduction=21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 21 21 22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 23 23 24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 24 24 25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LS wireless part**(%%)isbasedonSX1262allows the userto send data andreach extremely longanges atlow data-rates.Itprovidesultra-longrangespread spectrumcommunicationandhighinterferenceimmunitywhilstminimising currentconsumption.It targetsprofessionalwireless sensor network applicationssuchasirrigationsystems, smart metering, smart cities, and so on.27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 30 30 31 -SN50V3-LB /LShasa (% style="color:blue"%)**built-inBLE module**(%%),usercan configurethe sensorremotelyvia MobilePhone. Italsosupport(% style="color:blue" %)**OTAupgrade**(%%)viaprivate LoRa protocol for easy maintaining.30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 32 32 33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 35 35 == 1.2 Features == 36 36 37 - 38 38 * LoRaWAN 1.0.3 Class A 39 39 * Ultra-low power consumption 40 40 * Open-Source hardware/software ... ... @@ -43,15 +43,13 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 +* 8500mAh Battery for long term use 48 48 49 49 == 1.3 Specification == 50 50 51 - 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-in battery , 2.5v ~~ 3.6v49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -85,7 +85,6 @@ 85 85 86 86 == 1.4 Sleep mode and working mode == 87 87 88 - 89 89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 90 90 91 91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -94,11 +94,11 @@ 94 94 == 1.5 Button & LEDs == 95 95 96 96 97 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] [[image:image-20231231203148-2.png||height="456" width="316"]]91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 98 98 99 99 100 100 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 101 -|=(% style="width: 167px;background-color:# 4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 102 102 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 103 103 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 104 104 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -113,7 +113,7 @@ 113 113 == 1.6 BLE connection == 114 114 115 115 116 -SN50v3-LB /LSsupports BLE remote configure.110 +SN50v3-LB supports BLE remote configure. 117 117 118 118 119 119 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -128,40 +128,34 @@ 128 128 == 1.7 Pin Definitions == 129 129 130 130 131 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 132 132 133 133 134 134 == 1.8 Mechanical == 135 135 136 -=== 1.8.1 for LB version === 137 137 131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 138 138 139 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 140 140 141 - 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 -=== 1.8.2 for LS version === 145 145 146 - [[image:image-20231231203439-3.png||height="385" width="886"]]138 +== Hole Option == 147 147 140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 148 148 149 -== 1.9 Hole Option == 150 - 151 - 152 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 153 - 154 154 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 155 155 156 156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 157 157 158 158 159 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =147 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 160 160 161 161 == 2.1 How it works == 162 162 163 163 164 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 165 165 166 166 167 167 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -169,12 +169,12 @@ 169 169 170 170 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 171 171 172 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 173 173 174 174 175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 176 176 177 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 178 178 179 179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 180 180 ... ... @@ -203,10 +203,10 @@ 203 203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 204 204 205 205 206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB /LS194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 207 207 208 208 209 -Press the button for 5 seconds to activate the SN50v3-LB /LS.197 +Press the button for 5 seconds to activate the SN50v3-LB. 210 210 211 211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 212 212 ... ... @@ -218,52 +218,52 @@ 218 218 === 2.3.1 Device Status, FPORT~=5 === 219 219 220 220 221 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LB/LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 222 222 223 223 The Payload format is as below. 224 224 225 225 226 226 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 227 -|(% colspan="6" style="background-color:# 4F81BD;color:white" %)**Device Status (FPORT=5)**215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 228 228 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 229 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 230 230 231 231 Example parse in TTNv3 232 232 233 233 234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB/LS, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 235 235 236 236 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 237 237 238 238 (% style="color:#037691" %)**Frequency Band**: 239 239 240 -0x01: EU868 228 +*0x01: EU868 241 241 242 -0x02: US915 230 +*0x02: US915 243 243 244 -0x03: IN865 232 +*0x03: IN865 245 245 246 -0x04: AU915 234 +*0x04: AU915 247 247 248 -0x05: KZ865 236 +*0x05: KZ865 249 249 250 -0x06: RU864 238 +*0x06: RU864 251 251 252 -0x07: AS923 240 +*0x07: AS923 253 253 254 -0x08: AS923-1 242 +*0x08: AS923-1 255 255 256 -0x09: AS923-2 244 +*0x09: AS923-2 257 257 258 -0x0a: AS923-3 246 +*0x0a: AS923-3 259 259 260 -0x0b: CN470 248 +*0x0b: CN470 261 261 262 -0x0c: EU433 250 +*0x0c: EU433 263 263 264 -0x0d: KR920 252 +*0x0d: KR920 265 265 266 -0x0e: MA869 254 +*0x0e: MA869 267 267 268 268 269 269 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -287,199 +287,186 @@ 287 287 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 288 288 289 289 290 -SN50v3 -LB/LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LB/LSto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 291 291 292 292 For example: 293 293 294 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 295 295 296 296 297 297 (% style="color:red" %) **Important Notice:** 298 298 299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 300 300 301 -2. All modes share the same Payload Explanation from HERE. 302 - 303 -3. By default, the device will send an uplink message every 20 minutes. 304 - 305 - 306 306 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 307 307 308 - 309 309 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 310 310 311 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 312 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2** 313 -|Value|Bat|(% style="width:191px" %)((( 314 -Temperature(DS18B20)(PC13) 315 -)))|(% style="width:78px" %)((( 316 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 317 317 )))|(% style="width:216px" %)((( 318 -Digital in(PB15)&Digital Interrupt(PA8) 319 -)))|(% style="width:308px" %)((( 320 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 321 -)))|(% style="width:154px" %)((( 322 -Humidity(SHT20 or SHT31) 323 -))) 305 +Digital in & Digital Interrupt 324 324 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 325 325 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 326 326 327 327 328 328 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 329 329 330 - 331 331 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 332 332 333 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 334 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2** 335 -|Value|BAT|(% style="width:196px" %)((( 336 -Temperature(DS18B20)(PC13) 337 -)))|(% style="width:87px" %)((( 338 -ADC(PA4) 339 -)))|(% style="width:189px" %)((( 340 -Digital in(PB15) & Digital Interrupt(PA8) 341 -)))|(% style="width:208px" %)((( 342 -Distance measure by: 1) LIDAR-Lite V3HP 343 -Or 2) Ultrasonic Sensor 344 -)))|(% style="width:117px" %)Reserved 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 323 +Or 324 +2) Ultrasonic Sensor 325 +)))|Reserved 345 345 346 346 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 347 347 329 +**Connection of LIDAR-Lite V3HP:** 348 348 349 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 350 - 351 351 [[image:image-20230512173758-5.png||height="563" width="712"]] 352 352 333 +**Connection to Ultrasonic Sensor:** 353 353 354 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 355 - 356 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 357 - 358 358 [[image:image-20230512173903-6.png||height="596" width="715"]] 359 359 360 - 361 361 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 362 362 363 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 364 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2** 365 -|Value|BAT|(% style="width:183px" %)((( 366 -Temperature(DS18B20)(PC13) 367 -)))|(% style="width:173px" %)((( 368 -Digital in(PB15) & Digital Interrupt(PA8) 369 -)))|(% style="width:84px" %)((( 370 -ADC(PA4) 371 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 372 372 Distance measure by:1)TF-Mini plus LiDAR 373 -Or 2) TF-Luna LiDAR 374 -)))|(% style="width:188px" %)Distance signal strength 344 +Or 345 +2) TF-Luna LiDAR 346 +)))|Distance signal strength 375 375 376 376 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 377 377 378 - 379 379 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 380 380 381 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 382 382 383 383 [[image:image-20230512180609-7.png||height="555" width="802"]] 384 384 385 - 386 386 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 387 387 388 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 389 389 390 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 391 391 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 392 392 364 + 393 393 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 394 394 395 - 396 396 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 397 397 398 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 399 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 369 +|=((( 400 400 **Size(bytes)** 401 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 402 -|Value|(% style="width:68px" %)((( 403 -ADC1(PA4) 371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 +|**Value**|(% style="width:68px" %)((( 373 +ADC 374 + 375 +(PA0) 404 404 )))|(% style="width:75px" %)((( 405 -ADC2(PA5) 406 -)))|((( 407 -ADC3(PA8) 408 -)))|((( 409 -Digital Interrupt(PB15) 410 -)))|(% style="width:304px" %)((( 411 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 412 -)))|(% style="width:163px" %)((( 413 -Humidity(SHT20 or SHT31) 414 -)))|(% style="width:53px" %)Bat 377 +ADC2 415 415 416 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 417 417 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 418 418 386 + 419 419 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 420 420 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 421 421 422 422 This mode has total 11 bytes. As shown below: 423 423 424 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 425 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2** 426 -|Value|BAT|(% style="width:186px" %)((( 427 -Temperature1(DS18B20)(PC13) 393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 +|**Value**|BAT|(% style="width:186px" %)((( 396 +Temperature1(DS18B20) 397 +(PC13) 428 428 )))|(% style="width:82px" %)((( 429 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 430 430 )))|(% style="width:210px" %)((( 431 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 432 432 )))|(% style="width:191px" %)Temperature2(DS18B20) 433 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 434 434 435 435 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 436 436 437 437 438 -[[image:image-20230513134006-1.png||height="559" width="736"]] 439 - 440 - 441 441 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 442 442 443 - 444 444 [[image:image-20230512164658-2.png||height="532" width="729"]] 445 445 446 446 Each HX711 need to be calibrated before used. User need to do below two steps: 447 447 448 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.449 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 450 450 1. ((( 451 451 Weight has 4 bytes, the unit is g. 452 - 453 - 454 - 455 455 ))) 456 456 457 457 For example: 458 458 459 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**427 +**AT+GETSENSORVALUE =0** 460 460 461 461 Response: Weight is 401 g 462 462 463 463 Check the response of this command and adjust the value to match the real value for thing. 464 464 465 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)466 -|=( % style="width: 50px;background-color:#4F81BD;color:white" %)(((433 +(% style="width:982px" %) 434 +|=((( 467 467 **Size(bytes)** 468 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4** 469 -|Value|BAT|(% style="width:193px" %)((( 470 -Temperature(DS18B20)(PC13) 471 -)))|(% style="width:85px" %)((( 472 -ADC(PA4) 473 -)))|(% style="width:186px" %)((( 474 -Digital in(PB15) & Digital Interrupt(PA8) 475 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 476 476 440 +(PC13) 441 + 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 445 + 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 449 + 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 452 + 477 477 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 478 478 479 479 480 480 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 481 481 482 - 483 483 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 484 484 485 485 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -486,214 +486,86 @@ 486 486 487 487 [[image:image-20230512181814-9.png||height="543" width="697"]] 488 488 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 489 489 490 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 491 491 492 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 493 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4** 494 -|Value|BAT|(% style="width:256px" %)((( 495 -Temperature(DS18B20)(PC13) 496 -)))|(% style="width:108px" %)((( 497 -ADC(PA4) 498 -)))|(% style="width:126px" %)((( 499 -Digital in(PB15) 500 -)))|(% style="width:145px" %)((( 501 -Count(PA8) 502 -))) 503 - 504 504 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 505 505 506 506 507 507 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 508 508 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 509 509 510 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 511 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 478 +|=((( 512 512 **Size(bytes)** 513 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 514 -|Value|BAT|(% style="width:188px" %)((( 515 -Temperature(DS18B20) 516 -(PC13) 517 -)))|(% style="width:83px" %)((( 518 -ADC(PA5) 519 -)))|(% style="width:184px" %)((( 520 -Digital Interrupt1(PA8) 521 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 522 522 523 -[[image:image-20230513111203-7.png||height="324" width="975"]] 524 - 525 - 526 526 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 527 527 528 - 529 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 487 +|=((( 531 531 **Size(bytes)** 532 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2 533 -|Value|BAT|(% style="width:207px" %)((( 534 -Temperature(DS18B20) 535 -(PC13) 536 -)))|(% style="width:94px" %)((( 537 -ADC1(PA4) 538 -)))|(% style="width:198px" %)((( 539 -Digital Interrupt(PB15) 540 -)))|(% style="width:84px" %)((( 541 -ADC2(PA5) 542 -)))|(% style="width:82px" %)((( 543 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 544 544 ))) 545 545 546 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 547 547 548 548 549 549 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 550 550 551 - 552 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 506 +|=((( 554 554 **Size(bytes)** 555 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4 556 -|Value|BAT|((( 557 -Temperature 558 -(DS18B20)(PC13) 508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 +|**Value**|BAT|((( 510 +Temperature1(PB3) 559 559 )))|((( 560 -Temperature2 561 -(DS18B20)(PB9) 512 +Temperature2(PA9) 562 562 )))|((( 563 -Digital Interrupt 564 -(PB15) 565 -)))|(% style="width:193px" %)((( 566 -Temperature3 567 -(DS18B20)(PB8) 568 -)))|(% style="width:78px" %)((( 569 -Count1(PA8) 570 -)))|(% style="width:78px" %)((( 571 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 572 572 ))) 573 573 574 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 575 575 576 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 577 577 578 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 579 579 580 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 581 581 582 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 583 583 534 +**AT+SETCNT=aa,bb** 584 584 585 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 586 586 587 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 588 588 589 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 590 590 591 591 592 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 593 - 594 - 595 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 596 - 597 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 598 - 599 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 600 - 601 - 602 -===== 2.3.2.10.a Uplink, PWM input capture ===== 603 - 604 - 605 -[[image:image-20230817172209-2.png||height="439" width="683"]] 606 - 607 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 608 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2** 609 -|Value|Bat|(% style="width:191px" %)((( 610 -Temperature(DS18B20)(PC13) 611 -)))|(% style="width:78px" %)((( 612 -ADC(PA4) 613 -)))|(% style="width:135px" %)((( 614 -PWM_Setting 615 -&Digital Interrupt(PA8) 616 -)))|(% style="width:70px" %)((( 617 -Pulse period 618 -)))|(% style="width:89px" %)((( 619 -Duration of high level 620 -))) 621 - 622 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 623 - 624 - 625 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 626 - 627 -**Frequency:** 628 - 629 -(% class="MsoNormal" %) 630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 631 - 632 -(% class="MsoNormal" %) 633 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 634 - 635 - 636 -(% class="MsoNormal" %) 637 -**Duty cycle:** 638 - 639 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 640 - 641 -[[image:image-20230818092200-1.png||height="344" width="627"]] 642 - 643 - 644 -===== 2.3.2.10.b Uplink, PWM output ===== 645 - 646 - 647 -[[image:image-20230817172209-2.png||height="439" width="683"]] 648 - 649 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 650 - 651 -a is the time delay of the output, the unit is ms. 652 - 653 -b is the output frequency, the unit is HZ. 654 - 655 -c is the duty cycle of the output, the unit is %. 656 - 657 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 658 - 659 -aa is the time delay of the output, the unit is ms. 660 - 661 -bb is the output frequency, the unit is HZ. 662 - 663 -cc is the duty cycle of the output, the unit is %. 664 - 665 - 666 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 667 - 668 -The oscilloscope displays as follows: 669 - 670 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 671 - 672 - 673 -===== 2.3.2.10.c Downlink, PWM output ===== 674 - 675 - 676 -[[image:image-20230817173800-3.png||height="412" width="685"]] 677 - 678 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 679 - 680 - xx xx xx is the output frequency, the unit is HZ. 681 - 682 - yy is the duty cycle of the output, the unit is %. 683 - 684 - zz zz is the time delay of the output, the unit is ms. 685 - 686 - 687 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 688 - 689 -The oscilloscope displays as follows: 690 - 691 -[[image:image-20230817173858-5.png||height="634" width="843"]] 692 - 693 - 694 694 === 2.3.3 Decode payload === 695 695 696 - 697 697 While using TTN V3 network, you can add the payload format to decode the payload. 698 698 699 699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -700,14 +700,13 @@ 700 700 701 701 The payload decoder function for TTN V3 are here: 702 702 703 -SN50v3 -LB/LSTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]550 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 704 704 705 705 706 706 ==== 2.3.3.1 Battery Info ==== 707 707 555 +Check the battery voltage for SN50v3. 708 708 709 -Check the battery voltage for SN50v3-LB/LS. 710 - 711 711 Ex1: 0x0B45 = 2885mV 712 712 713 713 Ex2: 0x0B49 = 2889mV ... ... @@ -715,18 +715,16 @@ 715 715 716 716 ==== 2.3.3.2 Temperature (DS18B20) ==== 717 717 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 718 718 719 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 720 720 721 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 722 722 723 -(% style="color:blue" %)**Connection:** 724 - 725 725 [[image:image-20230512180718-8.png||height="538" width="647"]] 726 726 572 +**Example**: 727 727 728 -(% style="color:blue" %)**Example**: 729 - 730 730 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 731 731 732 732 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -736,7 +736,6 @@ 736 736 737 737 ==== 2.3.3.3 Digital Input ==== 738 738 739 - 740 740 The digital input for pin PB15, 741 741 742 742 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -744,67 +744,51 @@ 744 744 745 745 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 746 746 ((( 747 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 748 - 749 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 750 - 751 - 590 +Note:The maximum voltage input supports 3.6V. 752 752 ))) 753 753 593 +(% class="wikigeneratedid" %) 754 754 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 755 755 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 756 756 757 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 758 - 759 759 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 760 760 761 761 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 762 762 763 763 764 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 765 - 766 - 767 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 768 - 769 -[[image:image-20230811113449-1.png||height="370" width="608"]] 770 - 771 - 772 - 773 773 ==== 2.3.3.5 Digital Interrupt ==== 774 774 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 775 775 776 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB/LS will send a packet tothe server.607 +**~ Interrupt connection method:** 777 777 778 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 779 779 780 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 781 781 782 - 783 -(% style="color:blue" %)**Example to use with door sensor :** 784 - 785 785 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 786 786 787 787 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 788 788 789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LB/LSinterrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 790 790 619 +**~ Below is the installation example:** 791 791 792 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 793 793 794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 795 - 796 796 * ((( 797 -One pin to SN50 v3-LB/LS's PA8pin624 +One pin to LSN50's PB14 pin 798 798 ))) 799 799 * ((( 800 -The other pin to SN50 v3-LB/LS's VDDpin627 +The other pin to LSN50's VCC pin 801 801 ))) 802 802 803 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 804 804 805 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 806 806 807 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 808 808 809 809 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 810 810 ... ... @@ -814,33 +814,29 @@ 814 814 815 815 The command is: 816 816 817 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 818 818 819 819 Below shows some screen captures in TTN V3: 820 820 821 821 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 822 822 650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 823 823 824 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 825 - 826 826 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 827 827 828 828 829 829 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 830 830 831 - 832 832 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 833 833 834 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 835 835 836 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/SHT31code in SN50v3-LB/LSwill be a good reference.**661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 837 837 838 - 839 839 Below is the connection to SHT20/ SHT31. The connection is as below: 840 840 841 -[[image:image-202 30610170152-2.png||height="501" width="846"]]665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 842 842 843 - 844 844 The device will be able to get the I2C sensor data now and upload to IoT Server. 845 845 846 846 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -858,26 +858,20 @@ 858 858 859 859 ==== 2.3.3.7 Distance Reading ==== 860 860 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 861 861 862 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 863 863 864 - 865 865 ==== 2.3.3.8 Ultrasonic Sensor ==== 866 866 867 - 868 868 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 869 869 870 -The SN50 v3-LB/LSdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 871 871 872 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 873 - 874 874 The picture below shows the connection: 875 875 876 -[[image:image-20230512173903-6.png||height="596" width="715"]] 877 877 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 878 878 879 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 880 - 881 881 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 882 882 883 883 **Example:** ... ... @@ -884,70 +884,50 @@ 884 884 885 885 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 886 886 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 887 887 888 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 889 889 708 +You can see the serial output in ULT mode as below: 890 890 891 - The BAT pin of SN50v3-LB/LS is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB/LS will run out very soon.710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 892 892 712 +**In TTN V3 server:** 893 893 894 - ==== 2.3.3.10+5VOutput===714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 895 895 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 896 896 897 - SN50v3-LB/LSwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.718 +==== 2.3.3.9 Battery Output - BAT pin ==== 898 898 899 -The 5 Voutput timecanbecontrolledbyATCommand.720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 900 900 901 -(% style="color:blue" %)**AT+5VT=1000** 902 902 903 - Meansset 5V valid time to have1000ms.So the real5Voutputwill actually have 1000ms + sampling time for other sensors.723 +==== 2.3.3.10 +5V Output ==== 904 904 905 - Bydefault the**AT+5VT=500**.Ifthe externalsensorwhich require5vand require more time to get stablestate, user canuse this commandtoincrease thepowerON durationforthissensor.725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 906 906 727 +The 5V output time can be controlled by AT Command. 907 907 908 -= === 2.3.3.11 BH1750Illumination Sensor ====729 +**AT+5VT=1000** 909 909 731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 910 910 911 - MOD=1support thissensor.Thesensorvalueis in the8^^th^^and9^^th^^bytes.733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 912 912 913 -[[image:image-20230512172447-4.png||height="416" width="712"]] 914 914 915 915 916 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]737 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 917 917 739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 918 918 919 - ====2.3.3.12PWM MOD====741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 920 920 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 921 921 922 -* ((( 923 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 924 -))) 925 -* ((( 926 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 927 -))) 928 928 929 - [[image:image-20230817183249-3.png||height="320"width="417"]]746 +==== 2.3.3.12 Working MOD ==== 930 930 931 -* ((( 932 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 933 -))) 934 -* ((( 935 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 936 -))) 937 -* ((( 938 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 939 - 940 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 941 - 942 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 943 - 944 -b) If the output duration is more than 30 seconds, better to use external power source. 945 -))) 946 - 947 - 948 -==== 2.3.3.13 Working MOD ==== 949 - 950 - 951 951 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 952 952 953 953 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -960,10 +960,6 @@ 960 960 * 3: MOD4 961 961 * 4: MOD5 962 962 * 5: MOD6 963 -* 6: MOD7 964 -* 7: MOD8 965 -* 8: MOD9 966 -* 9: MOD10 967 967 968 968 == 2.4 Payload Decoder file == 969 969 ... ... @@ -972,23 +972,24 @@ 972 972 973 973 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 974 974 975 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 976 976 977 977 771 + 978 978 == 2.5 Frequency Plans == 979 979 980 980 981 -The SN50v3-LB /LSuses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.775 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 982 982 983 983 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 984 984 985 985 986 -= 3. Configure SN50v3-LB /LS=780 += 3. Configure SN50v3-LB = 987 987 988 988 == 3.1 Configure Methods == 989 989 990 990 991 -SN50v3-LB /LSsupports below configure method:785 +SN50v3-LB supports below configure method: 992 992 993 993 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 994 994 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -1007,10 +1007,10 @@ 1007 1007 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1008 1008 1009 1009 1010 -== 3.3 Commands special design for SN50v3-LB /LS==804 +== 3.3 Commands special design for SN50v3-LB == 1011 1011 1012 1012 1013 -These commands only valid for S N50v3-LB/LS, as below:807 +These commands only valid for S31x-LB, as below: 1014 1014 1015 1015 1016 1016 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1021,7 +1021,7 @@ 1021 1021 (% style="color:blue" %)**AT Command: AT+TDC** 1022 1022 1023 1023 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1024 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1025 1025 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1026 1026 30000 1027 1027 OK ... ... @@ -1043,29 +1043,28 @@ 1043 1043 1044 1044 === 3.3.2 Get Device Status === 1045 1045 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 1046 1046 1047 - Senda LoRaWANdownlinktosk thedevicetosend its status.842 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1048 1048 1049 - (% style="color:blue"%)**DownlinkPayload:0x2601**844 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1050 1050 1051 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 1052 1052 847 +=== 3.3.7 Set Interrupt Mode === 1053 1053 1054 -=== 3.3.3 Set Interrupt Mode === 1055 1055 1056 - 1057 1057 Feature, Set Interrupt mode for GPIO_EXIT. 1058 1058 1059 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1060 1060 1061 1061 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1062 -|=(% style="width: 15 5px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1063 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1064 1064 0 1065 1065 OK 1066 1066 the mode is 0 =Disable Interrupt 1067 1067 ))) 1068 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1069 1069 Set Transmit Interval 1070 1070 0. (Disable Interrupt), 1071 1071 ~1. (Trigger by rising and falling edge) ... ... @@ -1072,11 +1072,6 @@ 1072 1072 2. (Trigger by falling edge) 1073 1073 3. (Trigger by rising edge) 1074 1074 )))|(% style="width:157px" %)OK 1075 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1076 -Set Transmit Interval 1077 -trigger by rising edge. 1078 -)))|(% style="width:157px" %)OK 1079 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1080 1080 1081 1081 (% style="color:blue" %)**Downlink Command: 0x06** 1082 1082 ... ... @@ -1084,212 +1084,14 @@ 1084 1084 1085 1085 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1086 1086 1087 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1088 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1089 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1090 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1091 1091 1092 -= ==3.3.4Set PowerOutputDuration ===878 += 4. Battery & Power Consumption = 1093 1093 1094 1094 1095 -C ontrolthe outputduration5V.Beforeeachsampling,devicewill881 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1096 1096 1097 -~1. first enable the power output to external sensor, 1098 - 1099 -2. keep it on as per duration, read sensor value and construct uplink payload 1100 - 1101 -3. final, close the power output. 1102 - 1103 -(% style="color:blue" %)**AT Command: AT+5VT** 1104 - 1105 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1106 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1107 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1108 -500(default) 1109 -OK 1110 -))) 1111 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1112 -Close after a delay of 1000 milliseconds. 1113 -)))|(% style="width:157px" %)OK 1114 - 1115 -(% style="color:blue" %)**Downlink Command: 0x07** 1116 - 1117 -Format: Command Code (0x07) followed by 2 bytes. 1118 - 1119 -The first and second bytes are the time to turn on. 1120 - 1121 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1122 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1123 - 1124 -=== 3.3.5 Set Weighing parameters === 1125 - 1126 - 1127 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1128 - 1129 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1130 - 1131 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1132 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1133 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1134 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1135 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1136 - 1137 -(% style="color:blue" %)**Downlink Command: 0x08** 1138 - 1139 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1140 - 1141 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1142 - 1143 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1144 - 1145 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1146 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1147 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1148 - 1149 -=== 3.3.6 Set Digital pulse count value === 1150 - 1151 - 1152 -Feature: Set the pulse count value. 1153 - 1154 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1155 - 1156 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1157 - 1158 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1159 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1160 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1161 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1162 - 1163 -(% style="color:blue" %)**Downlink Command: 0x09** 1164 - 1165 -Format: Command Code (0x09) followed by 5 bytes. 1166 - 1167 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1168 - 1169 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1170 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1171 - 1172 -=== 3.3.7 Set Workmode === 1173 - 1174 - 1175 -Feature: Switch working mode. 1176 - 1177 -(% style="color:blue" %)**AT Command: AT+MOD** 1178 - 1179 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1180 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1181 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1182 -OK 1183 -))) 1184 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1185 -OK 1186 -Attention:Take effect after ATZ 1187 -))) 1188 - 1189 -(% style="color:blue" %)**Downlink Command: 0x0A** 1190 - 1191 -Format: Command Code (0x0A) followed by 1 bytes. 1192 - 1193 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1194 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1195 - 1196 -(% id="H3.3.8PWMsetting" %) 1197 -=== 3.3.8 PWM setting === 1198 - 1199 - 1200 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1201 - 1202 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1203 - 1204 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1205 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1206 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1207 -0(default) 1208 - 1209 -OK 1210 -))) 1211 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1212 -OK 1213 - 1214 -))) 1215 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1216 - 1217 -(% style="color:blue" %)**Downlink Command: 0x0C** 1218 - 1219 -Format: Command Code (0x0C) followed by 1 bytes. 1220 - 1221 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1222 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1223 - 1224 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1225 - 1226 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1227 - 1228 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1229 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1230 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1231 -0,0,0(default) 1232 - 1233 -OK 1234 -))) 1235 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1236 -OK 1237 - 1238 -))) 1239 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1240 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1241 - 1242 - 1243 -)))|(% style="width:137px" %)((( 1244 -OK 1245 -))) 1246 - 1247 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1248 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1249 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1250 -AT+PWMOUT=a,b,c 1251 - 1252 - 1253 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1254 -Set PWM output time, output frequency and output duty cycle. 1255 - 1256 -((( 1257 - 1258 -))) 1259 - 1260 -((( 1261 - 1262 -))) 1263 -)))|(% style="width:242px" %)((( 1264 -a: Output time (unit: seconds) 1265 - 1266 -The value ranges from 0 to 65535. 1267 - 1268 -When a=65535, PWM will always output. 1269 -))) 1270 -|(% style="width:242px" %)((( 1271 -b: Output frequency (unit: HZ) 1272 -))) 1273 -|(% style="width:242px" %)((( 1274 -c: Output duty cycle (unit: %) 1275 - 1276 -The value ranges from 0 to 100. 1277 -))) 1278 - 1279 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1280 - 1281 -Format: Command Code (0x0B01) followed by 6 bytes. 1282 - 1283 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1284 - 1285 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1286 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1287 - 1288 -= 4. Battery & Power Cons = 1289 - 1290 - 1291 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1292 - 1293 1293 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1294 1294 1295 1295 ... ... @@ -1297,47 +1297,32 @@ 1297 1297 1298 1298 1299 1299 (% class="wikigeneratedid" %) 1300 - **User can change firmware SN50v3-LB/LSto:**890 +User can change firmware SN50v3-LB to: 1301 1301 1302 1302 * Change Frequency band/ region. 1303 1303 * Update with new features. 1304 1304 * Fix bugs. 1305 1305 1306 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1307 1307 1308 -**Methods to Update Firmware:** 1309 1309 1310 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1311 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 899 +Methods to Update Firmware: 1312 1312 901 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 903 + 1313 1313 = 6. FAQ = 1314 1314 1315 -== 6.1 Where can i find source code of SN50v3-LB /LS? ==906 +== 6.1 Where can i find source code of SN50v3-LB? == 1316 1316 1317 - 1318 1318 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1319 1319 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1320 1320 1321 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1322 1322 1323 - 1324 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1325 - 1326 - 1327 -== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1328 - 1329 - 1330 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1331 - 1332 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1333 - 1334 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1335 - 1336 - 1337 1337 = 7. Order Info = 1338 1338 1339 1339 1340 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**915 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1341 1341 1342 1342 (% style="color:red" %)**XX**(%%): The default frequency band 1343 1343 ... ... @@ -1359,10 +1359,9 @@ 1359 1359 1360 1360 = 8. Packing Info = 1361 1361 1362 - 1363 1363 (% style="color:#037691" %)**Package Includes**: 1364 1364 1365 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node939 +* SN50v3-LB LoRaWAN Generic Node 1366 1366 1367 1367 (% style="color:#037691" %)**Dimension and weight**: 1368 1368 ... ... @@ -1375,5 +1375,4 @@ 1375 1375 1376 1376 1377 1377 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1378 - 1379 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content