<
From version < 87.12 >
edited by Xiaoling
on 2024/01/03 14:04
To version < 57.2 >
edited by Xiaoling
on 2023/08/10 17:28
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,15 +3,10 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
6 +**Table of Contents:**
8 8  
9 -
10 -
11 -**Table of Contents:**
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -19,19 +19,20 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
30 +
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -43,15 +43,16 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
42 +* 8500mAh Battery for long term use
48 48  
44 +
45 +
49 49  == 1.3 Specification ==
50 50  
51 51  
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
51 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -83,6 +83,8 @@
83 83  * Sleep Mode: 5uA @ 3.3v
84 84  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85 85  
83 +
84 +
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 88  
... ... @@ -94,11 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 99  
100 100  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
101 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
100 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
102 102  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
103 103  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
104 104  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -110,10 +110,12 @@
110 110  )))
111 111  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
112 112  
112 +
113 +
113 113  == 1.6 BLE connection ==
114 114  
115 115  
116 -SN50v3-LB/LS supports BLE remote configure.
117 +SN50v3-LB supports BLE remote configure.
117 117  
118 118  
119 119  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -133,23 +133,18 @@
133 133  
134 134  == 1.8 Mechanical ==
135 135  
136 -=== 1.8.1 for LB version ===
137 137  
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
138 138  
139 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
140 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
140 140  
141 -
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
144 -=== 1.8.2 for LS version ===
145 145  
146 -[[image:image-20231231203439-3.png||height="385" width="886"]]
147 -
148 -
149 149  == 1.9 Hole Option ==
150 150  
151 151  
152 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
148 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 153  
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
155 155  
... ... @@ -156,12 +156,12 @@
156 156  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
157 157  
158 158  
159 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
155 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
160 160  
161 161  == 2.1 How it works ==
162 162  
163 163  
164 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
165 165  
166 166  
167 167  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -172,9 +172,9 @@
172 172  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
173 173  
174 174  
175 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
171 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
176 176  
177 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
173 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
178 178  
179 179  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
180 180  
... ... @@ -203,10 +203,10 @@
203 203  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204 204  
205 205  
206 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
202 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
208 208  
209 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
205 +Press the button for 5 seconds to activate the SN50v3-LB.
210 210  
211 211  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212 212  
... ... @@ -218,13 +218,13 @@
218 218  === 2.3.1 Device Status, FPORT~=5 ===
219 219  
220 220  
221 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
222 222  
223 223  The Payload format is as below.
224 224  
225 225  
226 226  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
227 -|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
223 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
228 228  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
229 229  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
230 230  
... ... @@ -231,7 +231,7 @@
231 231  Example parse in TTNv3
232 232  
233 233  
234 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
235 235  
236 236  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
237 237  
... ... @@ -287,7 +287,7 @@
287 287  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
288 288  
289 289  
290 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
291 291  
292 292  For example:
293 293  
... ... @@ -296,7 +296,7 @@
296 296  
297 297  (% style="color:red" %) **Important Notice:**
298 298  
299 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
300 300  
301 301  2. All modes share the same Payload Explanation from HERE.
302 302  
... ... @@ -396,9 +396,9 @@
396 396  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
397 397  
398 398  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
395 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
400 400  **Size(bytes)**
401 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
402 402  |Value|(% style="width:68px" %)(((
403 403  ADC1(PA4)
404 404  )))|(% style="width:75px" %)(((
... ... @@ -463,9 +463,9 @@
463 463  Check the response of this command and adjust the value to match the real value for thing.
464 464  
465 465  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
462 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
467 467  **Size(bytes)**
468 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
464 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 469  |Value|BAT|(% style="width:193px" %)(((
470 470  Temperature(DS18B20)(PC13)
471 471  )))|(% style="width:85px" %)(((
... ... @@ -477,6 +477,7 @@
477 477  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478 478  
479 479  
476 +
480 480  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481 481  
482 482  
... ... @@ -490,7 +490,7 @@
490 490  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
491 491  
492 492  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
490 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 494  |Value|BAT|(% style="width:256px" %)(((
495 495  Temperature(DS18B20)(PC13)
496 496  )))|(% style="width:108px" %)(((
... ... @@ -508,9 +508,9 @@
508 508  
509 509  
510 510  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
508 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
512 512  **Size(bytes)**
513 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
510 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
514 514  |Value|BAT|(% style="width:188px" %)(((
515 515  Temperature(DS18B20)
516 516  (PC13)
... ... @@ -527,9 +527,9 @@
527 527  
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
527 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
531 531  **Size(bytes)**
532 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
533 533  |Value|BAT|(% style="width:207px" %)(((
534 534  Temperature(DS18B20)
535 535  (PC13)
... ... @@ -550,9 +550,9 @@
550 550  
551 551  
552 552  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
550 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
554 554  **Size(bytes)**
555 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
556 556  |Value|BAT|(((
557 557  Temperature
558 558  (DS18B20)(PC13)
... ... @@ -589,108 +589,6 @@
589 589  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
590 590  
591 591  
592 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
593 -
594 -
595 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 -
597 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
598 -
599 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
600 -
601 -
602 -===== 2.3.2.10.a  Uplink, PWM input capture =====
603 -
604 -
605 -[[image:image-20230817172209-2.png||height="439" width="683"]]
606 -
607 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
609 -|Value|Bat|(% style="width:191px" %)(((
610 -Temperature(DS18B20)(PC13)
611 -)))|(% style="width:78px" %)(((
612 -ADC(PA4)
613 -)))|(% style="width:135px" %)(((
614 -PWM_Setting
615 -&Digital Interrupt(PA8)
616 -)))|(% style="width:70px" %)(((
617 -Pulse period
618 -)))|(% style="width:89px" %)(((
619 -Duration of high level
620 -)))
621 -
622 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
623 -
624 -
625 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
626 -
627 -**Frequency:**
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
631 -
632 -(% class="MsoNormal" %)
633 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
634 -
635 -
636 -(% class="MsoNormal" %)
637 -**Duty cycle:**
638 -
639 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 -
641 -[[image:image-20230818092200-1.png||height="344" width="627"]]
642 -
643 -
644 -===== 2.3.2.10.b  Uplink, PWM output =====
645 -
646 -
647 -[[image:image-20230817172209-2.png||height="439" width="683"]]
648 -
649 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 -
651 -a is the time delay of the output, the unit is ms.
652 -
653 -b is the output frequency, the unit is HZ.
654 -
655 -c is the duty cycle of the output, the unit is %.
656 -
657 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 -
659 -aa is the time delay of the output, the unit is ms.
660 -
661 -bb is the output frequency, the unit is HZ.
662 -
663 -cc is the duty cycle of the output, the unit is %.
664 -
665 -
666 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 -
668 -The oscilloscope displays as follows:
669 -
670 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 -
672 -
673 -===== 2.3.2.10.c  Downlink, PWM output =====
674 -
675 -
676 -[[image:image-20230817173800-3.png||height="412" width="685"]]
677 -
678 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
679 -
680 - xx xx xx is the output frequency, the unit is HZ.
681 -
682 - yy is the duty cycle of the output, the unit is %.
683 -
684 - zz zz is the time delay of the output, the unit is ms.
685 -
686 -
687 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
688 -
689 -The oscilloscope displays as follows:
690 -
691 -[[image:image-20230817173858-5.png||height="634" width="843"]]
692 -
693 -
694 694  === 2.3.3  ​Decode payload ===
695 695  
696 696  
... ... @@ -700,13 +700,13 @@
700 700  
701 701  The payload decoder function for TTN V3 are here:
702 702  
703 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
704 704  
705 705  
706 706  ==== 2.3.3.1 Battery Info ====
707 707  
708 708  
709 -Check the battery voltage for SN50v3-LB/LS.
604 +Check the battery voltage for SN50v3-LB.
710 710  
711 711  Ex1: 0x0B45 = 2885mV
712 712  
... ... @@ -764,16 +764,10 @@
764 764  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
765 765  
766 766  
767 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
768 -
769 -[[image:image-20230811113449-1.png||height="370" width="608"]]
770 -
771 -
772 -
773 773  ==== 2.3.3.5 Digital Interrupt ====
774 774  
775 775  
776 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
665 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
777 777  
778 778  (% style="color:blue" %)** Interrupt connection method:**
779 779  
... ... @@ -786,18 +786,18 @@
786 786  
787 787  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
788 788  
789 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
678 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
790 790  
791 791  
792 792  (% style="color:blue" %)**Below is the installation example:**
793 793  
794 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
683 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
795 795  
796 796  * (((
797 -One pin to SN50v3-LB/LS's PA8 pin
686 +One pin to SN50v3-LB's PA8 pin
798 798  )))
799 799  * (((
800 -The other pin to SN50v3-LB/LS's VDD pin
689 +The other pin to SN50v3-LB's VDD pin
801 801  )))
802 802  
803 803  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -833,7 +833,7 @@
833 833  
834 834  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
835 835  
836 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
725 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
837 837  
838 838  
839 839  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -867,7 +867,7 @@
867 867  
868 868  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
869 869  
870 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
871 871  
872 872  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
873 873  
... ... @@ -876,7 +876,7 @@
876 876  [[image:image-20230512173903-6.png||height="596" width="715"]]
877 877  
878 878  
879 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
768 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
880 880  
881 881  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
882 882  
... ... @@ -888,13 +888,13 @@
888 888  ==== 2.3.3.9  Battery Output - BAT pin ====
889 889  
890 890  
891 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
780 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
892 892  
893 893  
894 894  ==== 2.3.3.10  +5V Output ====
895 895  
896 896  
897 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
786 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
898 898  
899 899  The 5V output time can be controlled by AT Command.
900 900  
... ... @@ -916,38 +916,9 @@
916 916  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
917 917  
918 918  
919 -==== 2.3.3.12  PWM MOD ====
808 +==== 2.3.3.12  Working MOD ====
920 920  
921 921  
922 -* (((
923 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 -)))
925 -* (((
926 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 -)))
928 -
929 - [[image:image-20230817183249-3.png||height="320" width="417"]]
930 -
931 -* (((
932 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
933 -)))
934 -* (((
935 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 -)))
937 -* (((
938 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
939 -
940 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 -
942 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 -
944 -b) If the output duration is more than 30 seconds, better to use external power source. 
945 -)))
946 -
947 -
948 -==== 2.3.3.13  Working MOD ====
949 -
950 -
951 951  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
952 952  
953 953  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -963,8 +963,9 @@
963 963  * 6: MOD7
964 964  * 7: MOD8
965 965  * 8: MOD9
966 -* 9: MOD10
967 967  
827 +
828 +
968 968  == 2.4 Payload Decoder file ==
969 969  
970 970  
... ... @@ -978,22 +978,24 @@
978 978  == 2.5 Frequency Plans ==
979 979  
980 980  
981 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
842 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
982 982  
983 983  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
984 984  
985 985  
986 -= 3. Configure SN50v3-LB/LS =
847 += 3. Configure SN50v3-LB =
987 987  
988 988  == 3.1 Configure Methods ==
989 989  
990 990  
991 -SN50v3-LB/LS supports below configure method:
852 +SN50v3-LB supports below configure method:
992 992  
993 993  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
994 994  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
995 995  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
996 996  
858 +
859 +
997 997  == 3.2 General Commands ==
998 998  
999 999  
... ... @@ -1007,10 +1007,10 @@
1007 1007  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1008 1008  
1009 1009  
1010 -== 3.3 Commands special design for SN50v3-LB/LS ==
873 +== 3.3 Commands special design for SN50v3-LB ==
1011 1011  
1012 1012  
1013 -These commands only valid for SN50v3-LB/LS, as below:
876 +These commands only valid for SN50v3-LB, as below:
1014 1014  
1015 1015  
1016 1016  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1021,7 +1021,7 @@
1021 1021  (% style="color:blue" %)**AT Command: AT+TDC**
1022 1022  
1023 1023  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1024 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
887 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1025 1025  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1026 1026  30000
1027 1027  OK
... ... @@ -1041,6 +1041,8 @@
1041 1041  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1042 1042  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1043 1043  
907 +
908 +
1044 1044  === 3.3.2 Get Device Status ===
1045 1045  
1046 1046  
... ... @@ -1059,7 +1059,7 @@
1059 1059  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1060 1060  
1061 1061  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1062 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
927 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1063 1063  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1064 1064  0
1065 1065  OK
... ... @@ -1089,6 +1089,8 @@
1089 1089  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1090 1090  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1091 1091  
957 +
958 +
1092 1092  === 3.3.4 Set Power Output Duration ===
1093 1093  
1094 1094  
... ... @@ -1103,7 +1103,7 @@
1103 1103  (% style="color:blue" %)**AT Command: AT+5VT**
1104 1104  
1105 1105  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1106 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
973 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1107 1107  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1108 1108  500(default)
1109 1109  OK
... ... @@ -1121,6 +1121,8 @@
1121 1121  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1122 1122  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1123 1123  
991 +
992 +
1124 1124  === 3.3.5 Set Weighing parameters ===
1125 1125  
1126 1126  
... ... @@ -1129,7 +1129,7 @@
1129 1129  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1130 1130  
1131 1131  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1132 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1001 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1133 1133  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1134 1134  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1135 1135  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1146,6 +1146,8 @@
1146 1146  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1147 1147  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1148 1148  
1018 +
1019 +
1149 1149  === 3.3.6 Set Digital pulse count value ===
1150 1150  
1151 1151  
... ... @@ -1156,7 +1156,7 @@
1156 1156  (% style="color:blue" %)**AT Command: AT+SETCNT**
1157 1157  
1158 1158  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1159 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1030 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1160 1160  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1161 1161  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1162 1162  
... ... @@ -1169,6 +1169,8 @@
1169 1169  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1170 1170  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1171 1171  
1043 +
1044 +
1172 1172  === 3.3.7 Set Workmode ===
1173 1173  
1174 1174  
... ... @@ -1177,7 +1177,7 @@
1177 1177  (% style="color:blue" %)**AT Command: AT+MOD**
1178 1178  
1179 1179  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1180 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1181 1181  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1182 1182  OK
1183 1183  )))
... ... @@ -1193,103 +1193,13 @@
1193 1193  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1194 1194  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1195 1195  
1196 -(% id="H3.3.8PWMsetting" %)
1197 -=== 3.3.8 PWM setting ===
1198 1198  
1199 1199  
1200 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1071 += 4. Battery & Power Consumption =
1201 1201  
1202 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1203 1203  
1204 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1206 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 -0(default)
1074 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1208 1208  
1209 -OK
1210 -)))
1211 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1212 -OK
1213 -
1214 -)))
1215 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1216 -
1217 -(% style="color:blue" %)**Downlink Command: 0x0C**
1218 -
1219 -Format: Command Code (0x0C) followed by 1 bytes.
1220 -
1221 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1222 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1223 -
1224 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1225 -
1226 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1227 -
1228 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1229 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1230 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1231 -0,0,0(default)
1232 -
1233 -OK
1234 -)))
1235 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1236 -OK
1237 -
1238 -)))
1239 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1240 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1241 -
1242 -
1243 -)))|(% style="width:137px" %)(((
1244 -OK
1245 -)))
1246 -
1247 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1248 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1249 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1250 -AT+PWMOUT=a,b,c
1251 -
1252 -
1253 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1254 -Set PWM output time, output frequency and output duty cycle.
1255 -
1256 -(((
1257 -
1258 -)))
1259 -
1260 -(((
1261 -
1262 -)))
1263 -)))|(% style="width:242px" %)(((
1264 -a: Output time (unit: seconds)
1265 -
1266 -The value ranges from 0 to 65535.
1267 -
1268 -When a=65535, PWM will always output.
1269 -)))
1270 -|(% style="width:242px" %)(((
1271 -b: Output frequency (unit: HZ)
1272 -)))
1273 -|(% style="width:242px" %)(((
1274 -c: Output duty cycle (unit: %)
1275 -
1276 -The value ranges from 0 to 100.
1277 -)))
1278 -
1279 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1280 -
1281 -Format: Command Code (0x0B01) followed by 6 bytes.
1282 -
1283 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1284 -
1285 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1286 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1287 -
1288 -= 4. Battery & Power Cons =
1289 -
1290 -
1291 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1292 -
1293 1293  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1294 1294  
1295 1295  
... ... @@ -1297,7 +1297,7 @@
1297 1297  
1298 1298  
1299 1299  (% class="wikigeneratedid" %)
1300 -**User can change firmware SN50v3-LB/LS to:**
1083 +**User can change firmware SN50v3-LB to:**
1301 1301  
1302 1302  * Change Frequency band/ region.
1303 1303  * Update with new features.
... ... @@ -1310,24 +1310,28 @@
1310 1310  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1311 1311  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1312 1312  
1096 +
1097 +
1313 1313  = 6. FAQ =
1314 1314  
1315 -== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1100 +== 6.1 Where can i find source code of SN50v3-LB? ==
1316 1316  
1317 1317  
1318 1318  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1319 1319  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1320 1320  
1321 -== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1322 1322  
1323 1323  
1108 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1109 +
1110 +
1324 1324  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1325 1325  
1326 1326  
1327 -== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1114 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1328 1328  
1329 1329  
1330 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1117 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1331 1331  
1332 1332  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1333 1333  
... ... @@ -1337,7 +1337,7 @@
1337 1337  = 7. Order Info =
1338 1338  
1339 1339  
1340 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1127 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1341 1341  
1342 1342  (% style="color:red" %)**XX**(%%): The default frequency band
1343 1343  
... ... @@ -1357,12 +1357,14 @@
1357 1357  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1358 1358  * (% style="color:red" %)**NH**(%%): No Hole
1359 1359  
1147 +
1148 +
1360 1360  = 8. ​Packing Info =
1361 1361  
1362 1362  
1363 1363  (% style="color:#037691" %)**Package Includes**:
1364 1364  
1365 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1154 +* SN50v3-LB LoRaWAN Generic Node
1366 1366  
1367 1367  (% style="color:#037691" %)**Dimension and weight**:
1368 1368  
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0