<
From version < 87.1 >
edited by Xiaoling
on 2024/01/03 09:57
To version < 87.31 >
edited by Xiaoling
on 2024/01/24 15:17
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,8 +1,13 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
8 +
9 +
10 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -14,18 +14,18 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  == 1.2 ​Features ==
31 31  
... ... @@ -38,7 +38,8 @@
38 38  * Support wireless OTA update firmware
39 39  * Uplink on periodically
40 40  * Downlink to change configure
41 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
42 42  
43 43  == 1.3 Specification ==
44 44  
... ... @@ -45,7 +45,7 @@
45 45  
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 49  * Operating Temperature: -40 ~~ 85°C
50 50  
51 51  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -88,11 +88,10 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
92 92  
93 -
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
96 96  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 97  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 98  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -107,7 +107,7 @@
107 107  == 1.6 BLE connection ==
108 108  
109 109  
110 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
111 111  
112 112  
113 113  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -143,7 +143,7 @@
143 143  == 1.9 Hole Option ==
144 144  
145 145  
146 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 147  
148 148  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
149 149  
... ... @@ -150,12 +150,12 @@
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
151 151  
152 152  
153 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
154 154  
155 155  == 2.1 How it works ==
156 156  
157 157  
158 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
159 159  
160 160  
161 161  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -166,9 +166,9 @@
166 166  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
167 167  
168 168  
169 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
170 170  
171 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
172 172  
173 173  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
174 174  
... ... @@ -197,10 +197,10 @@
197 197  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
198 198  
199 199  
200 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
201 201  
202 202  
203 -Press the button for 5 seconds to activate the SN50v3-LB.
208 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
204 204  
205 205  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
206 206  
... ... @@ -212,13 +212,13 @@
212 212  === 2.3.1 Device Status, FPORT~=5 ===
213 213  
214 214  
215 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
216 216  
217 217  The Payload format is as below.
218 218  
219 219  
220 220  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
222 222  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
223 223  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
224 224  
... ... @@ -225,7 +225,7 @@
225 225  Example parse in TTNv3
226 226  
227 227  
228 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
229 229  
230 230  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
231 231  
... ... @@ -281,7 +281,7 @@
281 281  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
282 282  
283 283  
284 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
285 285  
286 286  For example:
287 287  
... ... @@ -290,7 +290,7 @@
290 290  
291 291  (% style="color:red" %) **Important Notice:**
292 292  
293 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
294 294  
295 295  2. All modes share the same Payload Explanation from HERE.
296 296  
... ... @@ -303,7 +303,7 @@
303 303  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
304 304  
305 305  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
307 307  |Value|Bat|(% style="width:191px" %)(((
308 308  Temperature(DS18B20)(PC13)
309 309  )))|(% style="width:78px" %)(((
... ... @@ -325,7 +325,7 @@
325 325  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 326  
327 327  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
329 329  |Value|BAT|(% style="width:196px" %)(((
330 330  Temperature(DS18B20)(PC13)
331 331  )))|(% style="width:87px" %)(((
... ... @@ -355,7 +355,7 @@
355 355  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356 356  
357 357  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
359 359  |Value|BAT|(% style="width:183px" %)(((
360 360  Temperature(DS18B20)(PC13)
361 361  )))|(% style="width:173px" %)(((
... ... @@ -390,9 +390,9 @@
390 390  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391 391  
392 392  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
394 394  **Size(bytes)**
395 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
396 396  |Value|(% style="width:68px" %)(((
397 397  ADC1(PA4)
398 398  )))|(% style="width:75px" %)(((
... ... @@ -416,7 +416,7 @@
416 416  This mode has total 11 bytes. As shown below:
417 417  
418 418  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
420 420  |Value|BAT|(% style="width:186px" %)(((
421 421  Temperature1(DS18B20)(PC13)
422 422  )))|(% style="width:82px" %)(((
... ... @@ -457,9 +457,9 @@
457 457  Check the response of this command and adjust the value to match the real value for thing.
458 458  
459 459  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
461 461  **Size(bytes)**
462 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
463 463  |Value|BAT|(% style="width:193px" %)(((
464 464  Temperature(DS18B20)(PC13)
465 465  )))|(% style="width:85px" %)(((
... ... @@ -484,7 +484,7 @@
484 484  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485 485  
486 486  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
488 488  |Value|BAT|(% style="width:256px" %)(((
489 489  Temperature(DS18B20)(PC13)
490 490  )))|(% style="width:108px" %)(((
... ... @@ -502,9 +502,9 @@
502 502  
503 503  
504 504  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
506 506  **Size(bytes)**
507 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
508 508  |Value|BAT|(% style="width:188px" %)(((
509 509  Temperature(DS18B20)
510 510  (PC13)
... ... @@ -521,9 +521,9 @@
521 521  
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
525 525  **Size(bytes)**
526 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
527 527  |Value|BAT|(% style="width:207px" %)(((
528 528  Temperature(DS18B20)
529 529  (PC13)
... ... @@ -544,9 +544,9 @@
544 544  
545 545  
546 546  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
548 548  **Size(bytes)**
549 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
550 550  |Value|BAT|(((
551 551  Temperature
552 552  (DS18B20)(PC13)
... ... @@ -583,8 +583,9 @@
583 583  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 585  
586 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
587 587  
593 +
588 588  (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589 589  
590 590  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
... ... @@ -598,7 +598,7 @@
598 598  [[image:image-20230817172209-2.png||height="439" width="683"]]
599 599  
600 600  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
602 602  |Value|Bat|(% style="width:191px" %)(((
603 603  Temperature(DS18B20)(PC13)
604 604  )))|(% style="width:78px" %)(((
... ... @@ -633,8 +633,10 @@
633 633  
634 634  [[image:image-20230818092200-1.png||height="344" width="627"]]
635 635  
642 +
636 636  ===== 2.3.2.10.b  Uplink, PWM output =====
637 637  
645 +
638 638  [[image:image-20230817172209-2.png||height="439" width="683"]]
639 639  
640 640  (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
... ... @@ -658,7 +658,7 @@
658 658  
659 659  The oscilloscope displays as follows:
660 660  
661 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
662 662  
663 663  
664 664  ===== 2.3.2.10.c  Downlink, PWM output =====
... ... @@ -679,7 +679,7 @@
679 679  
680 680  The oscilloscope displays as follows:
681 681  
682 -[[image:image-20230817173858-5.png||height="694" width="921"]]
690 +[[image:image-20230817173858-5.png||height="634" width="843"]]
683 683  
684 684  
685 685  === 2.3.3  ​Decode payload ===
... ... @@ -691,13 +691,13 @@
691 691  
692 692  The payload decoder function for TTN V3 are here:
693 693  
694 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
702 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
695 695  
696 696  
697 697  ==== 2.3.3.1 Battery Info ====
698 698  
699 699  
700 -Check the battery voltage for SN50v3-LB.
708 +Check the battery voltage for SN50v3-LB/LS.
701 701  
702 702  Ex1: 0x0B45 = 2885mV
703 703  
... ... @@ -759,10 +759,12 @@
759 759  
760 760  [[image:image-20230811113449-1.png||height="370" width="608"]]
761 761  
770 +
771 +
762 762  ==== 2.3.3.5 Digital Interrupt ====
763 763  
764 764  
765 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
766 766  
767 767  (% style="color:blue" %)** Interrupt connection method:**
768 768  
... ... @@ -775,18 +775,18 @@
775 775  
776 776  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
777 777  
778 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
779 779  
780 780  
781 781  (% style="color:blue" %)**Below is the installation example:**
782 782  
783 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
784 784  
785 785  * (((
786 -One pin to SN50v3-LB's PA8 pin
796 +One pin to SN50v3-LB/LS's PA8 pin
787 787  )))
788 788  * (((
789 -The other pin to SN50v3-LB's VDD pin
799 +The other pin to SN50v3-LB/LS's VDD pin
790 790  )))
791 791  
792 792  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -822,7 +822,7 @@
822 822  
823 823  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
824 824  
825 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
826 826  
827 827  
828 828  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -856,7 +856,7 @@
856 856  
857 857  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
858 858  
859 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
860 860  
861 861  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
862 862  
... ... @@ -865,7 +865,7 @@
865 865  [[image:image-20230512173903-6.png||height="596" width="715"]]
866 866  
867 867  
868 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
869 869  
870 870  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
871 871  
... ... @@ -877,13 +877,13 @@
877 877  ==== 2.3.3.9  Battery Output - BAT pin ====
878 878  
879 879  
880 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
881 881  
882 882  
883 883  ==== 2.3.3.10  +5V Output ====
884 884  
885 885  
886 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
887 887  
888 888  The 5V output time can be controlled by AT Command.
889 889  
... ... @@ -928,12 +928,9 @@
928 928  
929 929  For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930 930  
931 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
932 932  
933 933  b) If the output duration is more than 30 seconds, better to use external power source. 
934 -
935 -
936 -
937 937  )))
938 938  
939 939  ==== 2.3.3.13  Working MOD ====
... ... @@ -969,17 +969,17 @@
969 969  == 2.5 Frequency Plans ==
970 970  
971 971  
972 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
973 973  
974 974  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
975 975  
976 976  
977 -= 3. Configure SN50v3-LB =
984 += 3. Configure SN50v3-LB/LS =
978 978  
979 979  == 3.1 Configure Methods ==
980 980  
981 981  
982 -SN50v3-LB supports below configure method:
989 +SN50v3-LB/LS supports below configure method:
983 983  
984 984  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
985 985  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -998,10 +998,10 @@
998 998  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
999 999  
1000 1000  
1001 -== 3.3 Commands special design for SN50v3-LB ==
1008 +== 3.3 Commands special design for SN50v3-LB/LS ==
1002 1002  
1003 1003  
1004 -These commands only valid for SN50v3-LB, as below:
1011 +These commands only valid for SN50v3-LB/LS, as below:
1005 1005  
1006 1006  
1007 1007  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1012,7 +1012,7 @@
1012 1012  (% style="color:blue" %)**AT Command: AT+TDC**
1013 1013  
1014 1014  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1015 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1016 1016  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1017 1017  30000
1018 1018  OK
... ... @@ -1047,10 +1047,10 @@
1047 1047  
1048 1048  Feature, Set Interrupt mode for GPIO_EXIT.
1049 1049  
1050 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1051 1051  
1052 1052  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1054 1054  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1055 1055  0
1056 1056  OK
... ... @@ -1094,7 +1094,7 @@
1094 1094  (% style="color:blue" %)**AT Command: AT+5VT**
1095 1095  
1096 1096  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1097 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1098 1098  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1099 1099  500(default)
1100 1100  OK
... ... @@ -1120,9 +1120,9 @@
1120 1120  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1121 1121  
1122 1122  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1123 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1124 1124  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1125 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1126 1126  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1127 1127  
1128 1128  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1147,7 +1147,7 @@
1147 1147  (% style="color:blue" %)**AT Command: AT+SETCNT**
1148 1148  
1149 1149  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1150 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1151 1151  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1152 1152  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1153 1153  
... ... @@ -1168,7 +1168,7 @@
1168 1168  (% style="color:blue" %)**AT Command: AT+MOD**
1169 1169  
1170 1170  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1172 1172  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1173 1173  OK
1174 1174  )))
... ... @@ -1184,19 +1184,17 @@
1184 1184  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1185 1185  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1186 1186  
1187 -(% id="H3.3.8PWMsetting" %)
1188 1188  === 3.3.8 PWM setting ===
1189 1189  
1190 1190  
1191 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197 +Feature: Set the time acquisition unit for PWM input capture.
1192 1192  
1193 1193  (% style="color:blue" %)**AT Command: AT+PWMSET**
1194 1194  
1195 1195  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1197 1197  |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1198 1198  0(default)
1199 -
1200 1200  OK
1201 1201  )))
1202 1202  |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
... ... @@ -1212,15 +1212,14 @@
1212 1212  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 1213  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214 1214  
1215 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1220 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1216 1216  
1217 1217  (% style="color:blue" %)**AT Command: AT+PWMOUT**
1218 1218  
1219 1219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1221 1221  |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 1222  0,0,0(default)
1223 -
1224 1224  OK
1225 1225  )))
1226 1226  |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
... ... @@ -1236,7 +1236,7 @@
1236 1236  )))
1237 1237  
1238 1238  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1240 1240  |(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 1241  AT+PWMOUT=a,b,c
1242 1242  
... ... @@ -1253,9 +1253,7 @@
1253 1253  )))
1254 1254  )))|(% style="width:242px" %)(((
1255 1255  a: Output time (unit: seconds)
1256 -
1257 1257  The value ranges from 0 to 65535.
1258 -
1259 1259  When a=65535, PWM will always output.
1260 1260  )))
1261 1261  |(% style="width:242px" %)(((
... ... @@ -1263,7 +1263,6 @@
1263 1263  )))
1264 1264  |(% style="width:242px" %)(((
1265 1265  c: Output duty cycle (unit: %)
1266 -
1267 1267  The value ranges from 0 to 100.
1268 1268  )))
1269 1269  
... ... @@ -1271,7 +1271,7 @@
1271 1271  
1272 1272  Format: Command Code (0x0B01) followed by 6 bytes.
1273 1273  
1274 -Downlink payload0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 1275  
1276 1276  * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 1277  * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
... ... @@ -1279,7 +1279,7 @@
1279 1279  = 4. Battery & Power Cons =
1280 1280  
1281 1281  
1282 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1283 1283  
1284 1284  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1285 1285  
... ... @@ -1288,7 +1288,7 @@
1288 1288  
1289 1289  
1290 1290  (% class="wikigeneratedid" %)
1291 -**User can change firmware SN50v3-LB to:**
1292 +**User can change firmware SN50v3-LB/LS to:**
1292 1292  
1293 1293  * Change Frequency band/ region.
1294 1294  * Update with new features.
... ... @@ -1303,22 +1303,22 @@
1303 1303  
1304 1304  = 6. FAQ =
1305 1305  
1306 -== 6.1 Where can i find source code of SN50v3-LB? ==
1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1307 1307  
1308 1308  
1309 1309  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1310 1310  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1311 1311  
1312 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1313 1313  
1314 1314  
1315 1315  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316 1316  
1317 1317  
1318 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1319 1319  
1320 1320  
1321 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 1322  
1323 1323  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324 1324  
... ... @@ -1328,7 +1328,7 @@
1328 1328  = 7. Order Info =
1329 1329  
1330 1330  
1331 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1332 1332  
1333 1333  (% style="color:red" %)**XX**(%%): The default frequency band
1334 1334  
... ... @@ -1353,7 +1353,7 @@
1353 1353  
1354 1354  (% style="color:#037691" %)**Package Includes**:
1355 1355  
1356 -* SN50v3-LB LoRaWAN Generic Node
1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1357 1357  
1358 1358  (% style="color:#037691" %)**Dimension and weight**:
1359 1359  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0