Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,9 +1,8 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 6 -**Table of Contents :**5 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -16,20 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 + 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 32 + 30 30 == 1.2 Features == 31 31 32 - 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -42,7 +42,6 @@ 42 42 43 43 == 1.3 Specification == 44 44 45 - 46 46 (% style="color:#037691" %)**Common DC Characteristics:** 47 47 48 48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,7 +79,6 @@ 79 79 80 80 == 1.4 Sleep mode and working mode == 81 81 82 - 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -88,7 +88,7 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] [[image:image-20231231203148-2.png||height="456" width="316"]]91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 92 92 93 93 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -122,27 +122,21 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 126 126 127 127 128 128 == 1.8 Mechanical == 129 129 130 -=== 1.8.1 for LB version === 131 131 131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 135 - 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 -=== 1.8.2 for LS version === 139 139 140 - [[image:image-20231231203439-3.png||height="385" width="886"]]138 +== Hole Option == 141 141 142 - 143 -== 1.9 Hole Option == 144 - 145 - 146 146 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 147 147 148 148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -155,7 +155,7 @@ 155 155 == 2.1 How it works == 156 156 157 157 158 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 159 159 160 160 161 161 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -163,7 +163,7 @@ 163 163 164 164 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 165 165 166 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 167 167 168 168 169 169 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -212,7 +212,7 @@ 212 212 === 2.3.1 Device Status, FPORT~=5 === 213 213 214 214 215 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 216 216 217 217 The Payload format is as below. 218 218 ... ... @@ -220,44 +220,44 @@ 220 220 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 221 221 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 222 222 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 223 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 224 224 225 225 Example parse in TTNv3 226 226 227 227 228 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 229 229 230 230 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 231 231 232 232 (% style="color:#037691" %)**Frequency Band**: 233 233 234 -0x01: EU868 228 +*0x01: EU868 235 235 236 -0x02: US915 230 +*0x02: US915 237 237 238 -0x03: IN865 232 +*0x03: IN865 239 239 240 -0x04: AU915 234 +*0x04: AU915 241 241 242 -0x05: KZ865 236 +*0x05: KZ865 243 243 244 -0x06: RU864 238 +*0x06: RU864 245 245 246 -0x07: AS923 240 +*0x07: AS923 247 247 248 -0x08: AS923-1 242 +*0x08: AS923-1 249 249 250 -0x09: AS923-2 244 +*0x09: AS923-2 251 251 252 -0x0a: AS923-3 246 +*0x0a: AS923-3 253 253 254 -0x0b: CN470 248 +*0x0b: CN470 255 255 256 -0x0c: EU433 250 +*0x0c: EU433 257 257 258 -0x0d: KR920 252 +*0x0d: KR920 259 259 260 -0x0e: MA869 254 +*0x0e: MA869 261 261 262 262 263 263 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -281,199 +281,186 @@ 281 281 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 282 282 283 283 284 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 285 285 286 286 For example: 287 287 288 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 289 289 290 290 291 291 (% style="color:red" %) **Important Notice:** 292 292 293 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 294 294 295 -2. All modes share the same Payload Explanation from HERE. 296 - 297 -3. By default, the device will send an uplink message every 20 minutes. 298 - 299 - 300 300 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 301 301 302 - 303 303 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 304 304 305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 306 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 307 -|Value|Bat|(% style="width:191px" %)((( 308 -Temperature(DS18B20)(PC13) 309 -)))|(% style="width:78px" %)((( 310 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 311 311 )))|(% style="width:216px" %)((( 312 -Digital in(PB15)&Digital Interrupt(PA8) 313 -)))|(% style="width:308px" %)((( 314 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 315 -)))|(% style="width:154px" %)((( 316 -Humidity(SHT20 or SHT31) 317 -))) 305 +Digital in & Digital Interrupt 318 318 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 319 319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 320 320 321 321 322 322 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 323 323 324 - 325 325 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 326 326 327 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 328 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 329 -|Value|BAT|(% style="width:196px" %)((( 330 -Temperature(DS18B20)(PC13) 331 -)))|(% style="width:87px" %)((( 332 -ADC(PA4) 333 -)))|(% style="width:189px" %)((( 334 -Digital in(PB15) & Digital Interrupt(PA8) 335 -)))|(% style="width:208px" %)((( 336 -Distance measure by: 1) LIDAR-Lite V3HP 337 -Or 2) Ultrasonic Sensor 338 -)))|(% style="width:117px" %)Reserved 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 323 +Or 324 +2) Ultrasonic Sensor 325 +)))|Reserved 339 339 340 340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 341 341 329 +**Connection of LIDAR-Lite V3HP:** 342 342 343 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 344 - 345 345 [[image:image-20230512173758-5.png||height="563" width="712"]] 346 346 333 +**Connection to Ultrasonic Sensor:** 347 347 348 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 349 - 350 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 351 - 352 352 [[image:image-20230512173903-6.png||height="596" width="715"]] 353 353 354 - 355 355 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 356 356 357 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 359 -|Value|BAT|(% style="width:183px" %)((( 360 -Temperature(DS18B20)(PC13) 361 -)))|(% style="width:173px" %)((( 362 -Digital in(PB15) & Digital Interrupt(PA8) 363 -)))|(% style="width:84px" %)((( 364 -ADC(PA4) 365 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 366 366 Distance measure by:1)TF-Mini plus LiDAR 367 -Or 2) TF-Luna LiDAR 368 -)))|(% style="width:188px" %)Distance signal strength 344 +Or 345 +2) TF-Luna LiDAR 346 +)))|Distance signal strength 369 369 370 370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 371 371 372 - 373 373 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 374 374 375 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 376 376 377 377 [[image:image-20230512180609-7.png||height="555" width="802"]] 378 378 379 - 380 380 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 381 381 382 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 383 383 384 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 385 385 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 386 386 364 + 387 387 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 388 388 389 - 390 390 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 391 391 392 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 393 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 394 394 **Size(bytes)** 395 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 396 -|Value|(% style="width:68px" %)((( 397 -ADC1(PA4) 371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 +|**Value**|(% style="width:68px" %)((( 373 +ADC 374 + 375 +(PA0) 398 398 )))|(% style="width:75px" %)((( 399 -ADC2(PA5) 400 -)))|((( 401 -ADC3(PA8) 402 -)))|((( 403 -Digital Interrupt(PB15) 404 -)))|(% style="width:304px" %)((( 405 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 406 -)))|(% style="width:163px" %)((( 407 -Humidity(SHT20 or SHT31) 408 -)))|(% style="width:53px" %)Bat 377 +ADC2 409 409 410 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 411 411 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 412 412 386 + 413 413 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 414 414 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 415 415 416 416 This mode has total 11 bytes. As shown below: 417 417 418 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 419 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 420 -|Value|BAT|(% style="width:186px" %)((( 421 -Temperature1(DS18B20)(PC13) 393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 +|**Value**|BAT|(% style="width:186px" %)((( 396 +Temperature1(DS18B20) 397 +(PC13) 422 422 )))|(% style="width:82px" %)((( 423 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 424 424 )))|(% style="width:210px" %)((( 425 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 426 426 )))|(% style="width:191px" %)Temperature2(DS18B20) 427 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 428 428 429 429 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 430 430 431 431 432 -[[image:image-20230513134006-1.png||height="559" width="736"]] 433 - 434 - 435 435 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 436 436 437 - 438 438 [[image:image-20230512164658-2.png||height="532" width="729"]] 439 439 440 440 Each HX711 need to be calibrated before used. User need to do below two steps: 441 441 442 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.443 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 444 444 1. ((( 445 445 Weight has 4 bytes, the unit is g. 446 - 447 - 448 - 449 449 ))) 450 450 451 451 For example: 452 452 453 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**427 +**AT+GETSENSORVALUE =0** 454 454 455 455 Response: Weight is 401 g 456 456 457 457 Check the response of this command and adjust the value to match the real value for thing. 458 458 459 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)460 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 461 461 **Size(bytes)** 462 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 463 -|Value|BAT|(% style="width:193px" %)((( 464 -Temperature(DS18B20)(PC13) 465 -)))|(% style="width:85px" %)((( 466 -ADC(PA4) 467 -)))|(% style="width:186px" %)((( 468 -Digital in(PB15) & Digital Interrupt(PA8) 469 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 470 470 440 +(PC13) 441 + 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 445 + 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 449 + 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 452 + 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 472 472 473 473 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 - 477 477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 478 478 479 479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -480,211 +480,86 @@ 480 480 481 481 [[image:image-20230512181814-9.png||height="543" width="697"]] 482 482 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 483 483 484 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 485 485 486 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 -|Value|BAT|(% style="width:256px" %)((( 489 -Temperature(DS18B20)(PC13) 490 -)))|(% style="width:108px" %)((( 491 -ADC(PA4) 492 -)))|(% style="width:126px" %)((( 493 -Digital in(PB15) 494 -)))|(% style="width:145px" %)((( 495 -Count(PA8) 496 -))) 497 - 498 498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 499 499 500 500 501 501 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 502 502 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 503 503 504 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 505 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 +|=((( 506 506 **Size(bytes)** 507 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 508 -|Value|BAT|(% style="width:188px" %)((( 509 -Temperature(DS18B20) 510 -(PC13) 511 -)))|(% style="width:83px" %)((( 512 -ADC(PA5) 513 -)))|(% style="width:184px" %)((( 514 -Digital Interrupt1(PA8) 515 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 516 516 517 -[[image:image-20230513111203-7.png||height="324" width="975"]] 518 - 519 - 520 520 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 521 521 522 - 523 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 524 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 525 525 **Size(bytes)** 526 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 527 -|Value|BAT|(% style="width:207px" %)((( 528 -Temperature(DS18B20) 529 -(PC13) 530 -)))|(% style="width:94px" %)((( 531 -ADC1(PA4) 532 -)))|(% style="width:198px" %)((( 533 -Digital Interrupt(PB15) 534 -)))|(% style="width:84px" %)((( 535 -ADC2(PA5) 536 -)))|(% style="width:82px" %)((( 537 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 538 538 ))) 539 539 540 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 541 541 542 542 543 543 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 544 544 545 - 546 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 547 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 548 548 **Size(bytes)** 549 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 550 -|Value|BAT|((( 551 -Temperature 552 -(DS18B20)(PC13) 508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 +|**Value**|BAT|((( 510 +Temperature1(PB3) 553 553 )))|((( 554 -Temperature2 555 -(DS18B20)(PB9) 512 +Temperature2(PA9) 556 556 )))|((( 557 -Digital Interrupt 558 -(PB15) 559 -)))|(% style="width:193px" %)((( 560 -Temperature3 561 -(DS18B20)(PB8) 562 -)))|(% style="width:78px" %)((( 563 -Count1(PA8) 564 -)))|(% style="width:78px" %)((( 565 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 566 566 ))) 567 567 568 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 569 569 570 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 571 571 572 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 573 573 574 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 575 575 576 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 577 577 534 +**AT+SETCNT=aa,bb** 578 578 579 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 580 580 581 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 582 582 583 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 586 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 587 - 588 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 589 - 590 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 591 - 592 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 593 - 594 - 595 -===== 2.3.2.10.a Uplink, PWM input capture ===== 596 - 597 - 598 -[[image:image-20230817172209-2.png||height="439" width="683"]] 599 - 600 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 601 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 602 -|Value|Bat|(% style="width:191px" %)((( 603 -Temperature(DS18B20)(PC13) 604 -)))|(% style="width:78px" %)((( 605 -ADC(PA4) 606 -)))|(% style="width:135px" %)((( 607 -PWM_Setting 608 -&Digital Interrupt(PA8) 609 -)))|(% style="width:70px" %)((( 610 -Pulse period 611 -)))|(% style="width:89px" %)((( 612 -Duration of high level 613 -))) 614 - 615 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 616 - 617 - 618 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 619 - 620 -**Frequency:** 621 - 622 -(% class="MsoNormal" %) 623 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 624 - 625 -(% class="MsoNormal" %) 626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 627 - 628 - 629 -(% class="MsoNormal" %) 630 -**Duty cycle:** 631 - 632 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 633 - 634 -[[image:image-20230818092200-1.png||height="344" width="627"]] 635 - 636 -===== 2.3.2.10.b Uplink, PWM output ===== 637 - 638 -[[image:image-20230817172209-2.png||height="439" width="683"]] 639 - 640 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 641 - 642 -a is the time delay of the output, the unit is ms. 643 - 644 -b is the output frequency, the unit is HZ. 645 - 646 -c is the duty cycle of the output, the unit is %. 647 - 648 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 649 - 650 -aa is the time delay of the output, the unit is ms. 651 - 652 -bb is the output frequency, the unit is HZ. 653 - 654 -cc is the duty cycle of the output, the unit is %. 655 - 656 - 657 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 658 - 659 -The oscilloscope displays as follows: 660 - 661 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 662 - 663 - 664 -===== 2.3.2.10.c Downlink, PWM output ===== 665 - 666 - 667 -[[image:image-20230817173800-3.png||height="412" width="685"]] 668 - 669 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 670 - 671 - xx xx xx is the output frequency, the unit is HZ. 672 - 673 - yy is the duty cycle of the output, the unit is %. 674 - 675 - zz zz is the time delay of the output, the unit is ms. 676 - 677 - 678 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 679 - 680 -The oscilloscope displays as follows: 681 - 682 -[[image:image-20230817173858-5.png||height="694" width="921"]] 683 - 684 - 685 685 === 2.3.3 Decode payload === 686 686 687 - 688 688 While using TTN V3 network, you can add the payload format to decode the payload. 689 689 690 690 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -691,14 +691,13 @@ 691 691 692 692 The payload decoder function for TTN V3 are here: 693 693 694 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]550 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 695 695 696 696 697 697 ==== 2.3.3.1 Battery Info ==== 698 698 555 +Check the battery voltage for SN50v3. 699 699 700 -Check the battery voltage for SN50v3-LB. 701 - 702 702 Ex1: 0x0B45 = 2885mV 703 703 704 704 Ex2: 0x0B49 = 2889mV ... ... @@ -706,18 +706,16 @@ 706 706 707 707 ==== 2.3.3.2 Temperature (DS18B20) ==== 708 708 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 709 709 710 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 711 711 712 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 713 713 714 -(% style="color:blue" %)**Connection:** 715 - 716 716 [[image:image-20230512180718-8.png||height="538" width="647"]] 717 717 572 +**Example**: 718 718 719 -(% style="color:blue" %)**Example**: 720 - 721 721 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 722 722 723 723 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -727,7 +727,6 @@ 727 727 728 728 ==== 2.3.3.3 Digital Input ==== 729 729 730 - 731 731 The digital input for pin PB15, 732 732 733 733 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -735,65 +735,51 @@ 735 735 736 736 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 737 737 ((( 738 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 739 - 740 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 741 - 742 - 590 +Note:The maximum voltage input supports 3.6V. 743 743 ))) 744 744 593 +(% class="wikigeneratedid" %) 745 745 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 746 746 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 747 747 748 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 749 - 750 750 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 751 751 752 752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 753 753 754 754 755 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 756 - 757 - 758 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 759 - 760 -[[image:image-20230811113449-1.png||height="370" width="608"]] 761 - 762 762 ==== 2.3.3.5 Digital Interrupt ==== 763 763 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 764 764 765 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.607 +**~ Interrupt connection method:** 766 766 767 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 768 768 769 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 770 770 771 - 772 -(% style="color:blue" %)**Example to use with door sensor :** 773 - 774 774 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 775 775 776 776 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 777 777 778 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 779 779 619 +**~ Below is the installation example:** 780 780 781 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 782 782 783 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 784 - 785 785 * ((( 786 -One pin to SN50 v3-LB's PA8pin624 +One pin to LSN50's PB14 pin 787 787 ))) 788 788 * ((( 789 -The other pin to SN50 v3-LB's VDDpin627 +The other pin to LSN50's VCC pin 790 790 ))) 791 791 792 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 793 793 794 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 795 795 796 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 797 797 798 798 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 799 799 ... ... @@ -803,33 +803,29 @@ 803 803 804 804 The command is: 805 805 806 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 807 807 808 808 Below shows some screen captures in TTN V3: 809 809 810 810 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 811 811 650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 812 812 813 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 814 - 815 815 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 816 816 817 817 818 818 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 819 819 820 - 821 821 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 822 822 823 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 824 824 825 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/SHT31code in SN50v3-LBwill be a good reference.**661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 826 826 827 - 828 828 Below is the connection to SHT20/ SHT31. The connection is as below: 829 829 830 -[[image:image-202 30610170152-2.png||height="501" width="846"]]665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 831 831 832 - 833 833 The device will be able to get the I2C sensor data now and upload to IoT Server. 834 834 835 835 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -847,26 +847,20 @@ 847 847 848 848 ==== 2.3.3.7 Distance Reading ==== 849 849 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 850 850 851 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 852 852 853 - 854 854 ==== 2.3.3.8 Ultrasonic Sensor ==== 855 855 856 - 857 857 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 858 858 859 -The SN50 v3-LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 860 860 861 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 862 - 863 863 The picture below shows the connection: 864 864 865 -[[image:image-20230512173903-6.png||height="596" width="715"]] 866 866 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 867 867 868 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 869 - 870 870 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 871 871 872 872 **Example:** ... ... @@ -873,72 +873,50 @@ 873 873 874 874 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 875 875 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 876 876 877 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 878 878 708 +You can see the serial output in ULT mode as below: 879 879 880 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 881 881 712 +**In TTN V3 server:** 882 882 883 - ==== 2.3.3.10+5VOutput===714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 884 884 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 885 885 886 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.718 +==== 2.3.3.9 Battery Output - BAT pin ==== 887 887 888 -The 5 Voutput timecanbecontrolledbyATCommand.720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 889 889 890 -(% style="color:blue" %)**AT+5VT=1000** 891 891 892 - Meansset 5V valid time to have1000ms.So the real5Voutputwill actually have 1000ms + sampling time for other sensors.723 +==== 2.3.3.10 +5V Output ==== 893 893 894 - Bydefault the**AT+5VT=500**.Ifthe externalsensorwhich require5vand require more time to get stablestate, user canuse this commandtoincrease thepowerON durationforthissensor.725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 895 895 727 +The 5V output time can be controlled by AT Command. 896 896 897 -= === 2.3.3.11 BH1750Illumination Sensor ====729 +**AT+5VT=1000** 898 898 731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 899 899 900 - MOD=1support thissensor.Thesensorvalueis in the8^^th^^and9^^th^^bytes.733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 901 901 902 -[[image:image-20230512172447-4.png||height="416" width="712"]] 903 903 904 904 905 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]737 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 906 906 739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 907 907 908 - ====2.3.3.12PWM MOD====741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 909 909 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 910 910 911 -* ((( 912 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 913 -))) 914 -* ((( 915 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 916 -))) 917 917 918 - [[image:image-20230817183249-3.png||height="320"width="417"]]746 +==== 2.3.3.12 Working MOD ==== 919 919 920 -* ((( 921 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 922 -))) 923 -* ((( 924 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 925 -))) 926 -* ((( 927 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 928 - 929 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 930 - 931 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 932 - 933 -b) If the output duration is more than 30 seconds, better to use external power source. 934 - 935 - 936 - 937 -))) 938 - 939 -==== 2.3.3.13 Working MOD ==== 940 - 941 - 942 942 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 943 943 944 944 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -951,10 +951,6 @@ 951 951 * 3: MOD4 952 952 * 4: MOD5 953 953 * 5: MOD6 954 -* 6: MOD7 955 -* 7: MOD8 956 -* 8: MOD9 957 -* 9: MOD10 958 958 959 959 == 2.4 Payload Decoder file == 960 960 ... ... @@ -963,9 +963,10 @@ 963 963 964 964 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 965 965 966 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 967 967 968 968 771 + 969 969 == 2.5 Frequency Plans == 970 970 971 971 ... ... @@ -1001,7 +1001,7 @@ 1001 1001 == 3.3 Commands special design for SN50v3-LB == 1002 1002 1003 1003 1004 -These commands only valid for S N50v3-LB, as below:807 +These commands only valid for S31x-LB, as below: 1005 1005 1006 1006 1007 1007 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1012,7 +1012,7 @@ 1012 1012 (% style="color:blue" %)**AT Command: AT+TDC** 1013 1013 1014 1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1015 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1016 1016 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1017 1017 30000 1018 1018 OK ... ... @@ -1034,29 +1034,28 @@ 1034 1034 1035 1035 === 3.3.2 Get Device Status === 1036 1036 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 1037 1037 1038 - Senda LoRaWANdownlinktosk thedevicetosend its status.842 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1039 1039 1040 - (% style="color:blue"%)**DownlinkPayload:0x2601**844 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1041 1041 1042 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 1043 1043 847 +=== 3.3.7 Set Interrupt Mode === 1044 1044 1045 -=== 3.3.3 Set Interrupt Mode === 1046 1046 1047 - 1048 1048 Feature, Set Interrupt mode for GPIO_EXIT. 1049 1049 1050 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1051 1051 1052 1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1053 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1054 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1055 1055 0 1056 1056 OK 1057 1057 the mode is 0 =Disable Interrupt 1058 1058 ))) 1059 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1060 1060 Set Transmit Interval 1061 1061 0. (Disable Interrupt), 1062 1062 ~1. (Trigger by rising and falling edge) ... ... @@ -1063,11 +1063,6 @@ 1063 1063 2. (Trigger by falling edge) 1064 1064 3. (Trigger by rising edge) 1065 1065 )))|(% style="width:157px" %)OK 1066 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1067 -Set Transmit Interval 1068 -trigger by rising edge. 1069 -)))|(% style="width:157px" %)OK 1070 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1071 1071 1072 1072 (% style="color:blue" %)**Downlink Command: 0x06** 1073 1073 ... ... @@ -1075,210 +1075,12 @@ 1075 1075 1076 1076 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1077 1077 1078 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1079 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1080 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1081 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1082 1082 1083 -= ==3.3.4Set PowerOutputDuration ===878 += 4. Battery & Power Consumption = 1084 1084 1085 1085 1086 -Control the output duration 5V . Before each sampling, device will 1087 - 1088 -~1. first enable the power output to external sensor, 1089 - 1090 -2. keep it on as per duration, read sensor value and construct uplink payload 1091 - 1092 -3. final, close the power output. 1093 - 1094 -(% style="color:blue" %)**AT Command: AT+5VT** 1095 - 1096 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1097 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1098 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1099 -500(default) 1100 -OK 1101 -))) 1102 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1103 -Close after a delay of 1000 milliseconds. 1104 -)))|(% style="width:157px" %)OK 1105 - 1106 -(% style="color:blue" %)**Downlink Command: 0x07** 1107 - 1108 -Format: Command Code (0x07) followed by 2 bytes. 1109 - 1110 -The first and second bytes are the time to turn on. 1111 - 1112 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1113 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1114 - 1115 -=== 3.3.5 Set Weighing parameters === 1116 - 1117 - 1118 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1119 - 1120 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1121 - 1122 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1123 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1124 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1125 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1126 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1127 - 1128 -(% style="color:blue" %)**Downlink Command: 0x08** 1129 - 1130 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1131 - 1132 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1133 - 1134 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1135 - 1136 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1137 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1138 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1139 - 1140 -=== 3.3.6 Set Digital pulse count value === 1141 - 1142 - 1143 -Feature: Set the pulse count value. 1144 - 1145 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1146 - 1147 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1148 - 1149 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1150 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1151 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1152 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1153 - 1154 -(% style="color:blue" %)**Downlink Command: 0x09** 1155 - 1156 -Format: Command Code (0x09) followed by 5 bytes. 1157 - 1158 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1159 - 1160 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1161 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1162 - 1163 -=== 3.3.7 Set Workmode === 1164 - 1165 - 1166 -Feature: Switch working mode. 1167 - 1168 -(% style="color:blue" %)**AT Command: AT+MOD** 1169 - 1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1173 -OK 1174 -))) 1175 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1176 -OK 1177 -Attention:Take effect after ATZ 1178 -))) 1179 - 1180 -(% style="color:blue" %)**Downlink Command: 0x0A** 1181 - 1182 -Format: Command Code (0x0A) followed by 1 bytes. 1183 - 1184 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1185 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1186 - 1187 -(% id="H3.3.8PWMsetting" %) 1188 -=== 3.3.8 PWM setting === 1189 - 1190 - 1191 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1192 - 1193 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1194 - 1195 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1196 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1197 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1198 -0(default) 1199 - 1200 -OK 1201 -))) 1202 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1203 -OK 1204 - 1205 -))) 1206 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1207 - 1208 -(% style="color:blue" %)**Downlink Command: 0x0C** 1209 - 1210 -Format: Command Code (0x0C) followed by 1 bytes. 1211 - 1212 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1213 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1214 - 1215 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1216 - 1217 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1218 - 1219 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1220 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1221 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1222 -0,0,0(default) 1223 - 1224 -OK 1225 -))) 1226 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1227 -OK 1228 - 1229 -))) 1230 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1231 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1232 - 1233 - 1234 -)))|(% style="width:137px" %)((( 1235 -OK 1236 -))) 1237 - 1238 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1239 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1240 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1241 -AT+PWMOUT=a,b,c 1242 - 1243 - 1244 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1245 -Set PWM output time, output frequency and output duty cycle. 1246 - 1247 -((( 1248 - 1249 -))) 1250 - 1251 -((( 1252 - 1253 -))) 1254 -)))|(% style="width:242px" %)((( 1255 -a: Output time (unit: seconds) 1256 - 1257 -The value ranges from 0 to 65535. 1258 - 1259 -When a=65535, PWM will always output. 1260 -))) 1261 -|(% style="width:242px" %)((( 1262 -b: Output frequency (unit: HZ) 1263 -))) 1264 -|(% style="width:242px" %)((( 1265 -c: Output duty cycle (unit: %) 1266 - 1267 -The value ranges from 0 to 100. 1268 -))) 1269 - 1270 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1271 - 1272 -Format: Command Code (0x0B01) followed by 6 bytes. 1273 - 1274 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1275 - 1276 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1277 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1278 - 1279 -= 4. Battery & Power Cons = 1280 - 1281 - 1282 1282 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1283 1283 1284 1284 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1288,43 +1288,28 @@ 1288 1288 1289 1289 1290 1290 (% class="wikigeneratedid" %) 1291 - **User can change firmware SN50v3-LB to:**890 +User can change firmware SN50v3-LB to: 1292 1292 1293 1293 * Change Frequency band/ region. 1294 1294 * Update with new features. 1295 1295 * Fix bugs. 1296 1296 1297 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1298 1298 1299 -**Methods to Update Firmware:** 1300 1300 1301 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1302 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 899 +Methods to Update Firmware: 1303 1303 901 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 903 + 1304 1304 = 6. FAQ = 1305 1305 1306 1306 == 6.1 Where can i find source code of SN50v3-LB? == 1307 1307 1308 - 1309 1309 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1310 1310 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1311 1311 1312 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1313 1313 1314 - 1315 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1316 - 1317 - 1318 -== 6.3 How to put several sensors to a SN50v3-LB? == 1319 - 1320 - 1321 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1322 - 1323 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1324 - 1325 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1326 - 1327 - 1328 1328 = 7. Order Info = 1329 1329 1330 1330 ... ... @@ -1350,7 +1350,6 @@ 1350 1350 1351 1351 = 8. Packing Info = 1352 1352 1353 - 1354 1354 (% style="color:#037691" %)**Package Includes**: 1355 1355 1356 1356 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1366,5 +1366,4 @@ 1366 1366 1367 1367 1368 1368 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1369 - 1370 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content