<
From version < 87.1 >
edited by Xiaoling
on 2024/01/03 09:57
To version < 33.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111203-7.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,9 +1,8 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
5 +**Table of Contents**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -16,20 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
32 +
30 30  == 1.2 ​Features ==
31 31  
32 -
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -122,27 +122,21 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
130 -=== 1.8.1 for LB version ===
131 131  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
135 -
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 -=== 1.8.2 for LS version ===
139 139  
140 -[[image:image-20231231203439-3.png||height="385" width="886"]]
138 +== Hole Option ==
141 141  
142 -
143 -== 1.9 Hole Option ==
144 -
145 -
146 146  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 147  
148 148  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -155,7 +155,7 @@
155 155  == 2.1 How it works ==
156 156  
157 157  
158 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
159 159  
160 160  
161 161  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -163,7 +163,7 @@
163 163  
164 164  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
165 165  
166 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
167 167  
168 168  
169 169  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -212,7 +212,7 @@
212 212  === 2.3.1 Device Status, FPORT~=5 ===
213 213  
214 214  
215 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
216 216  
217 217  The Payload format is as below.
218 218  
... ... @@ -220,44 +220,44 @@
220 220  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
221 221  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
222 222  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
223 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
224 224  
225 225  Example parse in TTNv3
226 226  
227 227  
228 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
229 229  
230 230  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
231 231  
232 232  (% style="color:#037691" %)**Frequency Band**:
233 233  
234 -0x01: EU868
228 +*0x01: EU868
235 235  
236 -0x02: US915
230 +*0x02: US915
237 237  
238 -0x03: IN865
232 +*0x03: IN865
239 239  
240 -0x04: AU915
234 +*0x04: AU915
241 241  
242 -0x05: KZ865
236 +*0x05: KZ865
243 243  
244 -0x06: RU864
238 +*0x06: RU864
245 245  
246 -0x07: AS923
240 +*0x07: AS923
247 247  
248 -0x08: AS923-1
242 +*0x08: AS923-1
249 249  
250 -0x09: AS923-2
244 +*0x09: AS923-2
251 251  
252 -0x0a: AS923-3
246 +*0x0a: AS923-3
253 253  
254 -0x0b: CN470
248 +*0x0b: CN470
255 255  
256 -0x0c: EU433
250 +*0x0c: EU433
257 257  
258 -0x0d: KR920
252 +*0x0d: KR920
259 259  
260 -0x0e: MA869
254 +*0x0e: MA869
261 261  
262 262  
263 263  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -281,199 +281,186 @@
281 281  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
282 282  
283 283  
284 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
285 285  
286 286  For example:
287 287  
288 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
289 289  
290 290  
291 291  (% style="color:red" %) **Important Notice:**
292 292  
293 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
294 294  
295 -2. All modes share the same Payload Explanation from HERE.
296 -
297 -3. By default, the device will send an uplink message every 20 minutes.
298 -
299 -
300 300  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
301 301  
302 -
303 303  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
304 304  
305 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 -|Value|Bat|(% style="width:191px" %)(((
308 -Temperature(DS18B20)(PC13)
309 -)))|(% style="width:78px" %)(((
310 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
311 311  )))|(% style="width:216px" %)(((
312 -Digital in(PB15)&Digital Interrupt(PA8)
313 -)))|(% style="width:308px" %)(((
314 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
315 -)))|(% style="width:154px" %)(((
316 -Humidity(SHT20 or SHT31)
317 -)))
305 +Digital in & Digital Interrupt
318 318  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
319 319  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320 320  
321 321  
322 322  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323 323  
324 -
325 325  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 326  
327 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 -|Value|BAT|(% style="width:196px" %)(((
330 -Temperature(DS18B20)(PC13)
331 -)))|(% style="width:87px" %)(((
332 -ADC(PA4)
333 -)))|(% style="width:189px" %)(((
334 -Digital in(PB15) & Digital Interrupt(PA8)
335 -)))|(% style="width:208px" %)(((
336 -Distance measure by: 1) LIDAR-Lite V3HP
337 -Or 2) Ultrasonic Sensor
338 -)))|(% style="width:117px" %)Reserved
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
339 339  
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
341 341  
329 +**Connection of LIDAR-Lite V3HP:**
342 342  
343 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344 -
345 345  [[image:image-20230512173758-5.png||height="563" width="712"]]
346 346  
333 +**Connection to Ultrasonic Sensor:**
347 347  
348 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349 -
350 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351 -
352 352  [[image:image-20230512173903-6.png||height="596" width="715"]]
353 353  
354 -
355 355  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356 356  
357 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 -|Value|BAT|(% style="width:183px" %)(((
360 -Temperature(DS18B20)(PC13)
361 -)))|(% style="width:173px" %)(((
362 -Digital in(PB15) & Digital Interrupt(PA8)
363 -)))|(% style="width:84px" %)(((
364 -ADC(PA4)
365 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
366 366  Distance measure by:1)TF-Mini plus LiDAR
367 -Or 2) TF-Luna LiDAR
368 -)))|(% style="width:188px" %)Distance signal  strength
344 +Or 
345 +2) TF-Luna LiDAR
346 +)))|Distance signal  strength
369 369  
370 370  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
371 371  
372 -
373 373  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
374 374  
375 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
376 376  
377 377  [[image:image-20230512180609-7.png||height="555" width="802"]]
378 378  
379 -
380 380  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381 381  
382 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
383 383  
384 -[[image:image-20230610170047-1.png||height="452" width="799"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
385 385  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
386 386  
364 +
387 387  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388 388  
389 -
390 390  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391 391  
392 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
394 394  **Size(bytes)**
395 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 -|Value|(% style="width:68px" %)(((
397 -ADC1(PA4)
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
398 398  )))|(% style="width:75px" %)(((
399 -ADC2(PA5)
400 -)))|(((
401 -ADC3(PA8)
402 -)))|(((
403 -Digital Interrupt(PB15)
404 -)))|(% style="width:304px" %)(((
405 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
406 -)))|(% style="width:163px" %)(((
407 -Humidity(SHT20 or SHT31)
408 -)))|(% style="width:53px" %)Bat
377 +ADC2
409 409  
410 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
411 411  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
412 412  
386 +
413 413  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
414 414  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
415 415  
416 416  This mode has total 11 bytes. As shown below:
417 417  
418 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 -|Value|BAT|(% style="width:186px" %)(((
421 -Temperature1(DS18B20)(PC13)
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
422 422  )))|(% style="width:82px" %)(((
423 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
424 424  )))|(% style="width:210px" %)(((
425 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
426 426  )))|(% style="width:191px" %)Temperature2(DS18B20)
427 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
428 428  
429 429  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
430 430  
431 431  
432 -[[image:image-20230513134006-1.png||height="559" width="736"]]
433 -
434 -
435 435  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
436 436  
437 -
438 438  [[image:image-20230512164658-2.png||height="532" width="729"]]
439 439  
440 440  Each HX711 need to be calibrated before used. User need to do below two steps:
441 441  
442 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
443 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 444  1. (((
445 445  Weight has 4 bytes, the unit is g.
446 -
447 -
448 -
449 449  )))
450 450  
451 451  For example:
452 452  
453 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
454 454  
455 455  Response:  Weight is 401 g
456 456  
457 457  Check the response of this command and adjust the value to match the real value for thing.
458 458  
459 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
461 461  **Size(bytes)**
462 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 -|Value|BAT|(% style="width:193px" %)(((
464 -Temperature(DS18B20)(PC13)
465 -)))|(% style="width:85px" %)(((
466 -ADC(PA4)
467 -)))|(% style="width:186px" %)(((
468 -Digital in(PB15) & Digital Interrupt(PA8)
469 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
470 470  
440 +(PC13)
441 +
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
445 +
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
449 +
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
452 +
471 471  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472 472  
473 473  
474 474  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475 475  
476 -
477 477  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478 478  
479 479  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -480,211 +480,86 @@
480 480  
481 481  [[image:image-20230512181814-9.png||height="543" width="697"]]
482 482  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
483 483  
484 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
485 485  
486 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 -|Value|BAT|(% style="width:256px" %)(((
489 -Temperature(DS18B20)(PC13)
490 -)))|(% style="width:108px" %)(((
491 -ADC(PA4)
492 -)))|(% style="width:126px" %)(((
493 -Digital in(PB15)
494 -)))|(% style="width:145px" %)(((
495 -Count(PA8)
496 -)))
497 -
498 498  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
499 499  
500 500  
501 501  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
502 502  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
503 503  
504 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
506 506  **Size(bytes)**
507 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 -|Value|BAT|(% style="width:188px" %)(((
509 -Temperature(DS18B20)
510 -(PC13)
511 -)))|(% style="width:83px" %)(((
512 -ADC(PA5)
513 -)))|(% style="width:184px" %)(((
514 -Digital Interrupt1(PA8)
515 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
516 516  
517 -[[image:image-20230513111203-7.png||height="324" width="975"]]
518 -
519 -
520 520  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
521 521  
522 -
523 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
525 525  **Size(bytes)**
526 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 -|Value|BAT|(% style="width:207px" %)(((
528 -Temperature(DS18B20)
529 -(PC13)
530 -)))|(% style="width:94px" %)(((
531 -ADC1(PA4)
532 -)))|(% style="width:198px" %)(((
533 -Digital Interrupt(PB15)
534 -)))|(% style="width:84px" %)(((
535 -ADC2(PA5)
536 -)))|(% style="width:82px" %)(((
537 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
538 538  )))
539 539  
540 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
541 541  
542 542  
543 543  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544 544  
545 -
546 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
548 548  **Size(bytes)**
549 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 -|Value|BAT|(((
551 -Temperature
552 -(DS18B20)(PC13)
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
553 553  )))|(((
554 -Temperature2
555 -(DS18B20)(PB9)
512 +Temperature2(PA9)
556 556  )))|(((
557 -Digital Interrupt
558 -(PB15)
559 -)))|(% style="width:193px" %)(((
560 -Temperature3
561 -(DS18B20)(PB8)
562 -)))|(% style="width:78px" %)(((
563 -Count1(PA8)
564 -)))|(% style="width:78px" %)(((
565 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
566 566  )))
567 567  
568 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
569 569  
570 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
571 571  
572 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
577 577  
534 +**AT+SETCNT=aa,bb** 
578 578  
579 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
580 580  
581 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
582 582  
583 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 585  
586 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
587 -
588 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589 -
590 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
591 -
592 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
593 -
594 -
595 -===== 2.3.2.10.a  Uplink, PWM input capture =====
596 -
597 -
598 -[[image:image-20230817172209-2.png||height="439" width="683"]]
599 -
600 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
602 -|Value|Bat|(% style="width:191px" %)(((
603 -Temperature(DS18B20)(PC13)
604 -)))|(% style="width:78px" %)(((
605 -ADC(PA4)
606 -)))|(% style="width:135px" %)(((
607 -PWM_Setting
608 -&Digital Interrupt(PA8)
609 -)))|(% style="width:70px" %)(((
610 -Pulse period
611 -)))|(% style="width:89px" %)(((
612 -Duration of high level
613 -)))
614 -
615 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
616 -
617 -
618 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
619 -
620 -**Frequency:**
621 -
622 -(% class="MsoNormal" %)
623 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
624 -
625 -(% class="MsoNormal" %)
626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
627 -
628 -
629 -(% class="MsoNormal" %)
630 -**Duty cycle:**
631 -
632 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
633 -
634 -[[image:image-20230818092200-1.png||height="344" width="627"]]
635 -
636 -===== 2.3.2.10.b  Uplink, PWM output =====
637 -
638 -[[image:image-20230817172209-2.png||height="439" width="683"]]
639 -
640 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
641 -
642 -a is the time delay of the output, the unit is ms.
643 -
644 -b is the output frequency, the unit is HZ.
645 -
646 -c is the duty cycle of the output, the unit is %.
647 -
648 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
649 -
650 -aa is the time delay of the output, the unit is ms.
651 -
652 -bb is the output frequency, the unit is HZ.
653 -
654 -cc is the duty cycle of the output, the unit is %.
655 -
656 -
657 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658 -
659 -The oscilloscope displays as follows:
660 -
661 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662 -
663 -
664 -===== 2.3.2.10.c  Downlink, PWM output =====
665 -
666 -
667 -[[image:image-20230817173800-3.png||height="412" width="685"]]
668 -
669 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
670 -
671 - xx xx xx is the output frequency, the unit is HZ.
672 -
673 - yy is the duty cycle of the output, the unit is %.
674 -
675 - zz zz is the time delay of the output, the unit is ms.
676 -
677 -
678 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
679 -
680 -The oscilloscope displays as follows:
681 -
682 -[[image:image-20230817173858-5.png||height="694" width="921"]]
683 -
684 -
685 685  === 2.3.3  ​Decode payload ===
686 686  
687 -
688 688  While using TTN V3 network, you can add the payload format to decode the payload.
689 689  
690 690  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -691,14 +691,13 @@
691 691  
692 692  The payload decoder function for TTN V3 are here:
693 693  
694 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
695 695  
696 696  
697 697  ==== 2.3.3.1 Battery Info ====
698 698  
555 +Check the battery voltage for SN50v3.
699 699  
700 -Check the battery voltage for SN50v3-LB.
701 -
702 702  Ex1: 0x0B45 = 2885mV
703 703  
704 704  Ex2: 0x0B49 = 2889mV
... ... @@ -706,18 +706,16 @@
706 706  
707 707  ==== 2.3.3.2  Temperature (DS18B20) ====
708 708  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
709 709  
710 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
711 711  
712 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
713 713  
714 -(% style="color:blue" %)**Connection:**
715 -
716 716  [[image:image-20230512180718-8.png||height="538" width="647"]]
717 717  
572 +**Example**:
718 718  
719 -(% style="color:blue" %)**Example**:
720 -
721 721  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
722 722  
723 723  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -727,7 +727,6 @@
727 727  
728 728  ==== 2.3.3.3 Digital Input ====
729 729  
730 -
731 731  The digital input for pin PB15,
732 732  
733 733  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -735,65 +735,51 @@
735 735  
736 736  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
737 737  (((
738 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
739 -
740 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
741 -
742 -
590 +Note:The maximum voltage input supports 3.6V.
743 743  )))
744 744  
593 +(% class="wikigeneratedid" %)
745 745  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
746 746  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
747 747  
748 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
749 -
750 750  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
751 751  
752 752  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
753 753  
754 754  
755 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
756 -
757 -
758 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
759 -
760 -[[image:image-20230811113449-1.png||height="370" width="608"]]
761 -
762 762  ==== 2.3.3.5 Digital Interrupt ====
763 763  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
764 764  
765 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
607 +**~ Interrupt connection method:**
766 766  
767 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
768 768  
769 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
770 770  
771 -
772 -(% style="color:blue" %)**Example to use with door sensor :**
773 -
774 774  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
775 775  
776 776  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
777 777  
778 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
779 779  
619 +**~ Below is the installation example:**
780 780  
781 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
782 782  
783 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
784 -
785 785  * (((
786 -One pin to SN50v3-LB's PA8 pin
624 +One pin to LSN50's PB14 pin
787 787  )))
788 788  * (((
789 -The other pin to SN50v3-LB's VDD pin
627 +The other pin to LSN50's VCC pin
790 790  )))
791 791  
792 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
793 793  
794 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
795 795  
796 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
797 797  
798 798  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
799 799  
... ... @@ -803,33 +803,29 @@
803 803  
804 804  The command is:
805 805  
806 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
807 807  
808 808  Below shows some screen captures in TTN V3:
809 809  
810 810  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
811 811  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
812 812  
813 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
814 -
815 815  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
816 816  
817 817  
818 818  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
819 819  
820 -
821 821  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
822 822  
823 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
824 824  
825 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
826 826  
827 -
828 828  Below is the connection to SHT20/ SHT31. The connection is as below:
829 829  
830 -[[image:image-20230610170152-2.png||height="501" width="846"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
831 831  
832 -
833 833  The device will be able to get the I2C sensor data now and upload to IoT Server.
834 834  
835 835  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -847,26 +847,20 @@
847 847  
848 848  ==== 2.3.3.7  ​Distance Reading ====
849 849  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
850 850  
851 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
852 852  
853 -
854 854  ==== 2.3.3.8 Ultrasonic Sensor ====
855 855  
856 -
857 857  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
858 858  
859 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
860 860  
861 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
862 -
863 863  The picture below shows the connection:
864 864  
865 -[[image:image-20230512173903-6.png||height="596" width="715"]]
866 866  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
867 867  
868 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
869 -
870 870  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
871 871  
872 872  **Example:**
... ... @@ -873,72 +873,50 @@
873 873  
874 874  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
875 875  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
876 876  
877 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
878 878  
708 +You can see the serial output in ULT mode as below:
879 879  
880 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
881 881  
712 +**In TTN V3 server:**
882 882  
883 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
884 884  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
885 885  
886 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
887 887  
888 -The 5V output time can be controlled by AT Command.
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
889 889  
890 -(% style="color:blue" %)**AT+5VT=1000**
891 891  
892 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
723 +==== 2.3.3.10  +5V Output ====
893 893  
894 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
895 895  
727 +The 5V output time can be controlled by AT Command.
896 896  
897 -==== 2.3.3.11  BH1750 Illumination Sensor ====
729 +**AT+5VT=1000**
898 898  
731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
899 899  
900 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
901 901  
902 -[[image:image-20230512172447-4.png||height="416" width="712"]]
903 903  
904 904  
905 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
737 +==== 2.3.3.11  BH1750 Illumination Sensor ====
906 906  
739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
907 907  
908 -==== 2.3.3.12  PWM MOD ====
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
909 909  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
910 910  
911 -* (((
912 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
913 -)))
914 -* (((
915 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
916 -)))
917 917  
918 - [[image:image-20230817183249-3.png||height="320" width="417"]]
746 +==== 2.3.3.12  Working MOD ====
919 919  
920 -* (((
921 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
922 -)))
923 -* (((
924 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
925 -)))
926 -* (((
927 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
928 -
929 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930 -
931 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
932 -
933 -b) If the output duration is more than 30 seconds, better to use external power source. 
934 -
935 -
936 -
937 -)))
938 -
939 -==== 2.3.3.13  Working MOD ====
940 -
941 -
942 942  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
943 943  
944 944  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -951,10 +951,6 @@
951 951  * 3: MOD4
952 952  * 4: MOD5
953 953  * 5: MOD6
954 -* 6: MOD7
955 -* 7: MOD8
956 -* 8: MOD9
957 -* 9: MOD10
958 958  
959 959  == 2.4 Payload Decoder file ==
960 960  
... ... @@ -963,9 +963,10 @@
963 963  
964 964  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
965 965  
966 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
967 967  
968 968  
771 +
969 969  == 2.5 Frequency Plans ==
970 970  
971 971  
... ... @@ -1001,7 +1001,7 @@
1001 1001  == 3.3 Commands special design for SN50v3-LB ==
1002 1002  
1003 1003  
1004 -These commands only valid for SN50v3-LB, as below:
807 +These commands only valid for S31x-LB, as below:
1005 1005  
1006 1006  
1007 1007  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1012,7 +1012,7 @@
1012 1012  (% style="color:blue" %)**AT Command: AT+TDC**
1013 1013  
1014 1014  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1015 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1016 1016  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1017 1017  30000
1018 1018  OK
... ... @@ -1034,29 +1034,28 @@
1034 1034  
1035 1035  === 3.3.2 Get Device Status ===
1036 1036  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
1037 1037  
1038 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1039 1039  
1040 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1041 1041  
1042 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1043 1043  
847 +=== 3.3.7 Set Interrupt Mode ===
1044 1044  
1045 -=== 3.3.3 Set Interrupt Mode ===
1046 1046  
1047 -
1048 1048  Feature, Set Interrupt mode for GPIO_EXIT.
1049 1049  
1050 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1051 1051  
1052 1052  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1054 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1055 1055  0
1056 1056  OK
1057 1057  the mode is 0 =Disable Interrupt
1058 1058  )))
1059 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1060 1060  Set Transmit Interval
1061 1061  0. (Disable Interrupt),
1062 1062  ~1. (Trigger by rising and falling edge)
... ... @@ -1063,11 +1063,6 @@
1063 1063  2. (Trigger by falling edge)
1064 1064  3. (Trigger by rising edge)
1065 1065  )))|(% style="width:157px" %)OK
1066 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1067 -Set Transmit Interval
1068 -trigger by rising edge.
1069 -)))|(% style="width:157px" %)OK
1070 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1071 1071  
1072 1072  (% style="color:blue" %)**Downlink Command: 0x06**
1073 1073  
... ... @@ -1075,210 +1075,12 @@
1075 1075  
1076 1076  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1077 1077  
1078 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1079 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1080 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1081 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1082 1082  
1083 -=== 3.3.4 Set Power Output Duration ===
878 += 4. Battery & Power Consumption =
1084 1084  
1085 1085  
1086 -Control the output duration 5V . Before each sampling, device will
1087 -
1088 -~1. first enable the power output to external sensor,
1089 -
1090 -2. keep it on as per duration, read sensor value and construct uplink payload
1091 -
1092 -3. final, close the power output.
1093 -
1094 -(% style="color:blue" %)**AT Command: AT+5VT**
1095 -
1096 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1097 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1098 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1099 -500(default)
1100 -OK
1101 -)))
1102 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1103 -Close after a delay of 1000 milliseconds.
1104 -)))|(% style="width:157px" %)OK
1105 -
1106 -(% style="color:blue" %)**Downlink Command: 0x07**
1107 -
1108 -Format: Command Code (0x07) followed by 2 bytes.
1109 -
1110 -The first and second bytes are the time to turn on.
1111 -
1112 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1113 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1114 -
1115 -=== 3.3.5 Set Weighing parameters ===
1116 -
1117 -
1118 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1119 -
1120 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1121 -
1122 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1123 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1124 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1125 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1126 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1127 -
1128 -(% style="color:blue" %)**Downlink Command: 0x08**
1129 -
1130 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1131 -
1132 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1133 -
1134 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1135 -
1136 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1137 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1138 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1139 -
1140 -=== 3.3.6 Set Digital pulse count value ===
1141 -
1142 -
1143 -Feature: Set the pulse count value.
1144 -
1145 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1146 -
1147 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1148 -
1149 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1150 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1151 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1152 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1153 -
1154 -(% style="color:blue" %)**Downlink Command: 0x09**
1155 -
1156 -Format: Command Code (0x09) followed by 5 bytes.
1157 -
1158 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1159 -
1160 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1161 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1162 -
1163 -=== 3.3.7 Set Workmode ===
1164 -
1165 -
1166 -Feature: Switch working mode.
1167 -
1168 -(% style="color:blue" %)**AT Command: AT+MOD**
1169 -
1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1173 -OK
1174 -)))
1175 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1176 -OK
1177 -Attention:Take effect after ATZ
1178 -)))
1179 -
1180 -(% style="color:blue" %)**Downlink Command: 0x0A**
1181 -
1182 -Format: Command Code (0x0A) followed by 1 bytes.
1183 -
1184 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1185 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1186 -
1187 -(% id="H3.3.8PWMsetting" %)
1188 -=== 3.3.8 PWM setting ===
1189 -
1190 -
1191 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1192 -
1193 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1194 -
1195 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1198 -0(default)
1199 -
1200 -OK
1201 -)))
1202 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1203 -OK
1204 -
1205 -)))
1206 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1207 -
1208 -(% style="color:blue" %)**Downlink Command: 0x0C**
1209 -
1210 -Format: Command Code (0x0C) followed by 1 bytes.
1211 -
1212 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214 -
1215 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1216 -
1217 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1218 -
1219 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 -0,0,0(default)
1223 -
1224 -OK
1225 -)))
1226 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1227 -OK
1228 -
1229 -)))
1230 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1232 -
1233 -
1234 -)))|(% style="width:137px" %)(((
1235 -OK
1236 -)))
1237 -
1238 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 -AT+PWMOUT=a,b,c
1242 -
1243 -
1244 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1245 -Set PWM output time, output frequency and output duty cycle.
1246 -
1247 -(((
1248 -
1249 -)))
1250 -
1251 -(((
1252 -
1253 -)))
1254 -)))|(% style="width:242px" %)(((
1255 -a: Output time (unit: seconds)
1256 -
1257 -The value ranges from 0 to 65535.
1258 -
1259 -When a=65535, PWM will always output.
1260 -)))
1261 -|(% style="width:242px" %)(((
1262 -b: Output frequency (unit: HZ)
1263 -)))
1264 -|(% style="width:242px" %)(((
1265 -c: Output duty cycle (unit: %)
1266 -
1267 -The value ranges from 0 to 100.
1268 -)))
1269 -
1270 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1271 -
1272 -Format: Command Code (0x0B01) followed by 6 bytes.
1273 -
1274 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 -
1276 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1278 -
1279 -= 4. Battery & Power Cons =
1280 -
1281 -
1282 1282  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1283 1283  
1284 1284  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1288,43 +1288,28 @@
1288 1288  
1289 1289  
1290 1290  (% class="wikigeneratedid" %)
1291 -**User can change firmware SN50v3-LB to:**
890 +User can change firmware SN50v3-LB to:
1292 1292  
1293 1293  * Change Frequency band/ region.
1294 1294  * Update with new features.
1295 1295  * Fix bugs.
1296 1296  
1297 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1298 1298  
1299 -**Methods to Update Firmware:**
1300 1300  
1301 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1302 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
899 +Methods to Update Firmware:
1303 1303  
901 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
903 +
1304 1304  = 6. FAQ =
1305 1305  
1306 1306  == 6.1 Where can i find source code of SN50v3-LB? ==
1307 1307  
1308 -
1309 1309  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1310 1310  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1311 1311  
1312 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1313 1313  
1314 -
1315 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316 -
1317 -
1318 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1319 -
1320 -
1321 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 -
1323 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324 -
1325 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1326 -
1327 -
1328 1328  = 7. Order Info =
1329 1329  
1330 1330  
... ... @@ -1350,7 +1350,6 @@
1350 1350  
1351 1351  = 8. ​Packing Info =
1352 1352  
1353 -
1354 1354  (% style="color:#037691" %)**Package Includes**:
1355 1355  
1356 1356  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1366,5 +1366,4 @@
1366 1366  
1367 1367  
1368 1368  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1369 -
1370 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0