Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -3,7 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents :**6 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -88,7 +88,7 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] [[image:image-20231231203148-2.png||height="456" width="316"]]92 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 92 92 93 93 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -127,19 +127,14 @@ 127 127 128 128 == 1.8 Mechanical == 129 129 130 -=== 1.8.1 for LB version === 131 131 132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]134 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 135 - 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 -=== 1.8.2 for LS version === 139 139 140 -[[image:image-20231231203439-3.png||height="385" width="886"]] 141 - 142 - 143 143 == 1.9 Hole Option == 144 144 145 145 ... ... @@ -231,33 +231,33 @@ 231 231 232 232 (% style="color:#037691" %)**Frequency Band**: 233 233 234 -0x01: EU868 230 +*0x01: EU868 235 235 236 -0x02: US915 232 +*0x02: US915 237 237 238 -0x03: IN865 234 +*0x03: IN865 239 239 240 -0x04: AU915 236 +*0x04: AU915 241 241 242 -0x05: KZ865 238 +*0x05: KZ865 243 243 244 -0x06: RU864 240 +*0x06: RU864 245 245 246 -0x07: AS923 242 +*0x07: AS923 247 247 248 -0x08: AS923-1 244 +*0x08: AS923-1 249 249 250 -0x09: AS923-2 246 +*0x09: AS923-2 251 251 252 -0x0a: AS923-3 248 +*0x0a: AS923-3 253 253 254 -0x0b: CN470 250 +*0x0b: CN470 255 255 256 -0x0c: EU433 252 +*0x0c: EU433 257 257 258 -0x0d: KR920 254 +*0x0d: KR920 259 259 260 -0x0e: MA869 256 +*0x0e: MA869 261 261 262 262 263 263 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -333,8 +333,9 @@ 333 333 )))|(% style="width:189px" %)((( 334 334 Digital in(PB15) & Digital Interrupt(PA8) 335 335 )))|(% style="width:208px" %)((( 336 -Distance measure by: 1) LIDAR-Lite V3HP 337 -Or 2) Ultrasonic Sensor 332 +Distance measure by:1) LIDAR-Lite V3HP 333 +Or 334 +2) Ultrasonic Sensor 338 338 )))|(% style="width:117px" %)Reserved 339 339 340 340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -364,7 +364,8 @@ 364 364 ADC(PA4) 365 365 )))|(% style="width:323px" %)((( 366 366 Distance measure by:1)TF-Mini plus LiDAR 367 -Or 2) TF-Luna LiDAR 364 +Or 365 +2) TF-Luna LiDAR 368 368 )))|(% style="width:188px" %)Distance signal strength 369 369 370 370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -381,7 +381,7 @@ 381 381 382 382 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 383 383 384 -[[image:image-20230 610170047-1.png||height="452" width="799"]]382 +[[image:image-20230513105207-4.png||height="469" width="802"]] 385 385 386 386 387 387 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -471,6 +471,7 @@ 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 472 472 473 473 472 + 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 476 ... ... @@ -583,105 +583,6 @@ 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 586 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 587 - 588 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 589 - 590 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 591 - 592 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 593 - 594 - 595 -===== 2.3.2.10.a Uplink, PWM input capture ===== 596 - 597 - 598 -[[image:image-20230817172209-2.png||height="439" width="683"]] 599 - 600 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 601 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 602 -|Value|Bat|(% style="width:191px" %)((( 603 -Temperature(DS18B20)(PC13) 604 -)))|(% style="width:78px" %)((( 605 -ADC(PA4) 606 -)))|(% style="width:135px" %)((( 607 -PWM_Setting 608 -&Digital Interrupt(PA8) 609 -)))|(% style="width:70px" %)((( 610 -Pulse period 611 -)))|(% style="width:89px" %)((( 612 -Duration of high level 613 -))) 614 - 615 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 616 - 617 - 618 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 619 - 620 -**Frequency:** 621 - 622 -(% class="MsoNormal" %) 623 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 624 - 625 -(% class="MsoNormal" %) 626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 627 - 628 - 629 -(% class="MsoNormal" %) 630 -**Duty cycle:** 631 - 632 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 633 - 634 -[[image:image-20230818092200-1.png||height="344" width="627"]] 635 - 636 -===== 2.3.2.10.b Uplink, PWM output ===== 637 - 638 -[[image:image-20230817172209-2.png||height="439" width="683"]] 639 - 640 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 641 - 642 -a is the time delay of the output, the unit is ms. 643 - 644 -b is the output frequency, the unit is HZ. 645 - 646 -c is the duty cycle of the output, the unit is %. 647 - 648 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 649 - 650 -aa is the time delay of the output, the unit is ms. 651 - 652 -bb is the output frequency, the unit is HZ. 653 - 654 -cc is the duty cycle of the output, the unit is %. 655 - 656 - 657 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 658 - 659 -The oscilloscope displays as follows: 660 - 661 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 662 - 663 - 664 -===== 2.3.2.10.c Downlink, PWM output ===== 665 - 666 - 667 -[[image:image-20230817173800-3.png||height="412" width="685"]] 668 - 669 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 670 - 671 - xx xx xx is the output frequency, the unit is HZ. 672 - 673 - yy is the duty cycle of the output, the unit is %. 674 - 675 - zz zz is the time delay of the output, the unit is ms. 676 - 677 - 678 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 679 - 680 -The oscilloscope displays as follows: 681 - 682 -[[image:image-20230817173858-5.png||height="694" width="921"]] 683 - 684 - 685 685 === 2.3.3 Decode payload === 686 686 687 687 ... ... @@ -745,9 +745,9 @@ 745 745 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 746 746 747 747 748 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.648 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 749 749 750 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.650 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 751 751 752 752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 753 753 ... ... @@ -755,10 +755,6 @@ 755 755 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 756 756 757 757 758 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 759 - 760 -[[image:image-20230811113449-1.png||height="370" width="608"]] 761 - 762 762 ==== 2.3.3.5 Digital Interrupt ==== 763 763 764 764 ... ... @@ -827,7 +827,7 @@ 827 827 828 828 Below is the connection to SHT20/ SHT31. The connection is as below: 829 829 830 -[[image:image-20230 610170152-2.png||height="501" width="846"]]726 +[[image:image-20230513103633-3.png||height="448" width="716"]] 831 831 832 832 833 833 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -905,40 +905,9 @@ 905 905 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 906 906 907 907 908 -==== 2.3.3.12 PWMMOD ====804 +==== 2.3.3.12 Working MOD ==== 909 909 910 910 911 -* ((( 912 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 913 -))) 914 -* ((( 915 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 916 -))) 917 - 918 - [[image:image-20230817183249-3.png||height="320" width="417"]] 919 - 920 -* ((( 921 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 922 -))) 923 -* ((( 924 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 925 -))) 926 -* ((( 927 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 928 - 929 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 930 - 931 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 932 - 933 -b) If the output duration is more than 30 seconds, better to use external power source. 934 - 935 - 936 - 937 -))) 938 - 939 -==== 2.3.3.13 Working MOD ==== 940 - 941 - 942 942 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 943 943 944 944 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -954,7 +954,6 @@ 954 954 * 6: MOD7 955 955 * 7: MOD8 956 956 * 8: MOD9 957 -* 9: MOD10 958 958 959 959 == 2.4 Payload Decoder file == 960 960 ... ... @@ -1012,7 +1012,7 @@ 1012 1012 (% style="color:blue" %)**AT Command: AT+TDC** 1013 1013 1014 1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1015 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**879 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1016 1016 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1017 1017 30000 1018 1018 OK ... ... @@ -1050,7 +1050,7 @@ 1050 1050 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1051 1051 1052 1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1053 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1054 1054 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1055 1055 0 1056 1056 OK ... ... @@ -1094,7 +1094,7 @@ 1094 1094 (% style="color:blue" %)**AT Command: AT+5VT** 1095 1095 1096 1096 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1097 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1098 1098 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1099 1099 500(default) 1100 1100 OK ... ... @@ -1120,7 +1120,7 @@ 1120 1120 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1121 1121 1122 1122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1123 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1124 1124 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1125 1125 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1126 1126 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1147,7 +1147,7 @@ 1147 1147 (% style="color:blue" %)**AT Command: AT+SETCNT** 1148 1148 1149 1149 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1150 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1151 1151 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1152 1152 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1153 1153 ... ... @@ -1168,7 +1168,7 @@ 1168 1168 (% style="color:blue" %)**AT Command: AT+MOD** 1169 1169 1170 1170 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1172 1172 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1173 1173 OK 1174 1174 ))) ... ... @@ -1184,101 +1184,9 @@ 1184 1184 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1185 1185 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1186 1186 1187 -(% id="H3.3.8PWMsetting" %) 1188 -=== 3.3.8 PWM setting === 1051 += 4. Battery & Power Consumption = 1189 1189 1190 1190 1191 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1192 - 1193 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1194 - 1195 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1196 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1197 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1198 -0(default) 1199 - 1200 -OK 1201 -))) 1202 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1203 -OK 1204 - 1205 -))) 1206 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1207 - 1208 -(% style="color:blue" %)**Downlink Command: 0x0C** 1209 - 1210 -Format: Command Code (0x0C) followed by 1 bytes. 1211 - 1212 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1213 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1214 - 1215 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1216 - 1217 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1218 - 1219 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1220 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1221 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1222 -0,0,0(default) 1223 - 1224 -OK 1225 -))) 1226 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1227 -OK 1228 - 1229 -))) 1230 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1231 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1232 - 1233 - 1234 -)))|(% style="width:137px" %)((( 1235 -OK 1236 -))) 1237 - 1238 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1239 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1240 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1241 -AT+PWMOUT=a,b,c 1242 - 1243 - 1244 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1245 -Set PWM output time, output frequency and output duty cycle. 1246 - 1247 -((( 1248 - 1249 -))) 1250 - 1251 -((( 1252 - 1253 -))) 1254 -)))|(% style="width:242px" %)((( 1255 -a: Output time (unit: seconds) 1256 - 1257 -The value ranges from 0 to 65535. 1258 - 1259 -When a=65535, PWM will always output. 1260 -))) 1261 -|(% style="width:242px" %)((( 1262 -b: Output frequency (unit: HZ) 1263 -))) 1264 -|(% style="width:242px" %)((( 1265 -c: Output duty cycle (unit: %) 1266 - 1267 -The value ranges from 0 to 100. 1268 -))) 1269 - 1270 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1271 - 1272 -Format: Command Code (0x0B01) followed by 6 bytes. 1273 - 1274 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1275 - 1276 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1277 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1278 - 1279 -= 4. Battery & Power Cons = 1280 - 1281 - 1282 1282 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1283 1283 1284 1284 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1294,12 +1294,12 @@ 1294 1294 * Update with new features. 1295 1295 * Fix bugs. 1296 1296 1297 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/ 4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1298 1298 1299 1299 **Methods to Update Firmware:** 1300 1300 1301 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**1302 -* Update through UART TTL interface :**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.1073 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1074 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1303 1303 1304 1304 = 6. FAQ = 1305 1305 ... ... @@ -1309,22 +1309,6 @@ 1309 1309 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1310 1310 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1311 1311 1312 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1313 - 1314 - 1315 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1316 - 1317 - 1318 -== 6.3 How to put several sensors to a SN50v3-LB? == 1319 - 1320 - 1321 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1322 - 1323 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1324 - 1325 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1326 - 1327 - 1328 1328 = 7. Order Info = 1329 1329 1330 1330
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content