<
From version < 85.1 >
edited by Edwin Chen
on 2023/12/31 20:35
To version < 52.3 >
edited by Xiaoling
on 2023/06/12 10:34
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -3,7 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
6 +**Table of Contents**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -127,19 +127,14 @@
127 127  
128 128  == 1.8 Mechanical ==
129 129  
130 -=== 1.8.1 for LB version ===
131 131  
132 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
135 -
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 -=== 1.8.2 for LS version ===
139 139  
140 -[[image:image-20231231203439-3.png||height="385" width="886"]]
141 -
142 -
143 143  == 1.9 Hole Option ==
144 144  
145 145  
... ... @@ -231,33 +231,33 @@
231 231  
232 232  (% style="color:#037691" %)**Frequency Band**:
233 233  
234 -0x01: EU868
230 +*0x01: EU868
235 235  
236 -0x02: US915
232 +*0x02: US915
237 237  
238 -0x03: IN865
234 +*0x03: IN865
239 239  
240 -0x04: AU915
236 +*0x04: AU915
241 241  
242 -0x05: KZ865
238 +*0x05: KZ865
243 243  
244 -0x06: RU864
240 +*0x06: RU864
245 245  
246 -0x07: AS923
242 +*0x07: AS923
247 247  
248 -0x08: AS923-1
244 +*0x08: AS923-1
249 249  
250 -0x09: AS923-2
246 +*0x09: AS923-2
251 251  
252 -0x0a: AS923-3
248 +*0x0a: AS923-3
253 253  
254 -0x0b: CN470
250 +*0x0b: CN470
255 255  
256 -0x0c: EU433
252 +*0x0c: EU433
257 257  
258 -0x0d: KR920
254 +*0x0d: KR920
259 259  
260 -0x0e: MA869
256 +*0x0e: MA869
261 261  
262 262  
263 263  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -333,8 +333,9 @@
333 333  )))|(% style="width:189px" %)(((
334 334  Digital in(PB15) & Digital Interrupt(PA8)
335 335  )))|(% style="width:208px" %)(((
336 -Distance measure by: 1) LIDAR-Lite V3HP
337 -Or 2) Ultrasonic Sensor
332 +Distance measure by:1) LIDAR-Lite V3HP
333 +Or
334 +2) Ultrasonic Sensor
338 338  )))|(% style="width:117px" %)Reserved
339 339  
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -364,7 +364,8 @@
364 364  ADC(PA4)
365 365  )))|(% style="width:323px" %)(((
366 366  Distance measure by:1)TF-Mini plus LiDAR
367 -Or 2) TF-Luna LiDAR
364 +Or 
365 +2) TF-Luna LiDAR
368 368  )))|(% style="width:188px" %)Distance signal  strength
369 369  
370 370  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -471,6 +471,7 @@
471 471  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472 472  
473 473  
472 +
474 474  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475 475  
476 476  
... ... @@ -583,105 +583,6 @@
583 583  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 585  
586 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
587 -
588 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589 -
590 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
591 -
592 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
593 -
594 -
595 -===== 2.3.2.10.a  Uplink, PWM input capture =====
596 -
597 -
598 -[[image:image-20230817172209-2.png||height="439" width="683"]]
599 -
600 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
602 -|Value|Bat|(% style="width:191px" %)(((
603 -Temperature(DS18B20)(PC13)
604 -)))|(% style="width:78px" %)(((
605 -ADC(PA4)
606 -)))|(% style="width:135px" %)(((
607 -PWM_Setting
608 -&Digital Interrupt(PA8)
609 -)))|(% style="width:70px" %)(((
610 -Pulse period
611 -)))|(% style="width:89px" %)(((
612 -Duration of high level
613 -)))
614 -
615 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
616 -
617 -
618 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
619 -
620 -**Frequency:**
621 -
622 -(% class="MsoNormal" %)
623 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
624 -
625 -(% class="MsoNormal" %)
626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
627 -
628 -
629 -(% class="MsoNormal" %)
630 -**Duty cycle:**
631 -
632 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
633 -
634 -[[image:image-20230818092200-1.png||height="344" width="627"]]
635 -
636 -===== 2.3.2.10.b  Uplink, PWM output =====
637 -
638 -[[image:image-20230817172209-2.png||height="439" width="683"]]
639 -
640 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
641 -
642 -a is the time delay of the output, the unit is ms.
643 -
644 -b is the output frequency, the unit is HZ.
645 -
646 -c is the duty cycle of the output, the unit is %.
647 -
648 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
649 -
650 -aa is the time delay of the output, the unit is ms.
651 -
652 -bb is the output frequency, the unit is HZ.
653 -
654 -cc is the duty cycle of the output, the unit is %.
655 -
656 -
657 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658 -
659 -The oscilloscope displays as follows:
660 -
661 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662 -
663 -
664 -===== 2.3.2.10.c  Downlink, PWM output =====
665 -
666 -
667 -[[image:image-20230817173800-3.png||height="412" width="685"]]
668 -
669 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
670 -
671 - xx xx xx is the output frequency, the unit is HZ.
672 -
673 - yy is the duty cycle of the output, the unit is %.
674 -
675 - zz zz is the time delay of the output, the unit is ms.
676 -
677 -
678 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
679 -
680 -The oscilloscope displays as follows:
681 -
682 -[[image:image-20230817173858-5.png||height="694" width="921"]]
683 -
684 -
685 685  === 2.3.3  ​Decode payload ===
686 686  
687 687  
... ... @@ -745,9 +745,9 @@
745 745  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
746 746  
747 747  
748 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
648 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
749 749  
750 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
650 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
751 751  
752 752  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
753 753  
... ... @@ -755,10 +755,6 @@
755 755  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
756 756  
757 757  
758 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
759 -
760 -[[image:image-20230811113449-1.png||height="370" width="608"]]
761 -
762 762  ==== 2.3.3.5 Digital Interrupt ====
763 763  
764 764  
... ... @@ -905,40 +905,9 @@
905 905  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
906 906  
907 907  
908 -==== 2.3.3.12  PWM MOD ====
804 +==== 2.3.3.12  Working MOD ====
909 909  
910 910  
911 -* (((
912 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
913 -)))
914 -* (((
915 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
916 -)))
917 -
918 - [[image:image-20230817183249-3.png||height="320" width="417"]]
919 -
920 -* (((
921 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
922 -)))
923 -* (((
924 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
925 -)))
926 -* (((
927 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
928 -
929 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930 -
931 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
932 -
933 -b) If the output duration is more than 30 seconds, better to use external power source. 
934 -
935 -
936 -
937 -)))
938 -
939 -==== 2.3.3.13  Working MOD ====
940 -
941 -
942 942  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
943 943  
944 944  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -954,7 +954,6 @@
954 954  * 6: MOD7
955 955  * 7: MOD8
956 956  * 8: MOD9
957 -* 9: MOD10
958 958  
959 959  == 2.4 Payload Decoder file ==
960 960  
... ... @@ -1184,101 +1184,9 @@
1184 1184  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1185 1185  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1186 1186  
1187 -(% id="H3.3.8PWMsetting" %)
1188 -=== 3.3.8 PWM setting ===
1051 += 4. Battery & Power Consumption =
1189 1189  
1190 1190  
1191 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1192 -
1193 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1194 -
1195 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1198 -0(default)
1199 -
1200 -OK
1201 -)))
1202 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1203 -OK
1204 -
1205 -)))
1206 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1207 -
1208 -(% style="color:blue" %)**Downlink Command: 0x0C**
1209 -
1210 -Format: Command Code (0x0C) followed by 1 bytes.
1211 -
1212 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214 -
1215 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1216 -
1217 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1218 -
1219 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 -0,0,0(default)
1223 -
1224 -OK
1225 -)))
1226 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1227 -OK
1228 -
1229 -)))
1230 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1232 -
1233 -
1234 -)))|(% style="width:137px" %)(((
1235 -OK
1236 -)))
1237 -
1238 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 -AT+PWMOUT=a,b,c
1242 -
1243 -
1244 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1245 -Set PWM output time, output frequency and output duty cycle.
1246 -
1247 -(((
1248 -
1249 -)))
1250 -
1251 -(((
1252 -
1253 -)))
1254 -)))|(% style="width:242px" %)(((
1255 -a: Output time (unit: seconds)
1256 -
1257 -The value ranges from 0 to 65535.
1258 -
1259 -When a=65535, PWM will always output.
1260 -)))
1261 -|(% style="width:242px" %)(((
1262 -b: Output frequency (unit: HZ)
1263 -)))
1264 -|(% style="width:242px" %)(((
1265 -c: Output duty cycle (unit: %)
1266 -
1267 -The value ranges from 0 to 100.
1268 -)))
1269 -
1270 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1271 -
1272 -Format: Command Code (0x0B01) followed by 6 bytes.
1273 -
1274 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 -
1276 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1278 -
1279 -= 4. Battery & Power Cons =
1280 -
1281 -
1282 1282  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1283 1283  
1284 1284  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1298,8 +1298,8 @@
1298 1298  
1299 1299  **Methods to Update Firmware:**
1300 1300  
1301 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1302 -* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1073 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1074 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1303 1303  
1304 1304  = 6. FAQ =
1305 1305  
... ... @@ -1309,22 +1309,6 @@
1309 1309  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1310 1310  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1311 1311  
1312 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1313 -
1314 -
1315 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316 -
1317 -
1318 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1319 -
1320 -
1321 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 -
1323 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324 -
1325 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1326 -
1327 -
1328 1328  = 7. Order Info =
1329 1329  
1330 1330  
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0