Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 19 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.E dwin1 +XWiki.Ellie - Content
-
... ... @@ -3,7 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents :**6 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -88,7 +88,7 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] [[image:image-20231231203148-2.png||height="456" width="316"]]94 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 92 92 93 93 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,27 +122,22 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 610163213-1.png||height="404" width="699"]]129 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == 129 129 130 -=== 1.8.1 for LB version === 131 131 135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@16751438 84058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]137 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 135 - 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 -=== 1.8.2 for LS version === 139 139 140 - [[image:image-20231231203439-3.png||height="385" width="886"]]142 +== Hole Option == 141 141 142 142 143 -== 1.9 Hole Option == 144 - 145 - 146 146 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 147 147 148 148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -155,7 +155,7 @@ 155 155 == 2.1 How it works == 156 156 157 157 158 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 159 159 160 160 161 161 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -163,7 +163,7 @@ 163 163 164 164 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 165 165 166 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 167 167 168 168 169 169 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -212,7 +212,7 @@ 212 212 === 2.3.1 Device Status, FPORT~=5 === 213 213 214 214 215 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.214 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 216 216 217 217 The Payload format is as below. 218 218 ... ... @@ -220,44 +220,44 @@ 220 220 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 221 221 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 222 222 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 223 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 222 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 224 224 225 225 Example parse in TTNv3 226 226 227 227 228 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 229 229 230 230 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 231 231 232 232 (% style="color:#037691" %)**Frequency Band**: 233 233 234 -0x01: EU868 233 +*0x01: EU868 235 235 236 -0x02: US915 235 +*0x02: US915 237 237 238 -0x03: IN865 237 +*0x03: IN865 239 239 240 -0x04: AU915 239 +*0x04: AU915 241 241 242 -0x05: KZ865 241 +*0x05: KZ865 243 243 244 -0x06: RU864 243 +*0x06: RU864 245 245 246 -0x07: AS923 245 +*0x07: AS923 247 247 248 -0x08: AS923-1 247 +*0x08: AS923-1 249 249 250 -0x09: AS923-2 249 +*0x09: AS923-2 251 251 252 -0x0a: AS923-3 251 +*0x0a: AS923-3 253 253 254 -0x0b: CN470 253 +*0x0b: CN470 255 255 256 -0x0c: EU433 255 +*0x0c: EU433 257 257 258 -0x0d: KR920 257 +*0x0d: KR920 259 259 260 -0x0e: MA869 259 +*0x0e: MA869 261 261 262 262 263 263 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -281,22 +281,20 @@ 281 281 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 282 282 283 283 284 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.283 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 285 285 286 286 For example: 287 287 288 - (% style="color:blue" %)**AT+MOD=2 **(%%)287 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 289 289 290 290 291 291 (% style="color:red" %) **Important Notice:** 292 292 293 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 292 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 293 +1. All modes share the same Payload Explanation from HERE. 294 +1. By default, the device will send an uplink message every 20 minutes. 294 294 295 -2. All modes share the same Payload Explanation from HERE. 296 296 297 -3. By default, the device will send an uplink message every 20 minutes. 298 - 299 - 300 300 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 301 301 302 302 ... ... @@ -304,7 +304,7 @@ 304 304 305 305 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 306 306 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 307 -|Value|Bat|(% style="width:191px" %)((( 304 +|**Value**|Bat|(% style="width:191px" %)((( 308 308 Temperature(DS18B20)(PC13) 309 309 )))|(% style="width:78px" %)((( 310 310 ADC(PA4) ... ... @@ -319,6 +319,7 @@ 319 319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 320 320 321 321 319 + 322 322 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 323 323 324 324 ... ... @@ -326,7 +326,7 @@ 326 326 327 327 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 328 328 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 329 -|Value|BAT|(% style="width:196px" %)((( 327 +|**Value**|BAT|(% style="width:196px" %)((( 330 330 Temperature(DS18B20)(PC13) 331 331 )))|(% style="width:87px" %)((( 332 332 ADC(PA4) ... ... @@ -333,8 +333,9 @@ 333 333 )))|(% style="width:189px" %)((( 334 334 Digital in(PB15) & Digital Interrupt(PA8) 335 335 )))|(% style="width:208px" %)((( 336 -Distance measure by: 1) LIDAR-Lite V3HP 337 -Or 2) Ultrasonic Sensor 334 +Distance measure by:1) LIDAR-Lite V3HP 335 +Or 336 +2) Ultrasonic Sensor 338 338 )))|(% style="width:117px" %)Reserved 339 339 340 340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -356,7 +356,7 @@ 356 356 357 357 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 358 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 359 -|Value|BAT|(% style="width:183px" %)((( 358 +|**Value**|BAT|(% style="width:183px" %)((( 360 360 Temperature(DS18B20)(PC13) 361 361 )))|(% style="width:173px" %)((( 362 362 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -364,7 +364,8 @@ 364 364 ADC(PA4) 365 365 )))|(% style="width:323px" %)((( 366 366 Distance measure by:1)TF-Mini plus LiDAR 367 -Or 2) TF-Luna LiDAR 366 +Or 367 +2) TF-Luna LiDAR 368 368 )))|(% style="width:188px" %)Distance signal strength 369 369 370 370 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -381,7 +381,7 @@ 381 381 382 382 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 383 383 384 -[[image:image-20230 610170047-1.png||height="452" width="799"]]384 +[[image:image-20230513105207-4.png||height="469" width="802"]] 385 385 386 386 387 387 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -393,7 +393,7 @@ 393 393 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 394 394 **Size(bytes)** 395 395 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 396 -|Value|(% style="width:68px" %)((( 396 +|**Value**|(% style="width:68px" %)((( 397 397 ADC1(PA4) 398 398 )))|(% style="width:75px" %)((( 399 399 ADC2(PA5) ... ... @@ -417,7 +417,7 @@ 417 417 418 418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 419 419 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 420 -|Value|BAT|(% style="width:186px" %)((( 420 +|**Value**|BAT|(% style="width:186px" %)((( 421 421 Temperature1(DS18B20)(PC13) 422 422 )))|(% style="width:82px" %)((( 423 423 ADC(PA4) ... ... @@ -428,10 +428,10 @@ 428 428 429 429 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 430 430 431 - 432 432 [[image:image-20230513134006-1.png||height="559" width="736"]] 433 433 434 434 434 + 435 435 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 436 436 437 437 ... ... @@ -439,8 +439,8 @@ 439 439 440 440 Each HX711 need to be calibrated before used. User need to do below two steps: 441 441 442 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.443 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.442 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 444 444 1. ((( 445 445 Weight has 4 bytes, the unit is g. 446 446 ... ... @@ -450,7 +450,7 @@ 450 450 451 451 For example: 452 452 453 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**453 +**AT+GETSENSORVALUE =0** 454 454 455 455 Response: Weight is 401 g 456 456 ... ... @@ -460,7 +460,7 @@ 460 460 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 461 461 **Size(bytes)** 462 462 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 463 -|Value|BAT|(% style="width:193px" %)((( 463 +|**Value**|BAT|(% style="width:193px" %)((( 464 464 Temperature(DS18B20)(PC13) 465 465 )))|(% style="width:85px" %)((( 466 466 ADC(PA4) ... ... @@ -471,6 +471,7 @@ 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 472 472 473 473 474 + 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 476 ... ... @@ -485,7 +485,7 @@ 485 485 486 486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 487 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 -|Value|BAT|(% style="width:256px" %)((( 489 +|**Value**|BAT|(% style="width:256px" %)((( 489 489 Temperature(DS18B20)(PC13) 490 490 )))|(% style="width:108px" %)((( 491 491 ADC(PA4) ... ... @@ -498,6 +498,7 @@ 498 498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 499 499 500 500 502 + 501 501 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 502 502 503 503 ... ... @@ -505,7 +505,7 @@ 505 505 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 506 **Size(bytes)** 507 507 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 508 -|Value|BAT|(% style="width:188px" %)((( 510 +|**Value**|BAT|(% style="width:188px" %)((( 509 509 Temperature(DS18B20) 510 510 (PC13) 511 511 )))|(% style="width:83px" %)((( ... ... @@ -524,7 +524,7 @@ 524 524 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 525 525 **Size(bytes)** 526 526 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 527 -|Value|BAT|(% style="width:207px" %)((( 529 +|**Value**|BAT|(% style="width:207px" %)((( 528 528 Temperature(DS18B20) 529 529 (PC13) 530 530 )))|(% style="width:94px" %)((( ... ... @@ -547,7 +547,7 @@ 547 547 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 548 548 **Size(bytes)** 549 549 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 550 -|Value|BAT|((( 552 +|**Value**|BAT|((( 551 551 Temperature 552 552 (DS18B20)(PC13) 553 553 )))|((( ... ... @@ -583,105 +583,6 @@ 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 586 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 587 - 588 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 589 - 590 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 591 - 592 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 593 - 594 - 595 -===== 2.3.2.10.a Uplink, PWM input capture ===== 596 - 597 - 598 -[[image:image-20230817172209-2.png||height="439" width="683"]] 599 - 600 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 601 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 602 -|Value|Bat|(% style="width:191px" %)((( 603 -Temperature(DS18B20)(PC13) 604 -)))|(% style="width:78px" %)((( 605 -ADC(PA4) 606 -)))|(% style="width:135px" %)((( 607 -PWM_Setting 608 -&Digital Interrupt(PA8) 609 -)))|(% style="width:70px" %)((( 610 -Pulse period 611 -)))|(% style="width:89px" %)((( 612 -Duration of high level 613 -))) 614 - 615 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 616 - 617 - 618 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 619 - 620 -**Frequency:** 621 - 622 -(% class="MsoNormal" %) 623 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 624 - 625 -(% class="MsoNormal" %) 626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 627 - 628 - 629 -(% class="MsoNormal" %) 630 -**Duty cycle:** 631 - 632 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 633 - 634 -[[image:image-20230818092200-1.png||height="344" width="627"]] 635 - 636 -===== 2.3.2.10.b Uplink, PWM output ===== 637 - 638 -[[image:image-20230817172209-2.png||height="439" width="683"]] 639 - 640 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 641 - 642 -a is the time delay of the output, the unit is ms. 643 - 644 -b is the output frequency, the unit is HZ. 645 - 646 -c is the duty cycle of the output, the unit is %. 647 - 648 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 649 - 650 -aa is the time delay of the output, the unit is ms. 651 - 652 -bb is the output frequency, the unit is HZ. 653 - 654 -cc is the duty cycle of the output, the unit is %. 655 - 656 - 657 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 658 - 659 -The oscilloscope displays as follows: 660 - 661 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 662 - 663 - 664 -===== 2.3.2.10.c Downlink, PWM output ===== 665 - 666 - 667 -[[image:image-20230817173800-3.png||height="412" width="685"]] 668 - 669 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 670 - 671 - xx xx xx is the output frequency, the unit is HZ. 672 - 673 - yy is the duty cycle of the output, the unit is %. 674 - 675 - zz zz is the time delay of the output, the unit is ms. 676 - 677 - 678 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 679 - 680 -The oscilloscope displays as follows: 681 - 682 -[[image:image-20230817173858-5.png||height="694" width="921"]] 683 - 684 - 685 685 === 2.3.3 Decode payload === 686 686 687 687 ... ... @@ -691,13 +691,13 @@ 691 691 692 692 The payload decoder function for TTN V3 are here: 693 693 694 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]597 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 695 695 696 696 697 697 ==== 2.3.3.1 Battery Info ==== 698 698 699 699 700 -Check the battery voltage for SN50v3 -LB.603 +Check the battery voltage for SN50v3. 701 701 702 702 Ex1: 0x0B45 = 2885mV 703 703 ... ... @@ -745,24 +745,19 @@ 745 745 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 746 746 747 747 748 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 749 749 750 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 751 751 752 752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 753 753 754 - 755 755 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 756 756 757 757 758 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 759 - 760 -[[image:image-20230811113449-1.png||height="370" width="608"]] 761 - 762 762 ==== 2.3.3.5 Digital Interrupt ==== 763 763 764 764 765 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 766 766 767 767 (% style="color:blue" %)** Interrupt connection method:** 768 768 ... ... @@ -775,18 +775,18 @@ 775 775 776 776 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 777 777 778 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 779 779 780 780 781 781 (% style="color:blue" %)**Below is the installation example:** 782 782 783 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 784 784 785 785 * ((( 786 -One pin to SN50v3 -LB's PA8 pin684 +One pin to SN50_v3's PA8 pin 787 787 ))) 788 788 * ((( 789 -The other pin to SN50v3 -LB's VDD pin687 +The other pin to SN50_v3's VDD pin 790 790 ))) 791 791 792 792 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -803,7 +803,7 @@ 803 803 804 804 The command is: 805 805 806 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 704 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 807 807 808 808 Below shows some screen captures in TTN V3: 809 809 ... ... @@ -810,7 +810,7 @@ 810 810 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 811 811 812 812 813 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:711 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 814 814 815 815 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 816 816 ... ... @@ -822,13 +822,12 @@ 822 822 823 823 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 824 824 825 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**723 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 826 826 827 - 828 828 Below is the connection to SHT20/ SHT31. The connection is as below: 829 829 830 -[[image:image-20230610170152-2.png||height="501" width="846"]] 831 831 728 +[[image:image-20230513103633-3.png||height="448" width="716"]] 832 832 833 833 The device will be able to get the I2C sensor data now and upload to IoT Server. 834 834 ... ... @@ -856,7 +856,7 @@ 856 856 857 857 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 858 858 859 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 860 860 861 861 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 862 862 ... ... @@ -865,7 +865,7 @@ 865 865 [[image:image-20230512173903-6.png||height="596" width="715"]] 866 866 867 867 868 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).765 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 869 869 870 870 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 871 871 ... ... @@ -877,13 +877,13 @@ 877 877 ==== 2.3.3.9 Battery Output - BAT pin ==== 878 878 879 879 880 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.777 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 881 881 882 882 883 883 ==== 2.3.3.10 +5V Output ==== 884 884 885 885 886 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.783 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 887 887 888 888 The 5V output time can be controlled by AT Command. 889 889 ... ... @@ -891,7 +891,7 @@ 891 891 892 892 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 893 893 894 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.791 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 895 895 896 896 897 897 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -905,40 +905,9 @@ 905 905 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 906 906 907 907 908 -==== 2.3.3.12 PWMMOD ====805 +==== 2.3.3.12 Working MOD ==== 909 909 910 910 911 -* ((( 912 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 913 -))) 914 -* ((( 915 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 916 -))) 917 - 918 - [[image:image-20230817183249-3.png||height="320" width="417"]] 919 - 920 -* ((( 921 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 922 -))) 923 -* ((( 924 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 925 -))) 926 -* ((( 927 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 928 - 929 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 930 - 931 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 932 - 933 -b) If the output duration is more than 30 seconds, better to use external power source. 934 - 935 - 936 - 937 -))) 938 - 939 -==== 2.3.3.13 Working MOD ==== 940 - 941 - 942 942 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 943 943 944 944 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -954,8 +954,8 @@ 954 954 * 6: MOD7 955 955 * 7: MOD8 956 956 * 8: MOD9 957 -* 9: MOD10 958 958 824 + 959 959 == 2.4 Payload Decoder file == 960 960 961 961 ... ... @@ -985,6 +985,7 @@ 985 985 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 986 986 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 987 987 854 + 988 988 == 3.2 General Commands == 989 989 990 990 ... ... @@ -1001,7 +1001,7 @@ 1001 1001 == 3.3 Commands special design for SN50v3-LB == 1002 1002 1003 1003 1004 -These commands only valid for S N50v3-LB, as below:871 +These commands only valid for S31x-LB, as below: 1005 1005 1006 1006 1007 1007 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1012,7 +1012,7 @@ 1012 1012 (% style="color:blue" %)**AT Command: AT+TDC** 1013 1013 1014 1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1015 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**882 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1016 1016 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1017 1017 30000 1018 1018 OK ... ... @@ -1032,14 +1032,15 @@ 1032 1032 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1033 1033 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1034 1034 902 + 1035 1035 === 3.3.2 Get Device Status === 1036 1036 1037 1037 1038 1038 Send a LoRaWAN downlink to ask the device to send its status. 1039 1039 1040 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **908 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1041 1041 1042 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.910 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1043 1043 1044 1044 1045 1045 === 3.3.3 Set Interrupt Mode === ... ... @@ -1050,7 +1050,7 @@ 1050 1050 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1051 1051 1052 1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1053 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**921 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1054 1054 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1055 1055 0 1056 1056 OK ... ... @@ -1080,6 +1080,7 @@ 1080 1080 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1081 1081 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1082 1082 951 + 1083 1083 === 3.3.4 Set Power Output Duration === 1084 1084 1085 1085 ... ... @@ -1094,7 +1094,7 @@ 1094 1094 (% style="color:blue" %)**AT Command: AT+5VT** 1095 1095 1096 1096 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1097 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**966 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1098 1098 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1099 1099 500(default) 1100 1100 OK ... ... @@ -1112,6 +1112,7 @@ 1112 1112 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1113 1113 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1114 1114 984 + 1115 1115 === 3.3.5 Set Weighing parameters === 1116 1116 1117 1117 ... ... @@ -1120,7 +1120,7 @@ 1120 1120 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1121 1121 1122 1122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1123 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**993 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1124 1124 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1125 1125 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1126 1126 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1137,6 +1137,7 @@ 1137 1137 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1138 1138 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1139 1139 1010 + 1140 1140 === 3.3.6 Set Digital pulse count value === 1141 1141 1142 1142 ... ... @@ -1147,7 +1147,7 @@ 1147 1147 (% style="color:blue" %)**AT Command: AT+SETCNT** 1148 1148 1149 1149 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1150 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1021 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1151 1151 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1152 1152 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1153 1153 ... ... @@ -1160,6 +1160,7 @@ 1160 1160 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1161 1161 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1162 1162 1034 + 1163 1163 === 3.3.7 Set Workmode === 1164 1164 1165 1165 ... ... @@ -1168,7 +1168,7 @@ 1168 1168 (% style="color:blue" %)**AT Command: AT+MOD** 1169 1169 1170 1170 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1043 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1172 1172 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1173 1173 OK 1174 1174 ))) ... ... @@ -1184,101 +1184,10 @@ 1184 1184 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1185 1185 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1186 1186 1187 -(% id="H3.3.8PWMsetting" %) 1188 -=== 3.3.8 PWM setting === 1189 1189 1060 += 4. Battery & Power Consumption = 1190 1190 1191 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1192 1192 1193 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1194 - 1195 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1196 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1197 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1198 -0(default) 1199 - 1200 -OK 1201 -))) 1202 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1203 -OK 1204 - 1205 -))) 1206 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1207 - 1208 -(% style="color:blue" %)**Downlink Command: 0x0C** 1209 - 1210 -Format: Command Code (0x0C) followed by 1 bytes. 1211 - 1212 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1213 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1214 - 1215 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1216 - 1217 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1218 - 1219 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1220 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1221 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1222 -0,0,0(default) 1223 - 1224 -OK 1225 -))) 1226 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1227 -OK 1228 - 1229 -))) 1230 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1231 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1232 - 1233 - 1234 -)))|(% style="width:137px" %)((( 1235 -OK 1236 -))) 1237 - 1238 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1239 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1240 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1241 -AT+PWMOUT=a,b,c 1242 - 1243 - 1244 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1245 -Set PWM output time, output frequency and output duty cycle. 1246 - 1247 -((( 1248 - 1249 -))) 1250 - 1251 -((( 1252 - 1253 -))) 1254 -)))|(% style="width:242px" %)((( 1255 -a: Output time (unit: seconds) 1256 - 1257 -The value ranges from 0 to 65535. 1258 - 1259 -When a=65535, PWM will always output. 1260 -))) 1261 -|(% style="width:242px" %)((( 1262 -b: Output frequency (unit: HZ) 1263 -))) 1264 -|(% style="width:242px" %)((( 1265 -c: Output duty cycle (unit: %) 1266 - 1267 -The value ranges from 0 to 100. 1268 -))) 1269 - 1270 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1271 - 1272 -Format: Command Code (0x0B01) followed by 6 bytes. 1273 - 1274 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1275 - 1276 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1277 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1278 - 1279 -= 4. Battery & Power Cons = 1280 - 1281 - 1282 1282 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1283 1283 1284 1284 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1288,19 +1288,21 @@ 1288 1288 1289 1289 1290 1290 (% class="wikigeneratedid" %) 1291 - **User can change firmware SN50v3-LB to:**1072 +User can change firmware SN50v3-LB to: 1292 1292 1293 1293 * Change Frequency band/ region. 1294 1294 * Update with new features. 1295 1295 * Fix bugs. 1296 1296 1297 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1078 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1298 1298 1299 -**Methods to Update Firmware:** 1300 1300 1301 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1302 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1081 +Methods to Update Firmware: 1303 1303 1083 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1084 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1085 + 1086 + 1304 1304 = 6. FAQ = 1305 1305 1306 1306 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1309,22 +1309,7 @@ 1309 1309 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1310 1310 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1311 1311 1312 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1313 1313 1314 - 1315 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1316 - 1317 - 1318 -== 6.3 How to put several sensors to a SN50v3-LB? == 1319 - 1320 - 1321 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1322 - 1323 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1324 - 1325 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1326 - 1327 - 1328 1328 = 7. Order Info = 1329 1329 1330 1330 ... ... @@ -1348,6 +1348,7 @@ 1348 1348 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1349 1349 * (% style="color:red" %)**NH**(%%): No Hole 1350 1350 1119 + 1351 1351 = 8. Packing Info = 1352 1352 1353 1353 ... ... @@ -1362,6 +1362,7 @@ 1362 1362 * Package Size / pcs : cm 1363 1363 * Weight / pcs : g 1364 1364 1134 + 1365 1365 = 9. Support = 1366 1366 1367 1367
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content