<
From version < 83.1 >
edited by Edwin Chen
on 2023/12/31 20:35
To version < 7.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Content
... ... @@ -1,9 +1,8 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
5 +**Table of Contents**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -16,20 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
32 +
30 30  == 1.2 ​Features ==
31 31  
32 -
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -122,7 +122,6 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,9 +135,8 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== 1.9 Hole Option ==
137 +== Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -145,12 +145,12 @@
145 145  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146 146  
147 147  
148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
146 += 2. Configure S31x-LB to connect to LoRaWAN network =
149 149  
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,14 +158,14 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
162 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
165 165  
166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
164 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
167 167  
168 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
166 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
169 169  
170 170  
171 171  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -192,10 +192,10 @@
192 192  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193 193  
194 194  
195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
193 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
196 196  
197 197  
198 -Press the button for 5 seconds to activate the SN50v3-LB.
196 +Press the button for 5 seconds to activate the S31x-LB.
199 199  
200 200  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201 201  
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
208 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,46 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
216 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
220 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
223 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
224 +
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
229 +*0x01: EU868
230 230  
231 -0x02: US915
231 +*0x02: US915
232 232  
233 -0x03: IN865
233 +*0x03: IN865
234 234  
235 -0x04: AU915
235 +*0x04: AU915
236 236  
237 -0x05: KZ865
237 +*0x05: KZ865
238 238  
239 -0x06: RU864
239 +*0x06: RU864
240 240  
241 -0x07: AS923
241 +*0x07: AS923
242 242  
243 -0x08: AS923-1
243 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
245 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
247 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
249 +*0x0b: CN470
250 250  
251 -0x0c: EU433
251 +*0x0c: EU433
252 252  
253 -0x0d: KR920
253 +*0x0d: KR920
254 254  
255 -0x0e: MA869
255 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -273,446 +273,41 @@
273 273  Ex2: 0x0B49 = 2889mV
274 274  
275 275  
276 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 +=== 2.3.2  Sensor Data. FPORT~=2 ===
277 277  
278 278  
279 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +Sensor Data is uplink via FPORT=2
280 280  
281 -For example:
282 -
283 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 -
285 -
286 -(% style="color:red" %) **Important Notice:**
287 -
288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
289 -
290 -2. All modes share the same Payload Explanation from HERE.
291 -
292 -3. By default, the device will send an uplink message every 20 minutes.
293 -
294 -
295 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
296 -
297 -
298 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299 -
300 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 -|Value|Bat|(% style="width:191px" %)(((
303 -Temperature(DS18B20)(PC13)
304 -)))|(% style="width:78px" %)(((
305 -ADC(PA4)
306 -)))|(% style="width:216px" %)(((
307 -Digital in(PB15)&Digital Interrupt(PA8)
308 -)))|(% style="width:308px" %)(((
309 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
310 -)))|(% style="width:154px" %)(((
311 -Humidity(SHT20 or SHT31)
312 -)))
313 -
314 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315 -
316 -
317 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318 -
319 -
320 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321 -
322 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 -|Value|BAT|(% style="width:196px" %)(((
325 -Temperature(DS18B20)(PC13)
326 -)))|(% style="width:87px" %)(((
327 -ADC(PA4)
328 -)))|(% style="width:189px" %)(((
329 -Digital in(PB15) & Digital Interrupt(PA8)
330 -)))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
332 -Or 2) Ultrasonic Sensor
333 -)))|(% style="width:117px" %)Reserved
334 -
335 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336 -
337 -
338 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339 -
340 -[[image:image-20230512173758-5.png||height="563" width="712"]]
341 -
342 -
343 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344 -
345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
346 -
347 -[[image:image-20230512173903-6.png||height="596" width="715"]]
348 -
349 -
350 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351 -
352 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 -|Value|BAT|(% style="width:183px" %)(((
355 -Temperature(DS18B20)(PC13)
356 -)))|(% style="width:173px" %)(((
357 -Digital in(PB15) & Digital Interrupt(PA8)
358 -)))|(% style="width:84px" %)(((
359 -ADC(PA4)
360 -)))|(% style="width:323px" %)(((
361 -Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
363 -)))|(% style="width:188px" %)Distance signal  strength
364 -
365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366 -
367 -
368 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 -
370 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
371 -
372 -[[image:image-20230512180609-7.png||height="555" width="802"]]
373 -
374 -
375 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 -
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 -
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
380 -
381 -
382 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383 -
384 -
385 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386 -
387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
281 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
282 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|Value|(% style="width:68px" %)(((
392 -ADC1(PA4)
393 -)))|(% style="width:75px" %)(((
394 -ADC2(PA5)
395 -)))|(((
396 -ADC3(PA8)
397 -)))|(((
398 -Digital Interrupt(PB15)
399 -)))|(% style="width:304px" %)(((
400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 -)))|(% style="width:163px" %)(((
402 -Humidity(SHT20 or SHT31)
403 -)))|(% style="width:53px" %)Bat
404 -
405 -[[image:image-20230513110214-6.png]]
406 -
407 -
408 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409 -
410 -
411 -This mode has total 11 bytes. As shown below:
412 -
413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|Value|BAT|(% style="width:186px" %)(((
416 -Temperature1(DS18B20)(PC13)
417 -)))|(% style="width:82px" %)(((
418 -ADC(PA4)
419 -)))|(% style="width:210px" %)(((
420 -Digital in(PB15) & Digital Interrupt(PA8) 
421 -)))|(% style="width:191px" %)Temperature2(DS18B20)
422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423 -
424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 -
426 -
427 -[[image:image-20230513134006-1.png||height="559" width="736"]]
428 -
429 -
430 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 -
432 -
433 -[[image:image-20230512164658-2.png||height="532" width="729"]]
434 -
435 -Each HX711 need to be calibrated before used. User need to do below two steps:
436 -
437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
439 -1. (((
440 -Weight has 4 bytes, the unit is g.
441 -
442 -
443 -
284 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
285 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
286 +[[Battery>>||anchor="HBattery:"]]
287 +)))|(% style="width:130px" %)(((
288 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
289 +)))|(% style="width:91px" %)(((
290 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
291 +)))|(% style="width:103px" %)(((
292 +[[Temperature>>||anchor="HTemperature:"]]
293 +)))|(% style="width:80px" %)(((
294 +[[Humidity>>||anchor="HHumidity:"]]
444 444  )))
445 445  
446 -For example:
297 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
447 447  
448 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
299 +Sensor Battery Level.
449 449  
450 -Response:  Weight is 401 g
451 -
452 -Check the response of this command and adjust the value to match the real value for thing.
453 -
454 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
456 -**Size(bytes)**
457 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 -|Value|BAT|(% style="width:193px" %)(((
459 -Temperature(DS18B20)(PC13)
460 -)))|(% style="width:85px" %)(((
461 -ADC(PA4)
462 -)))|(% style="width:186px" %)(((
463 -Digital in(PB15) & Digital Interrupt(PA8)
464 -)))|(% style="width:100px" %)Weight
465 -
466 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 -
468 -
469 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 -
471 -
472 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 -
474 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475 -
476 -[[image:image-20230512181814-9.png||height="543" width="697"]]
477 -
478 -
479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
480 -
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 -|Value|BAT|(% style="width:256px" %)(((
484 -Temperature(DS18B20)(PC13)
485 -)))|(% style="width:108px" %)(((
486 -ADC(PA4)
487 -)))|(% style="width:126px" %)(((
488 -Digital in(PB15)
489 -)))|(% style="width:145px" %)(((
490 -Count(PA8)
491 -)))
492 -
493 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494 -
495 -
496 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 -
498 -
499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 -**Size(bytes)**
502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|Value|BAT|(% style="width:188px" %)(((
504 -Temperature(DS18B20)
505 -(PC13)
506 -)))|(% style="width:83px" %)(((
507 -ADC(PA5)
508 -)))|(% style="width:184px" %)(((
509 -Digital Interrupt1(PA8)
510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
511 -
512 -[[image:image-20230513111203-7.png||height="324" width="975"]]
513 -
514 -
515 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 -
517 -
518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 -**Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|Value|BAT|(% style="width:207px" %)(((
523 -Temperature(DS18B20)
524 -(PC13)
525 -)))|(% style="width:94px" %)(((
526 -ADC1(PA4)
527 -)))|(% style="width:198px" %)(((
528 -Digital Interrupt(PB15)
529 -)))|(% style="width:84px" %)(((
530 -ADC2(PA5)
531 -)))|(% style="width:82px" %)(((
532 -ADC3(PA8)
533 -)))
534 -
535 -[[image:image-20230513111231-8.png||height="335" width="900"]]
536 -
537 -
538 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539 -
540 -
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 -**Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|Value|BAT|(((
546 -Temperature
547 -(DS18B20)(PC13)
548 -)))|(((
549 -Temperature2
550 -(DS18B20)(PB9)
551 -)))|(((
552 -Digital Interrupt
553 -(PB15)
554 -)))|(% style="width:193px" %)(((
555 -Temperature3
556 -(DS18B20)(PB8)
557 -)))|(% style="width:78px" %)(((
558 -Count1(PA8)
559 -)))|(% style="width:78px" %)(((
560 -Count2(PA4)
561 -)))
562 -
563 -[[image:image-20230513111255-9.png||height="341" width="899"]]
564 -
565 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566 -
567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568 -
569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570 -
571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572 -
573 -
574 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
575 -
576 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
577 -
578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 -
580 -
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -&Digital Interrupt(PA8)
604 -)))|(% style="width:70px" %)(((
605 -Pulse period
606 -)))|(% style="width:89px" %)(((
607 -Duration of high level
608 -)))
609 -
610 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
611 -
612 -
613 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 -
615 -**Frequency:**
616 -
617 -(% class="MsoNormal" %)
618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
619 -
620 -(% class="MsoNormal" %)
621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
622 -
623 -
624 -(% class="MsoNormal" %)
625 -**Duty cycle:**
626 -
627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 -
629 -[[image:image-20230818092200-1.png||height="344" width="627"]]
630 -
631 -===== 2.3.2.10.b  Uplink, PWM output =====
632 -
633 -[[image:image-20230817172209-2.png||height="439" width="683"]]
634 -
635 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
636 -
637 -a is the time delay of the output, the unit is ms.
638 -
639 -b is the output frequency, the unit is HZ.
640 -
641 -c is the duty cycle of the output, the unit is %.
642 -
643 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
644 -
645 -aa is the time delay of the output, the unit is ms.
646 -
647 -bb is the output frequency, the unit is HZ.
648 -
649 -cc is the duty cycle of the output, the unit is %.
650 -
651 -
652 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
653 -
654 -The oscilloscope displays as follows:
655 -
656 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
657 -
658 -
659 -===== 2.3.2.10.c  Downlink, PWM output =====
660 -
661 -
662 -[[image:image-20230817173800-3.png||height="412" width="685"]]
663 -
664 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
665 -
666 - xx xx xx is the output frequency, the unit is HZ.
667 -
668 - yy is the duty cycle of the output, the unit is %.
669 -
670 - zz zz is the time delay of the output, the unit is ms.
671 -
672 -
673 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
674 -
675 -The oscilloscope displays as follows:
676 -
677 -[[image:image-20230817173858-5.png||height="694" width="921"]]
678 -
679 -
680 -=== 2.3.3  ​Decode payload ===
681 -
682 -
683 -While using TTN V3 network, you can add the payload format to decode the payload.
684 -
685 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
686 -
687 -The payload decoder function for TTN V3 are here:
688 -
689 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
690 -
691 -
692 -==== 2.3.3.1 Battery Info ====
693 -
694 -
695 -Check the battery voltage for SN50v3-LB.
696 -
697 697  Ex1: 0x0B45 = 2885mV
698 698  
699 699  Ex2: 0x0B49 = 2889mV
700 700  
701 701  
702 -==== 2.3.3.2  Temperature (DS18B20) ====
703 703  
307 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
704 704  
705 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
309 +**Example**:
706 706  
707 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
708 -
709 -(% style="color:blue" %)**Connection:**
710 -
711 -[[image:image-20230512180718-8.png||height="538" width="647"]]
712 -
713 -
714 -(% style="color:blue" %)**Example**:
715 -
716 716  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
717 717  
718 718  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -720,261 +720,195 @@
720 720  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
721 721  
722 722  
723 -==== 2.3.3.3 Digital Input ====
318 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
724 724  
725 725  
726 -The digital input for pin PB15,
321 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
727 727  
728 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
729 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
730 730  
731 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
732 -(((
733 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
324 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
734 734  
735 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
736 736  
737 -
738 -)))
327 +**Example:**
739 739  
740 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
329 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
741 741  
331 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
742 742  
743 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
333 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
744 744  
745 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
335 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
746 746  
747 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
748 748  
338 +== 2.4 Payload Decoder file ==
749 749  
750 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
751 751  
341 +In TTN, use can add a custom payload so it shows friendly reading
752 752  
753 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
343 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
754 754  
755 -[[image:image-20230811113449-1.png||height="370" width="608"]]
345 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
756 756  
757 -==== 2.3.3.5 Digital Interrupt ====
758 758  
348 +== 2.5 Datalog Feature ==
759 759  
760 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
761 761  
762 -(% style="color:blue" %)** Interrupt connection method:**
351 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
763 763  
764 -[[image:image-20230513105351-5.png||height="147" width="485"]]
765 765  
354 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
766 766  
767 -(% style="color:blue" %)**Example to use with door sensor :**
768 768  
769 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
357 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
770 770  
771 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
359 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
360 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
772 772  
773 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
362 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
774 774  
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
775 775  
776 -(% style="color:blue" %)**Below is the installation example:**
366 +=== 2.5.2 Unix TimeStamp ===
777 777  
778 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
779 779  
780 -* (((
781 -One pin to SN50v3-LB's PA8 pin
782 -)))
783 -* (((
784 -The other pin to SN50v3-LB's VDD pin
785 -)))
369 +S31x-LB uses Unix TimeStamp format based on
786 786  
787 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
371 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
788 788  
789 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
373 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
790 790  
791 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
375 +Below is the converter example
792 792  
793 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
794 794  
795 -The above photos shows the two parts of the magnetic switch fitted to a door.
379 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
796 796  
797 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
798 798  
799 -The command is:
382 +=== 2.5.3 Set Device Time ===
800 800  
801 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
802 802  
803 -Below shows some screen captures in TTN V3:
385 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
804 804  
805 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
387 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
806 806  
389 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
807 807  
808 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
809 809  
810 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
392 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
811 811  
812 812  
813 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
395 +The Datalog uplinks will use below payload format.
814 814  
397 +**Retrieval data payload:**
815 815  
816 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
399 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
400 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
401 +**Size(bytes)**
402 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
403 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
404 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
405 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
817 817  
818 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
407 +**Poll message flag & Ext:**
819 819  
820 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
409 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
821 821  
411 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
822 822  
823 -Below is the connection to SHT20/ SHT31. The connection is as below:
413 +**Poll Message Flag**: 1: This message is a poll message reply.
824 824  
825 -[[image:image-20230610170152-2.png||height="501" width="846"]]
415 +* Poll Message Flag is set to 1.
826 826  
417 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
827 827  
828 -The device will be able to get the I2C sensor data now and upload to IoT Server.
419 +For example, in US915 band, the max payload for different DR is:
829 829  
830 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
421 +**a) DR0:** max is 11 bytes so one entry of data
831 831  
832 -Convert the read byte to decimal and divide it by ten.
423 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
833 833  
834 -**Example:**
425 +**c) DR2:** total payload includes 11 entries of data
835 835  
836 -Temperature:  Read:0116(H) = 278(D Value 278 /10=27.8℃;
427 +**d) DR3: **total payload includes 22 entries of data.
837 837  
838 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
429 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
839 839  
840 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
841 841  
842 -
843 -==== 2.3.3.7  ​Distance Reading ====
844 -
845 -
846 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
847 -
848 -
849 -==== 2.3.3.8 Ultrasonic Sensor ====
850 -
851 -
852 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
853 -
854 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
855 -
856 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
857 -
858 -The picture below shows the connection:
859 -
860 -[[image:image-20230512173903-6.png||height="596" width="715"]]
861 -
862 -
863 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
864 -
865 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
866 -
867 867  **Example:**
868 868  
869 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
434 +If S31x-LB has below data inside Flash:
870 870  
436 +[[image:1682646494051-944.png]]
871 871  
872 -==== 2.3.3.9  Battery Output - BAT pin ====
438 +If user sends below downlink command: 3160065F9760066DA705
873 873  
440 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
874 874  
875 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
442 + Stop time: 60066DA7= time 21/1/19 05:27:03
876 876  
877 877  
878 -==== 2.3.3.1 +5V Output ====
445 +**S31x-LB will uplink this payload.**
879 879  
447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
880 880  
881 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
449 +(((
450 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
451 +)))
882 882  
883 -The 5V output time can be controlled by AT Command.
453 +(((
454 +Where the first 11 bytes is for the first entry:
455 +)))
884 884  
885 -(% style="color:blue" %)**AT+5VT=1000**
457 +(((
458 +7FFF089801464160065F97
459 +)))
886 886  
887 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
461 +(((
462 +**Ext sensor data**=0x7FFF/100=327.67
463 +)))
888 888  
889 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
465 +(((
466 +**Temp**=0x088E/100=22.00
467 +)))
890 890  
891 -
892 -==== 2.3.3.11  BH1750 Illumination Sensor ====
893 -
894 -
895 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
896 -
897 -[[image:image-20230512172447-4.png||height="416" width="712"]]
898 -
899 -
900 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
901 -
902 -
903 -==== 2.3.3.12  PWM MOD ====
904 -
905 -
906 -* (((
907 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
469 +(((
470 +**Hum**=0x014B/10=32.6
908 908  )))
909 -* (((
910 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
911 -)))
912 912  
913 - [[image:image-20230817183249-3.png||height="320" width="417"]]
914 -
915 -* (((
916 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
473 +(((
474 +**poll message flag & Ext**=0x41,means reply data,Ext=1
917 917  )))
918 -* (((
919 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
920 -)))
921 -* (((
922 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
923 923  
924 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
925 -
926 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
927 -
928 -b) If the output duration is more than 30 seconds, better to use external power source. 
929 -
930 -
931 -
477 +(((
478 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
932 932  )))
933 933  
934 -==== 2.3.3.13  Working MOD ====
935 935  
482 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
936 936  
937 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
484 +== 2.6 Temperature Alarm Feature ==
938 938  
939 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
940 940  
941 -Case 7^^th^^ Byte >> 2 & 0x1f:
487 +S31x-LB work flow with Alarm feature.
942 942  
943 -* 0: MOD1
944 -* 1: MOD2
945 -* 2: MOD3
946 -* 3: MOD4
947 -* 4: MOD5
948 -* 5: MOD6
949 -* 6: MOD7
950 -* 7: MOD8
951 -* 8: MOD9
952 -* 9: MOD10
953 953  
954 -== 2.4 Payload Decoder file ==
490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
955 955  
956 956  
957 -In TTN, use can add a custom payload so it shows friendly reading
493 +== 2.7 Frequency Plans ==
958 958  
959 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
960 960  
961 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
496 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
962 962  
963 -
964 -== 2.5 Frequency Plans ==
965 -
966 -
967 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
968 -
969 969  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
970 970  
971 971  
972 -= 3. Configure SN50v3-LB =
501 += 3. Configure S31x-LB =
973 973  
974 974  == 3.1 Configure Methods ==
975 975  
976 976  
977 -SN50v3-LB supports below configure method:
506 +S31x-LB supports below configure method:
978 978  
979 979  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
980 980  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -993,10 +993,10 @@
993 993  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
994 994  
995 995  
996 -== 3.3 Commands special design for SN50v3-LB ==
525 +== 3.3 Commands special design for S31x-LB ==
997 997  
998 998  
999 -These commands only valid for SN50v3-LB, as below:
528 +These commands only valid for S31x-LB, as below:
1000 1000  
1001 1001  
1002 1002  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1007,7 +1007,7 @@
1007 1007  (% style="color:blue" %)**AT Command: AT+TDC**
1008 1008  
1009 1009  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1010 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
539 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1011 1011  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1012 1012  30000
1013 1013  OK
... ... @@ -1030,252 +1030,120 @@
1030 1030  === 3.3.2 Get Device Status ===
1031 1031  
1032 1032  
1033 -Send a LoRaWAN downlink to ask the device to send its status.
562 +Send a LoRaWAN downlink to ask device send Alarm settings.
1034 1034  
1035 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
564 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1036 1036  
1037 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
566 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1038 1038  
1039 1039  
1040 -=== 3.3.3 Set Interrupt Mode ===
569 +=== 3.3.3 Set Temperature Alarm Threshold ===
1041 1041  
571 +* (% style="color:blue" %)**AT Command:**
1042 1042  
1043 -Feature, Set Interrupt mode for GPIO_EXIT.
573 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1044 1044  
1045 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
575 +* When min=0, and max≠0, Alarm higher than max
576 +* When min≠0, and max=0, Alarm lower than min
577 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1046 1046  
1047 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1048 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1049 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1050 -0
1051 -OK
1052 -the mode is 0 =Disable Interrupt
1053 -)))
1054 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1055 -Set Transmit Interval
1056 -0. (Disable Interrupt),
1057 -~1. (Trigger by rising and falling edge)
1058 -2. (Trigger by falling edge)
1059 -3. (Trigger by rising edge)
1060 -)))|(% style="width:157px" %)OK
1061 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1062 -Set Transmit Interval
1063 -trigger by rising edge.
1064 -)))|(% style="width:157px" %)OK
1065 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
579 +Example:
1066 1066  
1067 -(% style="color:blue" %)**Downlink Command: 0x06**
581 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1068 1068  
1069 -Format: Command Code (0x06) followed by 3 bytes.
583 +* (% style="color:blue" %)**Downlink Payload:**
1070 1070  
1071 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
585 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1072 1072  
1073 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1074 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1075 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1076 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
587 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1077 1077  
1078 -=== 3.3.4 Set Power Output Duration ===
1079 1079  
590 +=== 3.3.4 Set Humidity Alarm Threshold ===
1080 1080  
1081 -Control the output duration 5V . Before each sampling, device will
592 +* (% style="color:blue" %)**AT Command:**
1082 1082  
1083 -~1. first enable the power output to external sensor,
594 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1084 1084  
1085 -2. keep it on as per duration, read sensor value and construct uplink payload
596 +* When min=0, and max≠0, Alarm higher than max
597 +* When min≠0, and max=0, Alarm lower than min
598 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1086 1086  
1087 -3. final, close the power output.
600 +Example:
1088 1088  
1089 -(% style="color:blue" %)**AT Command: AT+5VT**
602 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1090 1090  
1091 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1093 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1094 -500(default)
1095 -OK
1096 -)))
1097 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1098 -Close after a delay of 1000 milliseconds.
1099 -)))|(% style="width:157px" %)OK
604 +* (% style="color:blue" %)**Downlink Payload:**
1100 1100  
1101 -(% style="color:blue" %)**Downlink Command: 0x07**
606 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1102 1102  
1103 -Format: Command Code (0x07) followed by 2 bytes.
608 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1104 1104  
1105 -The first and second bytes are the time to turn on.
1106 1106  
1107 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1108 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
611 +=== 3.3.5 Set Alarm Interval ===
1109 1109  
1110 -=== 3.3.5 Set Weighing parameters ===
613 +The shortest time of two Alarm packet. (unit: min)
1111 1111  
615 +* (% style="color:blue" %)**AT Command:**
1112 1112  
1113 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
617 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1114 1114  
1115 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
619 +* (% style="color:blue" %)**Downlink Payload:**
1116 1116  
1117 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1118 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1119 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1120 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1121 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
621 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1122 1122  
1123 -(% style="color:blue" %)**Downlink Command: 0x08**
1124 1124  
1125 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
624 +=== 3.3.6 Get Alarm settings ===
1126 1126  
1127 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1128 1128  
1129 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
627 +Send a LoRaWAN downlink to ask device send Alarm settings.
1130 1130  
1131 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1132 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1133 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
629 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1134 1134  
1135 -=== 3.3.6 Set Digital pulse count value ===
631 +**Example:**
1136 1136  
633 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1137 1137  
1138 -Feature: Set the pulse count value.
1139 1139  
1140 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
636 +**Explain:**
1141 1141  
1142 -(% style="color:blue" %)**AT Command: AT+SETCNT**
638 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1143 1143  
1144 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1145 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1146 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1147 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
640 +=== 3.3.7 Set Interrupt Mode ===
1148 1148  
1149 -(% style="color:blue" %)**Downlink Command: 0x09**
1150 1150  
1151 -Format: Command Code (0x09) followed by 5 bytes.
643 +Feature, Set Interrupt mode for GPIO_EXIT.
1152 1152  
1153 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
645 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1154 1154  
1155 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1156 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1157 -
1158 -=== 3.3.7 Set Workmode ===
1159 -
1160 -
1161 -Feature: Switch working mode.
1162 -
1163 -(% style="color:blue" %)**AT Command: AT+MOD**
1164 -
1165 1165  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1166 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1167 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
648 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
649 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
650 +0
1168 1168  OK
652 +the mode is 0 =Disable Interrupt
1169 1169  )))
1170 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1171 -OK
1172 -Attention:Take effect after ATZ
1173 -)))
654 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
655 +Set Transmit Interval
656 +0. (Disable Interrupt),
657 +~1. (Trigger by rising and falling edge)
658 +2. (Trigger by falling edge)
659 +3. (Trigger by rising edge)
660 +)))|(% style="width:157px" %)OK
1174 1174  
1175 -(% style="color:blue" %)**Downlink Command: 0x0A**
662 +(% style="color:blue" %)**Downlink Command: 0x06**
1176 1176  
1177 -Format: Command Code (0x0A) followed by 1 bytes.
664 +Format: Command Code (0x06) followed by 3 bytes.
1178 1178  
1179 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1180 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
666 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1181 1181  
1182 -(% id="H3.3.8PWMsetting" %)
1183 -=== 3.3.8 PWM setting ===
668 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
669 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1184 1184  
671 += 4. Battery & Power Consumption =
1185 1185  
1186 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1187 1187  
1188 -(% style="color:blue" %)**AT Command: AT+PWMSET**
674 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1189 1189  
1190 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1191 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1192 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1193 -0(default)
1194 -
1195 -OK
1196 -)))
1197 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1198 -OK
1199 -
1200 -)))
1201 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1202 -
1203 -(% style="color:blue" %)**Downlink Command: 0x0C**
1204 -
1205 -Format: Command Code (0x0C) followed by 1 bytes.
1206 -
1207 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1208 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1209 -
1210 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1211 -
1212 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1213 -
1214 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1216 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1217 -0,0,0(default)
1218 -
1219 -OK
1220 -)))
1221 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1222 -OK
1223 -
1224 -)))
1225 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1226 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1227 -
1228 -
1229 -)))|(% style="width:137px" %)(((
1230 -OK
1231 -)))
1232 -
1233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1235 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1236 -AT+PWMOUT=a,b,c
1237 -
1238 -
1239 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1240 -Set PWM output time, output frequency and output duty cycle.
1241 -
1242 -(((
1243 -
1244 -)))
1245 -
1246 -(((
1247 -
1248 -)))
1249 -)))|(% style="width:242px" %)(((
1250 -a: Output time (unit: seconds)
1251 -
1252 -The value ranges from 0 to 65535.
1253 -
1254 -When a=65535, PWM will always output.
1255 -)))
1256 -|(% style="width:242px" %)(((
1257 -b: Output frequency (unit: HZ)
1258 -)))
1259 -|(% style="width:242px" %)(((
1260 -c: Output duty cycle (unit: %)
1261 -
1262 -The value ranges from 0 to 100.
1263 -)))
1264 -
1265 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1266 -
1267 -Format: Command Code (0x0B01) followed by 6 bytes.
1268 -
1269 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1270 -
1271 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1272 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1273 -
1274 -= 4. Battery & Power Cons =
1275 -
1276 -
1277 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1278 -
1279 1279  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1280 1280  
1281 1281  
... ... @@ -1283,78 +1283,63 @@
1283 1283  
1284 1284  
1285 1285  (% class="wikigeneratedid" %)
1286 -**User can change firmware SN50v3-LB to:**
683 +User can change firmware S31x-LB to:
1287 1287  
1288 1288  * Change Frequency band/ region.
1289 1289  * Update with new features.
1290 1290  * Fix bugs.
1291 1291  
1292 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
689 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1293 1293  
1294 -**Methods to Update Firmware:**
1295 1295  
1296 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1297 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
692 +Methods to Update Firmware:
1298 1298  
694 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
695 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
696 +
1299 1299  = 6. FAQ =
1300 1300  
1301 -== 6.1 Where can i find source code of SN50v3-LB? ==
1302 1302  
1303 1303  
1304 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1305 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1306 -
1307 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1308 -
1309 -
1310 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1311 -
1312 -
1313 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1314 -
1315 -
1316 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1317 -
1318 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1319 -
1320 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1321 -
1322 -
1323 1323  = 7. Order Info =
1324 1324  
1325 1325  
1326 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
704 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1327 1327  
1328 1328  (% style="color:red" %)**XX**(%%): The default frequency band
1329 1329  
1330 1330  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
709 +
1331 1331  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
711 +
1332 1332  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
713 +
1333 1333  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
715 +
1334 1334  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
717 +
1335 1335  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
719 +
1336 1336  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
721 +
1337 1337  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1338 1338  
1339 -(% style="color:red" %)**YY: ** (%%)Hole Option
724 += =
1340 1340  
1341 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1342 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1343 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1344 -* (% style="color:red" %)**NH**(%%): No Hole
1345 -
1346 1346  = 8. ​Packing Info =
1347 1347  
1348 -
1349 1349  (% style="color:#037691" %)**Package Includes**:
1350 1350  
1351 -* SN50v3-LB LoRaWAN Generic Node
730 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1352 1352  
1353 1353  (% style="color:#037691" %)**Dimension and weight**:
1354 1354  
1355 1355  * Device Size: cm
735 +
1356 1356  * Device Weight: g
737 +
1357 1357  * Package Size / pcs : cm
739 +
1358 1358  * Weight / pcs : g
1359 1359  
1360 1360  = 9. Support =
... ... @@ -1361,5 +1361,4 @@
1361 1361  
1362 1362  
1363 1363  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1364 -
1365 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
746 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230511203450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -679.1 KB
Content
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0