<
From version < 82.1 >
edited by Edwin Chen
on 2023/12/31 20:32
To version < 73.1 >
edited by Saxer Lin
on 2023/08/18 09:50
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Saxer
Content
... ... @@ -3,7 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
6 +**Table of Contents**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -580,20 +580,17 @@
580 580  
581 581  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
588 588  
589 589  
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 -
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
593 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
594 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 597  |Value|Bat|(% style="width:191px" %)(((
598 598  Temperature(DS18B20)(PC13)
599 599  )))|(% style="width:78px" %)(((
... ... @@ -600,6 +600,7 @@
600 600  ADC(PA4)
601 601  )))|(% style="width:135px" %)(((
602 602  PWM_Setting
601 +
603 603  &Digital Interrupt(PA8)
604 604  )))|(% style="width:70px" %)(((
605 605  Pulse period
... ... @@ -612,53 +612,43 @@
612 612  
613 613  When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 614  
615 -**Frequency:**
614 +Frequency:
616 616  
617 617  (% class="MsoNormal" %)
618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,**
619 619  
620 -(% class="MsoNormal" %)
621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
619 +(((
620 +
622 622  
622 +(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
623 +)))
623 623  
624 624  (% class="MsoNormal" %)
625 -**Duty cycle:**
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,**
626 626  
627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 +(((
629 +
628 628  
629 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 +(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 +)))
630 630  
631 -===== 2.3.2.10.b  Uplink, PWM output =====
634 +(% class="MsoNormal" %)
635 +Duty cycle:
632 632  
633 -[[image:image-20230817172209-2.png||height="439" width="683"]]
637 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
634 634  
635 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
636 636  
637 -a is the time delay of the output, the unit is ms.
638 638  
639 -b is the output frequency, the unit is HZ.
641 +(((
642 +
643 +)))
640 640  
641 -c is the duty cycle of the output, the unit is %.
642 642  
643 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
646 +[[image:image-20230818092200-1.png||height="344" width="627"]]
644 644  
645 -aa is the time delay of the output, the unit is ms.
646 646  
647 -bb is the output frequency, the unit is HZ.
649 +===== 2.3.2.10.b  Downlink, PWM output =====
648 648  
649 -cc is the duty cycle of the output, the unit is %.
650 -
651 -
652 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
653 -
654 -The oscilloscope displays as follows:
655 -
656 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
657 -
658 -
659 -===== 2.3.2.10.c  Downlink, PWM output =====
660 -
661 -
662 662  [[image:image-20230817173800-3.png||height="412" width="685"]]
663 663  
664 664  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -916,18 +916,8 @@
916 916  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
917 917  )))
918 918  * (((
919 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
920 -)))
921 -* (((
922 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
908 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H3.3.8PWMsetting]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
923 923  
924 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
925 -
926 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
927 -
928 -b) If the output duration is more than 30 seconds, better to use external power source. 
929 -
930 -
931 931  
932 932  )))
933 933  
... ... @@ -1179,26 +1179,25 @@
1179 1179  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1180 1180  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1181 1181  
1182 -(% id="H3.3.8PWMsetting" %)
1161 +
1183 1183  === 3.3.8 PWM setting ===
1184 1184  
1164 +Feature: Set the time acquisition unit for PWM input capture.
1185 1185  
1186 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1187 -
1188 1188  (% style="color:blue" %)**AT Command: AT+PWMSET**
1189 1189  
1190 1190  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1191 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1192 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1169 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1170 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1193 1193  0(default)
1194 1194  
1195 1195  OK
1196 1196  )))
1197 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1175 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1198 1198  OK
1199 1199  
1200 1200  )))
1201 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1179 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1202 1202  
1203 1203  (% style="color:blue" %)**Downlink Command: 0x0C**
1204 1204  
... ... @@ -1207,73 +1207,9 @@
1207 1207  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1208 1208  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1209 1209  
1210 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1188 += 4. Battery & Power Consumption =
1211 1211  
1212 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1213 1213  
1214 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1216 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1217 -0,0,0(default)
1218 -
1219 -OK
1220 -)))
1221 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1222 -OK
1223 -
1224 -)))
1225 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1226 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1227 -
1228 -
1229 -)))|(% style="width:137px" %)(((
1230 -OK
1231 -)))
1232 -
1233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1235 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1236 -AT+PWMOUT=a,b,c
1237 -
1238 -
1239 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1240 -Set PWM output time, output frequency and output duty cycle.
1241 -
1242 -(((
1243 -
1244 -)))
1245 -
1246 -(((
1247 -
1248 -)))
1249 -)))|(% style="width:242px" %)(((
1250 -a: Output time (unit: seconds)
1251 -
1252 -The value ranges from 0 to 65535.
1253 -
1254 -When a=65535, PWM will always output.
1255 -)))
1256 -|(% style="width:242px" %)(((
1257 -b: Output frequency (unit: HZ)
1258 -)))
1259 -|(% style="width:242px" %)(((
1260 -c: Output duty cycle (unit: %)
1261 -
1262 -The value ranges from 0 to 100.
1263 -)))
1264 -
1265 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1266 -
1267 -Format: Command Code (0x0B01) followed by 6 bytes.
1268 -
1269 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1270 -
1271 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1272 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1273 -
1274 -= 4. Battery & Power Cons =
1275 -
1276 -
1277 1277  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1278 1278  
1279 1279  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0