Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230817183218-2.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Saxer - Content
-
... ... @@ -3,7 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents :**6 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -580,20 +580,15 @@ 580 580 581 581 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 582 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 588 589 - 590 590 ===== 2.3.2.10.a Uplink, PWM input capture ===== 591 591 592 - 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 515px" %)596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:9 0px" %)**2**594 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 595 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 597 |Value|Bat|(% style="width:191px" %)((( 598 598 Temperature(DS18B20)(PC13) 599 599 )))|(% style="width:78px" %)((( ... ... @@ -600,6 +600,7 @@ 600 600 ADC(PA4) 601 601 )))|(% style="width:135px" %)((( 602 602 PWM_Setting 602 + 603 603 &Digital Interrupt(PA8) 604 604 )))|(% style="width:70px" %)((( 605 605 Pulse period ... ... @@ -610,55 +610,15 @@ 610 610 [[image:image-20230817170702-1.png||height="161" width="1044"]] 611 611 612 612 613 - Whenthe device detectshefollowingPWMsignal,decoder willconverts thepulseperiod andhigh-leveldurationto frequencyandduty cycle.613 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0) ==> Corresponding downlink: 0B AA** 614 614 615 - **Frequency:**615 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 616 616 617 -(% class="MsoNormal" %) 618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 617 +When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 619 619 620 -(% class="MsoNormal" %) 621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 622 622 620 +===== 2.3.2.10.b Downlink, PWM output ===== 623 623 624 -(% class="MsoNormal" %) 625 -**Duty cycle:** 626 - 627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 - 629 -[[image:image-20230818092200-1.png||height="344" width="627"]] 630 - 631 -===== 2.3.2.10.b Uplink, PWM output ===== 632 - 633 -[[image:image-20230817172209-2.png||height="439" width="683"]] 634 - 635 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 636 - 637 -a is the time delay of the output, the unit is ms. 638 - 639 -b is the output frequency, the unit is HZ. 640 - 641 -c is the duty cycle of the output, the unit is %. 642 - 643 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 644 - 645 -aa is the time delay of the output, the unit is ms. 646 - 647 -bb is the output frequency, the unit is HZ. 648 - 649 -cc is the duty cycle of the output, the unit is %. 650 - 651 - 652 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 653 - 654 -The oscilloscope displays as follows: 655 - 656 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 657 - 658 - 659 -===== 2.3.2.10.c Downlink, PWM output ===== 660 - 661 - 662 662 [[image:image-20230817173800-3.png||height="412" width="685"]] 663 663 664 664 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -903,34 +903,6 @@ 903 903 ==== 2.3.3.12 PWM MOD ==== 904 904 905 905 906 -* ((( 907 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 908 -))) 909 -* ((( 910 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 911 -))) 912 - 913 - [[image:image-20230817183249-3.png||height="320" width="417"]] 914 - 915 -* ((( 916 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 917 -))) 918 -* ((( 919 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 920 -))) 921 -* ((( 922 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 923 - 924 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 925 - 926 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 927 - 928 -b) If the output duration is more than 30 seconds, better to use external power source. 929 - 930 - 931 - 932 -))) 933 - 934 934 ==== 2.3.3.13 Working MOD ==== 935 935 936 936 ... ... @@ -951,6 +951,7 @@ 951 951 * 8: MOD9 952 952 * 9: MOD10 953 953 886 + 954 954 == 2.4 Payload Decoder file == 955 955 956 956 ... ... @@ -980,6 +980,7 @@ 980 980 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 981 981 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 982 982 916 + 983 983 == 3.2 General Commands == 984 984 985 985 ... ... @@ -1027,6 +1027,7 @@ 1027 1027 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1028 1028 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1029 1029 964 + 1030 1030 === 3.3.2 Get Device Status === 1031 1031 1032 1032 ... ... @@ -1075,6 +1075,7 @@ 1075 1075 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1076 1076 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1077 1077 1013 + 1078 1078 === 3.3.4 Set Power Output Duration === 1079 1079 1080 1080 ... ... @@ -1107,6 +1107,7 @@ 1107 1107 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1108 1108 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1109 1109 1046 + 1110 1110 === 3.3.5 Set Weighing parameters === 1111 1111 1112 1112 ... ... @@ -1132,6 +1132,7 @@ 1132 1132 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1133 1133 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1134 1134 1072 + 1135 1135 === 3.3.6 Set Digital pulse count value === 1136 1136 1137 1137 ... ... @@ -1155,6 +1155,7 @@ 1155 1155 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1156 1156 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1157 1157 1096 + 1158 1158 === 3.3.7 Set Workmode === 1159 1159 1160 1160 ... ... @@ -1179,101 +1179,10 @@ 1179 1179 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1180 1180 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1181 1181 1182 -(% id="H3.3.8PWMsetting" %) 1183 -=== 3.3.8 PWM setting === 1184 1184 1122 += 4. Battery & Power Consumption = 1185 1185 1186 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1187 1187 1188 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1189 - 1190 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1191 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1192 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1193 -0(default) 1194 - 1195 -OK 1196 -))) 1197 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1198 -OK 1199 - 1200 -))) 1201 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1202 - 1203 -(% style="color:blue" %)**Downlink Command: 0x0C** 1204 - 1205 -Format: Command Code (0x0C) followed by 1 bytes. 1206 - 1207 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1208 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1209 - 1210 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1211 - 1212 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1213 - 1214 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1215 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1216 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1217 -0,0,0(default) 1218 - 1219 -OK 1220 -))) 1221 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1222 -OK 1223 - 1224 -))) 1225 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1226 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1227 - 1228 - 1229 -)))|(% style="width:137px" %)((( 1230 -OK 1231 -))) 1232 - 1233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1234 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1235 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1236 -AT+PWMOUT=a,b,c 1237 - 1238 - 1239 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1240 -Set PWM output time, output frequency and output duty cycle. 1241 - 1242 -((( 1243 - 1244 -))) 1245 - 1246 -((( 1247 - 1248 -))) 1249 -)))|(% style="width:242px" %)((( 1250 -a: Output time (unit: seconds) 1251 - 1252 -The value ranges from 0 to 65535. 1253 - 1254 -When a=65535, PWM will always output. 1255 -))) 1256 -|(% style="width:242px" %)((( 1257 -b: Output frequency (unit: HZ) 1258 -))) 1259 -|(% style="width:242px" %)((( 1260 -c: Output duty cycle (unit: %) 1261 - 1262 -The value ranges from 0 to 100. 1263 -))) 1264 - 1265 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1266 - 1267 -Format: Command Code (0x0B01) followed by 6 bytes. 1268 - 1269 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1270 - 1271 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1272 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1273 - 1274 -= 4. Battery & Power Cons = 1275 - 1276 - 1277 1277 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1278 1278 1279 1279 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1296,6 +1296,7 @@ 1296 1296 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1297 1297 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1298 1298 1147 + 1299 1299 = 6. FAQ = 1300 1300 1301 1301 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1304,6 +1304,7 @@ 1304 1304 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1305 1305 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1306 1306 1156 + 1307 1307 == 6.2 How to generate PWM Output in SN50v3-LB? == 1308 1308 1309 1309 ... ... @@ -1343,6 +1343,7 @@ 1343 1343 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1344 1344 * (% style="color:red" %)**NH**(%%): No Hole 1345 1345 1196 + 1346 1346 = 8. Packing Info = 1347 1347 1348 1348 ... ... @@ -1357,6 +1357,7 @@ 1357 1357 * Package Size / pcs : cm 1358 1358 * Weight / pcs : g 1359 1359 1211 + 1360 1360 = 9. Support = 1361 1361 1362 1362
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content