Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230817170702-1.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 11 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Saxer - Content
-
... ... @@ -3,7 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents :**6 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -40,6 +40,8 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 45 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,8 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 83 + 84 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -578,105 +578,6 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 -&Digital Interrupt(PA8) 604 -)))|(% style="width:70px" %)((( 605 -Pulse period 606 -)))|(% style="width:89px" %)((( 607 -Duration of high level 608 -))) 609 - 610 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 611 - 612 - 613 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 614 - 615 -**Frequency:** 616 - 617 -(% class="MsoNormal" %) 618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 619 - 620 -(% class="MsoNormal" %) 621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 622 - 623 - 624 -(% class="MsoNormal" %) 625 -**Duty cycle:** 626 - 627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 - 629 -[[image:image-20230818092200-1.png||height="344" width="627"]] 630 - 631 -===== 2.3.2.10.b Uplink, PWM output ===== 632 - 633 -[[image:image-20230817172209-2.png||height="439" width="683"]] 634 - 635 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 636 - 637 -a is the time delay of the output, the unit is ms. 638 - 639 -b is the output frequency, the unit is HZ. 640 - 641 -c is the duty cycle of the output, the unit is %. 642 - 643 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 644 - 645 -aa is the time delay of the output, the unit is ms. 646 - 647 -bb is the output frequency, the unit is HZ. 648 - 649 -cc is the duty cycle of the output, the unit is %. 650 - 651 - 652 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 653 - 654 -The oscilloscope displays as follows: 655 - 656 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 657 - 658 - 659 -===== 2.3.2.10.c Downlink, PWM output ===== 660 - 661 - 662 -[[image:image-20230817173800-3.png||height="412" width="685"]] 663 - 664 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 665 - 666 - xx xx xx is the output frequency, the unit is HZ. 667 - 668 - yy is the duty cycle of the output, the unit is %. 669 - 670 - zz zz is the time delay of the output, the unit is ms. 671 - 672 - 673 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 674 - 675 -The oscilloscope displays as follows: 676 - 677 -[[image:image-20230817173858-5.png||height="694" width="921"]] 678 - 679 - 680 680 === 2.3.3 Decode payload === 681 681 682 682 ... ... @@ -900,40 +900,9 @@ 900 900 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 901 901 902 902 903 -==== 2.3.3.12 PWMMOD ====811 +==== 2.3.3.12 Working MOD ==== 904 904 905 905 906 -* ((( 907 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 908 -))) 909 -* ((( 910 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 911 -))) 912 - 913 - [[image:image-20230817183249-3.png||height="320" width="417"]] 914 - 915 -* ((( 916 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 917 -))) 918 -* ((( 919 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 920 -))) 921 -* ((( 922 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 923 - 924 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 925 - 926 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 927 - 928 -b) If the output duration is more than 30 seconds, better to use external power source. 929 - 930 - 931 - 932 -))) 933 - 934 -==== 2.3.3.13 Working MOD ==== 935 - 936 - 937 937 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 938 938 939 939 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -949,8 +949,9 @@ 949 949 * 6: MOD7 950 950 * 7: MOD8 951 951 * 8: MOD9 952 -* 9: MOD10 953 953 830 + 831 + 954 954 == 2.4 Payload Decoder file == 955 955 956 956 ... ... @@ -980,6 +980,8 @@ 980 980 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 981 981 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 982 982 861 + 862 + 983 983 == 3.2 General Commands == 984 984 985 985 ... ... @@ -1027,6 +1027,8 @@ 1027 1027 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1028 1028 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1029 1029 910 + 911 + 1030 1030 === 3.3.2 Get Device Status === 1031 1031 1032 1032 ... ... @@ -1075,6 +1075,8 @@ 1075 1075 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1076 1076 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1077 1077 960 + 961 + 1078 1078 === 3.3.4 Set Power Output Duration === 1079 1079 1080 1080 ... ... @@ -1107,6 +1107,8 @@ 1107 1107 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1108 1108 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1109 1109 994 + 995 + 1110 1110 === 3.3.5 Set Weighing parameters === 1111 1111 1112 1112 ... ... @@ -1132,6 +1132,8 @@ 1132 1132 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1133 1133 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1134 1134 1021 + 1022 + 1135 1135 === 3.3.6 Set Digital pulse count value === 1136 1136 1137 1137 ... ... @@ -1155,6 +1155,8 @@ 1155 1155 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1156 1156 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1157 1157 1046 + 1047 + 1158 1158 === 3.3.7 Set Workmode === 1159 1159 1160 1160 ... ... @@ -1179,101 +1179,11 @@ 1179 1179 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1180 1180 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1181 1181 1182 -(% id="H3.3.8PWMsetting" %) 1183 -=== 3.3.8 PWM setting === 1184 1184 1185 1185 1186 - (% class="mark"%)Feature:Setthetime acquisitionnitfor PWMinputcapture.1074 += 4. Battery & Power Consumption = 1187 1187 1188 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1189 1189 1190 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1191 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1192 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1193 -0(default) 1194 - 1195 -OK 1196 -))) 1197 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1198 -OK 1199 - 1200 -))) 1201 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1202 - 1203 -(% style="color:blue" %)**Downlink Command: 0x0C** 1204 - 1205 -Format: Command Code (0x0C) followed by 1 bytes. 1206 - 1207 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1208 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1209 - 1210 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1211 - 1212 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1213 - 1214 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1215 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1216 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1217 -0,0,0(default) 1218 - 1219 -OK 1220 -))) 1221 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1222 -OK 1223 - 1224 -))) 1225 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1226 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1227 - 1228 - 1229 -)))|(% style="width:137px" %)((( 1230 -OK 1231 -))) 1232 - 1233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1234 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1235 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1236 -AT+PWMOUT=a,b,c 1237 - 1238 - 1239 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1240 -Set PWM output time, output frequency and output duty cycle. 1241 - 1242 -((( 1243 - 1244 -))) 1245 - 1246 -((( 1247 - 1248 -))) 1249 -)))|(% style="width:242px" %)((( 1250 -a: Output time (unit: seconds) 1251 - 1252 -The value ranges from 0 to 65535. 1253 - 1254 -When a=65535, PWM will always output. 1255 -))) 1256 -|(% style="width:242px" %)((( 1257 -b: Output frequency (unit: HZ) 1258 -))) 1259 -|(% style="width:242px" %)((( 1260 -c: Output duty cycle (unit: %) 1261 - 1262 -The value ranges from 0 to 100. 1263 -))) 1264 - 1265 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1266 - 1267 -Format: Command Code (0x0B01) followed by 6 bytes. 1268 - 1269 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1270 - 1271 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1272 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1273 - 1274 -= 4. Battery & Power Cons = 1275 - 1276 - 1277 1277 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1278 1278 1279 1279 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1296,6 +1296,8 @@ 1296 1296 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1297 1297 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1298 1298 1099 + 1100 + 1299 1299 = 6. FAQ = 1300 1300 1301 1301 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1304,6 +1304,8 @@ 1304 1304 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1305 1305 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1306 1306 1109 + 1110 + 1307 1307 == 6.2 How to generate PWM Output in SN50v3-LB? == 1308 1308 1309 1309 ... ... @@ -1343,6 +1343,8 @@ 1343 1343 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1344 1344 * (% style="color:red" %)**NH**(%%): No Hole 1345 1345 1150 + 1151 + 1346 1346 = 8. Packing Info = 1347 1347 1348 1348 ... ... @@ -1357,6 +1357,8 @@ 1357 1357 * Package Size / pcs : cm 1358 1358 * Weight / pcs : g 1359 1359 1166 + 1167 + 1360 1360 = 9. Support = 1361 1361 1362 1362
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content