<
From version < 8.1 >
edited by Edwin Chen
on 2023/05/11 20:37
To version < 43.54 >
edited by Xiaoling
on 2023/05/16 16:22
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20230511201248-1.png||height="403" width="489"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
4 4  
... ... @@ -15,23 +15,21 @@
15 15  
16 16  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
19 +
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -
21 21  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 22  
23 -
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 -
27 27  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -
30 30  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 31  
32 32  
33 33  == 1.2 ​Features ==
34 34  
33 +
35 35  * LoRaWAN 1.0.3 Class A
36 36  * Ultra-low power consumption
37 37  * Open-Source hardware/software
... ... @@ -42,8 +42,11 @@
42 42  * Downlink to change configure
43 43  * 8500mAh Battery for long term use
44 44  
44 +
45 +
45 45  == 1.3 Specification ==
46 46  
48 +
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -78,8 +78,11 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
83 +
84 +
81 81  == 1.4 Sleep mode and working mode ==
82 82  
87 +
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,6 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
132 +[[image:image-20230513102034-2.png]]
125 125  
126 126  
127 127  == 1.8 Mechanical ==
... ... @@ -136,6 +136,7 @@
136 136  
137 137  == Hole Option ==
138 138  
147 +
139 139  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
140 140  
141 141  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -143,12 +143,12 @@
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
144 144  
145 145  
146 -= 2. Configure S31x-LB to connect to LoRaWAN network =
155 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
147 147  
148 148  == 2.1 How it works ==
149 149  
150 150  
151 -The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 152  
153 153  
154 154  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -159,11 +159,11 @@
159 159  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 160  
161 161  
162 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
171 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
163 163  
164 -Each S31x-LB is shipped with a sticker with the default device EUI as below:
173 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
165 165  
166 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 167  
168 168  
169 169  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -190,10 +190,10 @@
190 190  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
191 191  
192 192  
193 -(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
202 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
194 194  
195 195  
196 -Press the button for 5 seconds to activate the S31x-LB.
205 +Press the button for 5 seconds to activate the SN50v3-LB.
197 197  
198 198  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
199 199  
... ... @@ -205,7 +205,7 @@
205 205  === 2.3.1 Device Status, FPORT~=5 ===
206 206  
207 207  
208 -Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
209 209  
210 210  The Payload format is as below.
211 211  
... ... @@ -217,11 +217,9 @@
217 217  
218 218  Example parse in TTNv3
219 219  
220 -[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
221 221  
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
224 -
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -273,41 +273,353 @@
273 273  Ex2: 0x0B49 = 2889mV
274 274  
275 275  
276 -=== 2.3.2  Sensor Data. FPORT~=2 ===
283 +=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -Sensor Data is uplink via FPORT=2
286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 280  
281 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
282 -|=(% style="width: 90px;background-color:#D9E2F3" %)(((
288 +For example:
289 +
290 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 +
292 +
293 +(% style="color:red" %) **Important Notice:**
294 +
295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 +1. All modes share the same Payload Explanation from HERE.
297 +1. By default, the device will send an uplink message every 20 minutes.
298 +
299 +
300 +
301 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 +
303 +
304 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
305 +
306 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
308 +|**Value**|Bat|(% style="width:191px" %)(((
309 +Temperature(DS18B20)(PC13)
310 +)))|(% style="width:78px" %)(((
311 +ADC(PA4)
312 +)))|(% style="width:216px" %)(((
313 +Digital in(PB15)&Digital Interrupt(PA8)
314 +)))|(% style="width:308px" %)(((
315 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 +)))|(% style="width:154px" %)(((
317 +Humidity(SHT20 or SHT31)
318 +)))
319 +
320 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 +
322 +
323 +
324 +==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 +
326 +
327 +This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 +
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 +|**Value**|BAT|(% style="width:196px" %)(((
332 +Temperature(DS18B20)(PC13)
333 +)))|(% style="width:87px" %)(((
334 +ADC(PA4)
335 +)))|(% style="width:189px" %)(((
336 +Digital in(PB15) & Digital Interrupt(PA8)
337 +)))|(% style="width:208px" %)(((
338 +Distance measure by:1) LIDAR-Lite V3HP
339 +Or
340 +2) Ultrasonic Sensor
341 +)))|(% style="width:117px" %)Reserved
342 +
343 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344 +
345 +
346 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
347 +
348 +[[image:image-20230512173758-5.png||height="563" width="712"]]
349 +
350 +
351 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352 +
353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
354 +
355 +[[image:image-20230512173903-6.png||height="596" width="715"]]
356 +
357 +
358 +For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 +
360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
362 +|**Value**|BAT|(% style="width:183px" %)(((
363 +Temperature(DS18B20)(PC13)
364 +)))|(% style="width:173px" %)(((
365 +Digital in(PB15) & Digital Interrupt(PA8)
366 +)))|(% style="width:84px" %)(((
367 +ADC(PA4)
368 +)))|(% style="width:323px" %)(((
369 +Distance measure by:1)TF-Mini plus LiDAR
370 +Or 
371 +2) TF-Luna LiDAR
372 +)))|(% style="width:188px" %)Distance signal  strength
373 +
374 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
375 +
376 +
377 +**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
378 +
379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
380 +
381 +[[image:image-20230512180609-7.png||height="555" width="802"]]
382 +
383 +
384 +**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
385 +
386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
387 +
388 +[[image:image-20230513105207-4.png||height="469" width="802"]]
389 +
390 +
391 +==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
392 +
393 +
394 +This mode has total 12 bytes. Include 3 x ADC + 1x I2C
395 +
396 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
397 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
283 283  **Size(bytes)**
284 -)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
285 -|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
286 -[[Battery>>||anchor="HBattery:"]]
287 -)))|(% style="width:130px" %)(((
288 -[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
289 -)))|(% style="width:91px" %)(((
290 -[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
291 -)))|(% style="width:103px" %)(((
292 -[[Temperature>>||anchor="HTemperature:"]]
293 -)))|(% style="width:80px" %)(((
294 -[[Humidity>>||anchor="HHumidity:"]]
399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 +|**Value**|(% style="width:68px" %)(((
401 +ADC1(PA4)
402 +)))|(% style="width:75px" %)(((
403 +ADC2(PA5)
404 +)))|(((
405 +ADC3(PA8)
406 +)))|(((
407 +Digital Interrupt(PB15)
408 +)))|(% style="width:304px" %)(((
409 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
410 +)))|(% style="width:163px" %)(((
411 +Humidity(SHT20 or SHT31)
412 +)))|(% style="width:53px" %)Bat
413 +
414 +[[image:image-20230513110214-6.png]]
415 +
416 +
417 +==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
418 +
419 +
420 +This mode has total 11 bytes. As shown below:
421 +
422 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
424 +|**Value**|BAT|(% style="width:186px" %)(((
425 +Temperature1(DS18B20)(PC13)
426 +)))|(% style="width:82px" %)(((
427 +ADC(PA4)
428 +)))|(% style="width:210px" %)(((
429 +Digital in(PB15) & Digital Interrupt(PA8) 
430 +)))|(% style="width:191px" %)Temperature2(DS18B20)
431 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
432 +
433 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
434 +
435 +[[image:image-20230513134006-1.png||height="559" width="736"]]
436 +
437 +
438 +
439 +==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
440 +
441 +
442 +[[image:image-20230512164658-2.png||height="532" width="729"]]
443 +
444 +Each HX711 need to be calibrated before used. User need to do below two steps:
445 +
446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 +1. (((
449 +Weight has 4 bytes, the unit is g.
450 +
451 +
452 +
295 295  )))
296 296  
297 -==== (% style="color:#4472c4" %)**Battery**(%%) ====
455 +For example:
298 298  
299 -Sensor Battery Level.
457 +**AT+GETSENSORVALUE =0**
300 300  
459 +Response:  Weight is 401 g
460 +
461 +Check the response of this command and adjust the value to match the real value for thing.
462 +
463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
465 +**Size(bytes)**
466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 +|**Value**|BAT|(% style="width:193px" %)(((
468 +Temperature(DS18B20)
469 +(PC13)
470 +)))|(% style="width:85px" %)(((
471 +ADC(PA4)
472 +)))|(% style="width:186px" %)(((
473 +Digital in(PB15) &
474 +Digital Interrupt(PA8)
475 +)))|(% style="width:100px" %)Weight
476 +
477 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478 +
479 +
480 +
481 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
482 +
483 +
484 +In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
485 +
486 +Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
487 +
488 +[[image:image-20230512181814-9.png||height="543" width="697"]]
489 +
490 +
491 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
492 +
493 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
494 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
495 +|**Value**|BAT|(% style="width:256px" %)(((
496 +Temperature(DS18B20)(PC13)
497 +)))|(% style="width:108px" %)(((
498 +ADC(PA4)
499 +)))|(% style="width:126px" %)(((
500 +Digital in(PB15)
501 +)))|(% style="width:145px" %)(((
502 +Count(PA8)
503 +)))
504 +
505 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
506 +
507 +
508 +
509 +==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
510 +
511 +
512 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
513 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
514 +**Size(bytes)**
515 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
516 +|**Value**|BAT|(% style="width:188px" %)(((
517 +Temperature(DS18B20)
518 +(PC13)
519 +)))|(% style="width:83px" %)(((
520 +ADC(PA5)
521 +)))|(% style="width:184px" %)(((
522 +Digital Interrupt1(PA8)
523 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
524 +
525 +[[image:image-20230513111203-7.png||height="324" width="975"]]
526 +
527 +
528 +==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
529 +
530 +
531 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
532 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
533 +**Size(bytes)**
534 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
535 +|**Value**|BAT|(% style="width:207px" %)(((
536 +Temperature(DS18B20)
537 +(PC13)
538 +)))|(% style="width:94px" %)(((
539 +ADC1(PA4)
540 +)))|(% style="width:198px" %)(((
541 +Digital Interrupt(PB15)
542 +)))|(% style="width:84px" %)(((
543 +ADC2(PA5)
544 +)))|(% style="width:82px" %)(((
545 +ADC3(PA8)
546 +)))
547 +
548 +[[image:image-20230513111231-8.png||height="335" width="900"]]
549 +
550 +
551 +==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
552 +
553 +
554 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
555 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
556 +**Size(bytes)**
557 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
558 +|**Value**|BAT|(((
559 +Temperature1(DS18B20)
560 +(PC13)
561 +)))|(((
562 +Temperature2(DS18B20)
563 +(PB9)
564 +)))|(((
565 +Digital Interrupt
566 +(PB15)
567 +)))|(% style="width:193px" %)(((
568 +Temperature3(DS18B20)
569 +(PB8)
570 +)))|(% style="width:78px" %)(((
571 +Count1(PA8)
572 +)))|(% style="width:78px" %)(((
573 +Count2(PA4)
574 +)))
575 +
576 +[[image:image-20230513111255-9.png||height="341" width="899"]]
577 +
578 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
579 +
580 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
581 +
582 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
583 +
584 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
585 +
586 +
587 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
588 +
589 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
590 +
591 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
592 +
593 +
594 +=== 2.3.3  ​Decode payload ===
595 +
596 +
597 +While using TTN V3 network, you can add the payload format to decode the payload.
598 +
599 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
600 +
601 +The payload decoder function for TTN V3 are here:
602 +
603 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
604 +
605 +
606 +==== 2.3.3.1 Battery Info ====
607 +
608 +
609 +Check the battery voltage for SN50v3.
610 +
301 301  Ex1: 0x0B45 = 2885mV
302 302  
303 303  Ex2: 0x0B49 = 2889mV
304 304  
305 305  
616 +==== 2.3.3.2  Temperature (DS18B20) ====
306 306  
307 -==== (% style="color:#4472c4" %)**Temperature**(%%) ====
308 308  
309 -**Example**:
619 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
310 310  
621 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
622 +
623 +(% style="color:blue" %)**Connection:**
624 +
625 +[[image:image-20230512180718-8.png||height="538" width="647"]]
626 +
627 +
628 +(% style="color:blue" %)**Example**:
629 +
311 311  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
312 312  
313 313  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -315,200 +315,232 @@
315 315  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
316 316  
317 317  
318 -==== (% style="color:#4472c4" %)**Humidity**(%%) ====
637 +==== 2.3.3.3 Digital Input ====
319 319  
320 320  
321 -Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
640 +The digital input for pin PB15,
322 322  
642 +* When PB15 is high, the bit 1 of payload byte 6 is 1.
643 +* When PB15 is low, the bit 1 of payload byte 6 is 0.
323 323  
324 -==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
645 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
646 +(((
647 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
325 325  
649 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
326 326  
327 -**Example:**
651 +
652 +)))
328 328  
329 -If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
654 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
330 330  
331 -If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
332 332  
333 -If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
657 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
334 334  
335 -If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
659 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
336 336  
661 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
337 337  
338 -== 2.4 Payload Decoder file ==
663 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
339 339  
340 340  
341 -In TTN, use can add a custom payload so it shows friendly reading
666 +==== 2.3.3.5 Digital Interrupt ====
342 342  
343 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
344 344  
345 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
669 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
346 346  
671 +(% style="color:blue" %)** Interrupt connection method:**
347 347  
348 -== 2.5 Datalog Feature ==
673 +[[image:image-20230513105351-5.png||height="147" width="485"]]
349 349  
350 350  
351 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
676 +(% style="color:blue" %)**Example to use with door sensor :**
352 352  
678 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
353 353  
354 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
680 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
355 355  
682 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
356 356  
357 -Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
358 358  
359 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
360 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
685 +(% style="color:blue" %)**Below is the installation example:**
361 361  
362 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
687 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
363 363  
364 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
689 +* (((
690 +One pin to SN50_v3's PA8 pin
691 +)))
692 +* (((
693 +The other pin to SN50_v3's VDD pin
694 +)))
365 365  
366 -=== 2.5.2 Unix TimeStamp ===
696 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
367 367  
698 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
368 368  
369 -S31x-LB uses Unix TimeStamp format based on
700 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
370 370  
371 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
702 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
372 372  
373 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
704 +The above photos shows the two parts of the magnetic switch fitted to a door.
374 374  
375 -Below is the converter example
706 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
376 376  
377 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
708 +The command is:
378 378  
379 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
710 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
380 380  
712 +Below shows some screen captures in TTN V3:
381 381  
382 -=== 2.5.3 Set Device Time ===
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
383 383  
384 384  
385 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
717 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
386 386  
387 -Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
719 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
388 388  
389 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
390 390  
722 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
391 391  
392 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
393 393  
725 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
394 394  
395 -The Datalog uplinks will use below payload format.
727 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
396 396  
397 -**Retrieval data payload:**
729 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
398 398  
399 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
400 -|=(% style="width: 80px;background-color:#D9E2F3" %)(((
401 -**Size(bytes)**
402 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
403 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
404 -[[Temp_Black>>||anchor="HTemperatureBlack:"]]
405 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
731 +Below is the connection to SHT20/ SHT31. The connection is as below:
406 406  
407 -**Poll message flag & Ext:**
408 408  
409 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
734 +[[image:image-20230513103633-3.png||height="448" width="716"]]
410 410  
411 -**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
736 +The device will be able to get the I2C sensor data now and upload to IoT Server.
412 412  
413 -**Poll Message Flag**: 1: This message is a poll message reply.
738 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
414 414  
415 -* Poll Message Flag is set to 1.
740 +Convert the read byte to decimal and divide it by ten.
416 416  
417 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
742 +**Example:**
418 418  
419 -For example, in US915 band, the max payload for different DR is:
744 +Temperature Read:0116(H) = 278(D Value:  278 /10=27.8℃;
420 420  
421 -**a) DR0:** max is 11 bytes so one entry of data
746 +Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
422 422  
423 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
748 +If you want to use other I2C device, please refer the SHT20 part source code as reference.
424 424  
425 -**c) DR2:** total payload includes 11 entries of data
426 426  
427 -**d) DR3: **total payload includes 22 entries of data.
751 +==== 2.3.3.7  ​Distance Reading ====
428 428  
429 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
430 430  
754 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
431 431  
756 +
757 +==== 2.3.3.8 Ultrasonic Sensor ====
758 +
759 +
760 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
761 +
762 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
763 +
764 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
765 +
766 +The picture below shows the connection:
767 +
768 +[[image:image-20230512173903-6.png||height="596" width="715"]]
769 +
770 +
771 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
772 +
773 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
774 +
432 432  **Example:**
433 433  
434 -If S31x-LB has below data inside Flash:
777 +Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
435 435  
436 -[[image:1682646494051-944.png]]
437 437  
438 -If user sends below downlink command: 3160065F9760066DA705
780 +==== 2.3.3.9  Battery Output - BAT pin ====
439 439  
440 -Where : Start time: 60065F97 = time 21/1/19 04:27:03
441 441  
442 - Stop time: 60066DA7= time 21/1/19 05:27:03
783 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
443 443  
444 444  
445 -**S31x-LB will uplink this payload.**
786 +==== 2.3.3.1 +5V Output ====
446 446  
447 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
448 448  
449 -(((
450 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
451 -)))
789 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
452 452  
453 -(((
454 -Where the first 11 bytes is for the first entry:
455 -)))
791 +The 5V output time can be controlled by AT Command.
456 456  
457 -(((
458 -7FFF089801464160065F97
459 -)))
793 +(% style="color:blue" %)**AT+5VT=1000**
460 460  
461 -(((
462 -**Ext sensor data**=0x7FFF/100=327.67
463 -)))
795 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
464 464  
465 -(((
466 -**Temp**=0x088E/100=22.00
467 -)))
797 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
468 468  
469 -(((
470 -**Hum**=0x014B/10=32.6
471 -)))
472 472  
473 -(((
474 -**poll message flag & Ext**=0x41,means reply data,Ext=1
475 -)))
800 +==== 2.3.3.11  BH1750 Illumination Sensor ====
476 476  
477 -(((
478 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
479 -)))
480 480  
803 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
481 481  
482 -(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
805 +[[image:image-20230512172447-4.png||height="416" width="712"]]
483 483  
484 -== 2.6 Temperature Alarm Feature ==
485 485  
808 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
486 486  
487 -S31x-LB work flow with Alarm feature.
488 488  
811 +==== 2.3.3.12  Working MOD ====
489 489  
490 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
491 491  
814 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
492 492  
493 -== 2.7 Frequency Plans ==
816 +User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
494 494  
818 +Case 7^^th^^ Byte >> 2 & 0x1f:
495 495  
496 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
820 +* 0: MOD1
821 +* 1: MOD2
822 +* 2: MOD3
823 +* 3: MOD4
824 +* 4: MOD5
825 +* 5: MOD6
826 +* 6: MOD7
827 +* 7: MOD8
828 +* 8: MOD9
497 497  
830 +
831 +
832 +== 2.4 Payload Decoder file ==
833 +
834 +
835 +In TTN, use can add a custom payload so it shows friendly reading
836 +
837 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
838 +
839 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
840 +
841 +
842 +== 2.5 Frequency Plans ==
843 +
844 +
845 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
846 +
498 498  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
499 499  
500 500  
501 -= 3. Configure S31x-LB =
850 += 3. Configure SN50v3-LB =
502 502  
503 503  == 3.1 Configure Methods ==
504 504  
505 505  
506 -S31x-LB supports below configure method:
855 +SN50v3-LB supports below configure method:
507 507  
508 508  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
509 509  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
510 510  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
511 511  
861 +
862 +
512 512  == 3.2 General Commands ==
513 513  
514 514  
... ... @@ -522,7 +522,7 @@
522 522  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
523 523  
524 524  
525 -== 3.3 Commands special design for S31x-LB ==
876 +== 3.3 Commands special design for SN50v3-LB ==
526 526  
527 527  
528 528  These commands only valid for S31x-LB, as below:
... ... @@ -556,10 +556,12 @@
556 556  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
557 557  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
558 558  
910 +
911 +
559 559  === 3.3.2 Get Device Status ===
560 560  
561 561  
562 -Send a LoRaWAN downlink to ask device send Alarm settings.
915 +Send a LoRaWAN downlink to ask the device to send its status.
563 563  
564 564  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
565 565  
... ... @@ -566,112 +566,163 @@
566 566  Sensor will upload Device Status via FPORT=5. See payload section for detail.
567 567  
568 568  
569 -=== 3.3.3 Set Temperature Alarm Threshold ===
922 +=== 3.3.3 Set Interrupt Mode ===
570 570  
571 -* (% style="color:blue" %)**AT Command:**
572 572  
573 -(% style="color:#037691" %)**AT+SHTEMP=min,max**
925 +Feature, Set Interrupt mode for GPIO_EXIT.
574 574  
575 -* When min=0, and max≠0, Alarm higher than max
576 -* When min≠0, and max=0, Alarm lower than min
577 -* When min≠0 and max≠0, Alarm higher than max or lower than min
927 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
578 578  
579 -Example:
929 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
930 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
931 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
932 +0
933 +OK
934 +the mode is 0 =Disable Interrupt
935 +)))
936 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
937 +Set Transmit Interval
938 +0. (Disable Interrupt),
939 +~1. (Trigger by rising and falling edge)
940 +2. (Trigger by falling edge)
941 +3. (Trigger by rising edge)
942 +)))|(% style="width:157px" %)OK
943 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
944 +Set Transmit Interval
580 580  
581 - AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
946 +trigger by rising edge.
947 +)))|(% style="width:157px" %)OK
948 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
582 582  
583 -* (% style="color:blue" %)**Downlink Payload:**
950 +(% style="color:blue" %)**Downlink Command: 0x06**
584 584  
585 -(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
952 +Format: Command Code (0x06) followed by 3 bytes.
586 586  
587 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
954 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
588 588  
956 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
957 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
958 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
959 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
589 589  
590 -=== 3.3.4 Set Humidity Alarm Threshold ===
591 591  
592 -* (% style="color:blue" %)**AT Command:**
593 593  
594 -(% style="color:#037691" %)**AT+SHHUM=min,max**
963 +=== 3.3.4 Set Power Output Duration ===
595 595  
596 -* When min=0, and max≠0, Alarm higher than max
597 -* When min≠0, and max=0, Alarm lower than min
598 -* When min≠0 and max≠0, Alarm higher than max or lower than min
599 599  
600 -Example:
966 +Control the output duration 5V . Before each sampling, device will
601 601  
602 - AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
968 +~1. first enable the power output to external sensor,
603 603  
604 -* (% style="color:blue" %)**Downlink Payload:**
970 +2. keep it on as per duration, read sensor value and construct uplink payload
605 605  
606 -(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
972 +3. final, close the power output.
607 607  
608 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
974 +(% style="color:blue" %)**AT Command: AT+5VT**
609 609  
976 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
977 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
978 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
979 +500(default)
980 +OK
981 +)))
982 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
983 +Close after a delay of 1000 milliseconds.
984 +)))|(% style="width:157px" %)OK
610 610  
611 -=== 3.3.5 Set Alarm Interval ===
986 +(% style="color:blue" %)**Downlink Command: 0x07**
612 612  
613 -The shortest time of two Alarm packet. (unit: min)
988 +Format: Command Code (0x07) followed by 2 bytes.
614 614  
615 -* (% style="color:blue" %)**AT Command:**
990 +The first and second bytes are the time to turn on.
616 616  
617 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
992 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
993 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
618 618  
619 -* (% style="color:blue" %)**Downlink Payload:**
620 620  
621 -(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
622 622  
997 +=== 3.3.5 Set Weighing parameters ===
623 623  
624 -=== 3.3.6 Get Alarm settings ===
625 625  
1000 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
626 626  
627 -Send a LoRaWAN downlink to ask device send Alarm settings.
1002 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
628 628  
629 -* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1004 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1005 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1006 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1007 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1008 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
630 630  
631 -**Example:**
1010 +(% style="color:blue" %)**Downlink Command: 0x08**
632 632  
633 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1012 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
634 634  
1014 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
635 635  
636 -**Explain:**
1016 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
637 637  
638 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1018 +* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1019 +* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1020 +* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
639 639  
640 -=== 3.3.7 Set Interrupt Mode ===
641 641  
642 642  
643 -Feature, Set Interrupt mode for GPIO_EXIT.
1024 +=== 3.3.6 Set Digital pulse count value ===
644 644  
645 -(% style="color:blue" %)**AT Command: AT+INTMOD**
646 646  
1027 +Feature: Set the pulse count value.
1028 +
1029 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1030 +
1031 +(% style="color:blue" %)**AT Command: AT+SETCNT**
1032 +
647 647  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
648 648  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
649 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
650 -0
1035 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1036 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1037 +
1038 +(% style="color:blue" %)**Downlink Command: 0x09**
1039 +
1040 +Format: Command Code (0x09) followed by 5 bytes.
1041 +
1042 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1043 +
1044 +* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1045 +* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1046 +
1047 +
1048 +
1049 +=== 3.3.7 Set Workmode ===
1050 +
1051 +
1052 +Feature: Switch working mode.
1053 +
1054 +(% style="color:blue" %)**AT Command: AT+MOD**
1055 +
1056 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1057 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1058 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
651 651  OK
652 -the mode is 0 =Disable Interrupt
653 653  )))
654 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
655 -Set Transmit Interval
656 -0. (Disable Interrupt),
657 -~1. (Trigger by rising and falling edge)
658 -2. (Trigger by falling edge)
659 -3. (Trigger by rising edge)
660 -)))|(% style="width:157px" %)OK
1061 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1062 +OK
1063 +Attention:Take effect after ATZ
1064 +)))
661 661  
662 -(% style="color:blue" %)**Downlink Command: 0x06**
1066 +(% style="color:blue" %)**Downlink Command: 0x0A**
663 663  
664 -Format: Command Code (0x06) followed by 3 bytes.
1068 +Format: Command Code (0x0A) followed by 1 bytes.
665 665  
666 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1070 +* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1071 +* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
667 667  
668 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
669 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
670 670  
1074 +
671 671  = 4. Battery & Power Consumption =
672 672  
673 673  
674 -S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1078 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
675 675  
676 676  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
677 677  
... ... @@ -680,7 +680,7 @@
680 680  
681 681  
682 682  (% class="wikigeneratedid" %)
683 -User can change firmware S31x-LB to:
1087 +User can change firmware SN50v3-LB to:
684 684  
685 685  * Change Frequency band/ region.
686 686  * Update with new features.
... ... @@ -694,53 +694,62 @@
694 694  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
695 695  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
696 696  
1101 +
1102 +
697 697  = 6. FAQ =
698 698  
1105 +== 6.1 Where can i find source code of SN50v3-LB? ==
699 699  
700 700  
1108 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1109 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1110 +
1111 +
1112 +
701 701  = 7. Order Info =
702 702  
703 703  
704 -Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1116 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
705 705  
706 706  (% style="color:red" %)**XX**(%%): The default frequency band
707 707  
708 708  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
709 -
710 710  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
711 -
712 712  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
713 -
714 714  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
715 -
716 716  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
717 -
718 718  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
719 -
720 720  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
721 -
722 722  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
723 723  
724 -= =
1129 +(% style="color:red" %)**YY: ** (%%)Hole Option
725 725  
1131 +* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1132 +* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1133 +* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1134 +* (% style="color:red" %)**NH**(%%): No Hole
1135 +
1136 +
1137 +
726 726  = 8. ​Packing Info =
727 727  
1140 +
728 728  (% style="color:#037691" %)**Package Includes**:
729 729  
730 -* S31x-LB LoRaWAN Temperature & Humidity Sensor
1143 +* SN50v3-LB LoRaWAN Generic Node
731 731  
732 732  (% style="color:#037691" %)**Dimension and weight**:
733 733  
734 734  * Device Size: cm
735 -
736 736  * Device Weight: g
737 -
738 738  * Package Size / pcs : cm
739 -
740 740  * Weight / pcs : g
741 741  
1152 +
1153 +
742 742  = 9. Support =
743 743  
744 744  
745 745  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
746 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1158 +
1159 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230512163509-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0