Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -3,7 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents :**6 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -580,20 +580,17 @@ 580 580 581 581 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 582 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 587 -[[It should be noted when using PWM mode.>> ||anchor="H2.3.3.12A0PWMMOD"]]586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 588 588 589 589 590 590 ===== 2.3.2.10.a Uplink, PWM input capture ===== 591 591 592 - 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 515px" %)596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:9 0px" %)**2**593 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 594 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 597 |Value|Bat|(% style="width:191px" %)((( 598 598 Temperature(DS18B20)(PC13) 599 599 )))|(% style="width:78px" %)((( ... ... @@ -600,6 +600,7 @@ 600 600 ADC(PA4) 601 601 )))|(% style="width:135px" %)((( 602 602 PWM_Setting 601 + 603 603 &Digital Interrupt(PA8) 604 604 )))|(% style="width:70px" %)((( 605 605 Pulse period ... ... @@ -610,55 +610,15 @@ 610 610 [[image:image-20230817170702-1.png||height="161" width="1044"]] 611 611 612 612 613 - Whenthe device detectshefollowingPWMsignal,decoder willconverts thepulseperiod andhigh-leveldurationto frequencyandduty cycle.612 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0) ==> Corresponding downlink: 0B AA** 614 614 615 - **Frequency:**614 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 616 616 617 -(% class="MsoNormal" %) 618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 616 +When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 619 619 620 -(% class="MsoNormal" %) 621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 622 622 619 +===== 2.3.2.10.b Downlink, PWM output ===== 623 623 624 -(% class="MsoNormal" %) 625 -**Duty cycle:** 626 - 627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 - 629 -[[image:image-20230818092200-1.png||height="344" width="627"]] 630 - 631 -===== 2.3.2.10.b Uplink, PWM output ===== 632 - 633 -[[image:image-20230817172209-2.png||height="439" width="683"]] 634 - 635 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 636 - 637 -a is the time delay of the output, the unit is ms. 638 - 639 -b is the output frequency, the unit is HZ. 640 - 641 -c is the duty cycle of the output, the unit is %. 642 - 643 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 644 - 645 -aa is the time delay of the output, the unit is ms. 646 - 647 -bb is the output frequency, the unit is HZ. 648 - 649 -cc is the duty cycle of the output, the unit is %. 650 - 651 - 652 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 653 - 654 -The oscilloscope displays as follows: 655 - 656 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 657 - 658 - 659 -===== 2.3.2.10.c Downlink, PWM output ===== 660 - 661 - 662 662 [[image:image-20230817173800-3.png||height="412" width="685"]] 663 663 664 664 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -916,18 +916,8 @@ 916 916 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 917 917 ))) 918 918 * ((( 919 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 920 -))) 921 -* ((( 922 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 878 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 923 923 924 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 925 - 926 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 927 - 928 -b) If the output duration is more than 30 seconds, better to use external power source. 929 - 930 - 931 931 932 932 ))) 933 933 ... ... @@ -1179,102 +1179,9 @@ 1179 1179 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1180 1180 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1181 1181 1182 -(% id="H3.3.8PWMsetting" %) 1183 -=== 3.3.8 PWM setting === 1131 += 4. Battery & Power Consumption = 1184 1184 1185 1185 1186 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1187 - 1188 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1189 - 1190 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1191 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1192 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1193 -0(default) 1194 - 1195 -OK 1196 -))) 1197 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1198 -OK 1199 - 1200 -))) 1201 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1202 - 1203 -(% style="color:blue" %)**Downlink Command: 0x0C** 1204 - 1205 -Format: Command Code (0x0C) followed by 1 bytes. 1206 - 1207 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1208 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1209 - 1210 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1211 - 1212 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1213 - 1214 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1215 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1216 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1217 -0,0,0(default) 1218 - 1219 -OK 1220 -))) 1221 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1222 -OK 1223 - 1224 -))) 1225 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1226 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1227 - 1228 - 1229 -)))|(% style="width:137px" %)((( 1230 -OK 1231 -))) 1232 - 1233 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1234 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1235 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1236 -AT+PWMOUT=a,b,c 1237 - 1238 - 1239 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1240 -Set PWM output time, output frequency and output duty cycle. 1241 - 1242 -((( 1243 - 1244 -))) 1245 - 1246 -((( 1247 - 1248 -))) 1249 -)))|(% style="width:242px" %)((( 1250 -a: Output time (unit: seconds) 1251 - 1252 -The value ranges from 0 to 65535. 1253 - 1254 -When a=65535, PWM will always output. 1255 -))) 1256 -|(% style="width:242px" %)((( 1257 -b: Output frequency (unit: HZ) 1258 -))) 1259 -|(% style="width:242px" %)((( 1260 -c: Output duty cycle (unit: %) 1261 - 1262 -The value ranges from 0 to 100. 1263 -))) 1264 - 1265 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1266 - 1267 -Format: Command Code (0x0B01) followed by 6 bytes. 1268 - 1269 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1270 - 1271 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1272 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1273 - 1274 - 1275 -= 4. Battery & Power Cons = 1276 - 1277 - 1278 1278 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1279 1279 1280 1280 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content