<
From version < 79.1 >
edited by Mengting Qiu
on 2023/12/13 10:24
To version < 72.1 >
edited by Saxer Lin
on 2023/08/18 09:47
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -580,16 +580,13 @@
580 580  
581 581  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
588 588  
589 589  
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 -
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 595  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -613,53 +613,44 @@
613 613  
614 614  When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 615  
616 -**Frequency:**
614 +Frequency:
617 617  
618 618  (% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,**
620 620  
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
619 +(((
623 623  
624 624  
622 +(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
623 +)))
624 +
625 625  (% class="MsoNormal" %)
626 -**Duty cycle:**
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,**
627 627  
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 +(((
629 629  
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 631  
632 -===== 2.3.2.10.b  Uplink, PWM output =====
631 +(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 +)))
633 633  
634 -[[image:image-20230817172209-2.png||height="439" width="683"]]
634 +(% class="MsoNormal" %)
635 +Duty cycle:
635 635  
636 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
637 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637 637  
638 -a is the time delay of the output, the unit is ms.
639 +(% class="MsoNormal" %)
639 639  
640 -b is the output frequency, the unit is HZ.
641 641  
642 -c is the duty cycle of the output, the unit is %.
642 +(((
643 643  
644 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
644 +)))
645 645  
646 -aa is the time delay of the output, the unit is ms.
647 647  
648 -bb is the output frequency, the unit is HZ.
647 +[[image:image-20230818092200-1.png||height="344" width="627"]]
649 649  
650 -cc is the duty cycle of the output, the unit is %.
651 651  
650 +===== 2.3.2.10.b  Downlink, PWM output =====
652 652  
653 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
654 -
655 -The oscilloscope displays as follows:
656 -
657 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
658 -
659 -
660 -===== 2.3.2.10.c  Downlink, PWM output =====
661 -
662 -
663 663  [[image:image-20230817173800-3.png||height="412" width="685"]]
664 664  
665 665  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -917,18 +917,8 @@
917 917  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
918 918  )))
919 919  * (((
920 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
921 -)))
922 -* (((
923 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
909 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
924 924  
925 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
926 -
927 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
928 -
929 -b) If the output duration is more than 30 seconds, better to use external power source. 
930 -
931 -
932 932  
933 933  )))
934 934  
... ... @@ -1180,26 +1180,26 @@
1180 1180  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1181 1181  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1182 1182  
1183 -(% id="H3.3.8PWMsetting" %)
1184 -=== 3.3.8 PWM setting ===
1185 1185  
1186 1186  
1187 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1164 +=== 3.3.8 PWM setting ===
1188 1188  
1166 +Feature: Set the time acquisition unit for PWM input capture.
1167 +
1189 1189  (% style="color:blue" %)**AT Command: AT+PWMSET**
1190 1190  
1191 1191  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1192 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1193 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1194 1194  0(default)
1195 1195  
1196 1196  OK
1197 1197  )))
1198 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1177 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1199 1199  OK
1200 1200  
1201 1201  )))
1202 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1181 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1203 1203  
1204 1204  (% style="color:blue" %)**Downlink Command: 0x0C**
1205 1205  
... ... @@ -1209,75 +1209,9 @@
1209 1209  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1210 1210  
1211 1211  
1212 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1191 += 4. Battery & Power Consumption =
1213 1213  
1214 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1215 1215  
1216 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1217 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1218 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1219 -0,0,0(default)
1220 -
1221 -OK
1222 -)))
1223 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1224 -OK
1225 -
1226 -)))
1227 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1228 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1229 -
1230 -
1231 -)))|(% style="width:137px" %)(((
1232 -OK
1233 -)))
1234 -
1235 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1236 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1237 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1238 -AT+PWMOUT=a,b,c
1239 -
1240 -
1241 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1242 -Set PWM output time, output frequency and output duty cycle.
1243 -
1244 -(((
1245 -
1246 -)))
1247 -
1248 -(((
1249 -
1250 -)))
1251 -)))|(% style="width:242px" %)(((
1252 -a: Output time (unit: seconds)
1253 -
1254 -The value ranges from 0 to 65535.
1255 -
1256 -When a=65535, PWM will always output.
1257 -)))
1258 -|(% style="width:242px" %)(((
1259 -b: Output frequency (unit: HZ)
1260 -)))
1261 -|(% style="width:242px" %)(((
1262 -c: Output duty cycle (unit: %)
1263 -
1264 -The value ranges from 0 to 100.
1265 -)))
1266 -
1267 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1268 -
1269 -Format: Command Code (0x0B01) followed by 6 bytes.
1270 -
1271 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1272 -
1273 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1274 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1275 -
1276 -
1277 -
1278 -= 4. Battery & Power Cons =
1279 -
1280 -
1281 1281  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1282 1282  
1283 1283  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0