<
From version < 79.1 >
edited by Mengting Qiu
on 2023/12/13 10:24
To version < 67.1 >
edited by Saxer Lin
on 2023/08/17 18:32
>
Change comment: Uploaded new attachment "image-20230817183218-2.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -40,6 +40,7 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,7 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
82 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,7 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
110 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -580,16 +580,11 @@
580 580  
581 581  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 588  
589 -
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 -
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 595  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -611,55 +611,15 @@
611 611  [[image:image-20230817170702-1.png||height="161" width="1044"]]
612 612  
613 613  
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
615 615  
616 -**Frequency:**
615 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
617 617  
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 +When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
620 620  
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 623  
620 +===== 2.3.2.10.b  Downlink, PWM output =====
624 624  
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM output =====
633 -
634 -[[image:image-20230817172209-2.png||height="439" width="683"]]
635 -
636 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
637 -
638 -a is the time delay of the output, the unit is ms.
639 -
640 -b is the output frequency, the unit is HZ.
641 -
642 -c is the duty cycle of the output, the unit is %.
643 -
644 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
645 -
646 -aa is the time delay of the output, the unit is ms.
647 -
648 -bb is the output frequency, the unit is HZ.
649 -
650 -cc is the duty cycle of the output, the unit is %.
651 -
652 -
653 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
654 -
655 -The oscilloscope displays as follows:
656 -
657 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
658 -
659 -
660 -===== 2.3.2.10.c  Downlink, PWM output =====
661 -
662 -
663 663  [[image:image-20230817173800-3.png||height="412" width="685"]]
664 664  
665 665  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -904,34 +904,6 @@
904 904  ==== 2.3.3.12  PWM MOD ====
905 905  
906 906  
907 -* (((
908 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
909 -)))
910 -* (((
911 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
912 -)))
913 -
914 - [[image:image-20230817183249-3.png||height="320" width="417"]]
915 -
916 -* (((
917 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
918 -)))
919 -* (((
920 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
921 -)))
922 -* (((
923 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
924 -
925 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
926 -
927 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
928 -
929 -b) If the output duration is more than 30 seconds, better to use external power source. 
930 -
931 -
932 -
933 -)))
934 -
935 935  ==== 2.3.3.13  Working MOD ====
936 936  
937 937  
... ... @@ -952,6 +952,7 @@
952 952  * 8: MOD9
953 953  * 9: MOD10
954 954  
886 +
955 955  == 2.4 Payload Decoder file ==
956 956  
957 957  
... ... @@ -981,6 +981,7 @@
981 981  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
982 982  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
983 983  
916 +
984 984  == 3.2 General Commands ==
985 985  
986 986  
... ... @@ -1028,6 +1028,7 @@
1028 1028  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1029 1029  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1030 1030  
964 +
1031 1031  === 3.3.2 Get Device Status ===
1032 1032  
1033 1033  
... ... @@ -1076,6 +1076,7 @@
1076 1076  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1077 1077  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1078 1078  
1013 +
1079 1079  === 3.3.4 Set Power Output Duration ===
1080 1080  
1081 1081  
... ... @@ -1108,6 +1108,7 @@
1108 1108  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1109 1109  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1110 1110  
1046 +
1111 1111  === 3.3.5 Set Weighing parameters ===
1112 1112  
1113 1113  
... ... @@ -1133,6 +1133,7 @@
1133 1133  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1134 1134  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1135 1135  
1072 +
1136 1136  === 3.3.6 Set Digital pulse count value ===
1137 1137  
1138 1138  
... ... @@ -1156,6 +1156,7 @@
1156 1156  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1157 1157  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1158 1158  
1096 +
1159 1159  === 3.3.7 Set Workmode ===
1160 1160  
1161 1161  
... ... @@ -1180,104 +1180,10 @@
1180 1180  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1181 1181  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1182 1182  
1183 -(% id="H3.3.8PWMsetting" %)
1184 -=== 3.3.8 PWM setting ===
1185 1185  
1122 += 4. Battery & Power Consumption =
1186 1186  
1187 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1188 1188  
1189 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1190 -
1191 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1192 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1193 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1194 -0(default)
1195 -
1196 -OK
1197 -)))
1198 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1199 -OK
1200 -
1201 -)))
1202 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1203 -
1204 -(% style="color:blue" %)**Downlink Command: 0x0C**
1205 -
1206 -Format: Command Code (0x0C) followed by 1 bytes.
1207 -
1208 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1209 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1210 -
1211 -
1212 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1213 -
1214 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1215 -
1216 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1217 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1218 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1219 -0,0,0(default)
1220 -
1221 -OK
1222 -)))
1223 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1224 -OK
1225 -
1226 -)))
1227 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1228 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1229 -
1230 -
1231 -)))|(% style="width:137px" %)(((
1232 -OK
1233 -)))
1234 -
1235 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1236 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1237 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1238 -AT+PWMOUT=a,b,c
1239 -
1240 -
1241 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1242 -Set PWM output time, output frequency and output duty cycle.
1243 -
1244 -(((
1245 -
1246 -)))
1247 -
1248 -(((
1249 -
1250 -)))
1251 -)))|(% style="width:242px" %)(((
1252 -a: Output time (unit: seconds)
1253 -
1254 -The value ranges from 0 to 65535.
1255 -
1256 -When a=65535, PWM will always output.
1257 -)))
1258 -|(% style="width:242px" %)(((
1259 -b: Output frequency (unit: HZ)
1260 -)))
1261 -|(% style="width:242px" %)(((
1262 -c: Output duty cycle (unit: %)
1263 -
1264 -The value ranges from 0 to 100.
1265 -)))
1266 -
1267 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1268 -
1269 -Format: Command Code (0x0B01) followed by 6 bytes.
1270 -
1271 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1272 -
1273 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1274 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1275 -
1276 -
1277 -
1278 -= 4. Battery & Power Cons =
1279 -
1280 -
1281 1281  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1282 1282  
1283 1283  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1300,6 +1300,7 @@
1300 1300  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1301 1301  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1302 1302  
1147 +
1303 1303  = 6. FAQ =
1304 1304  
1305 1305  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1308,6 +1308,7 @@
1308 1308  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1309 1309  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1310 1310  
1156 +
1311 1311  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1312 1312  
1313 1313  
... ... @@ -1347,6 +1347,7 @@
1347 1347  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1348 1348  * (% style="color:red" %)**NH**(%%): No Hole
1349 1349  
1196 +
1350 1350  = 8. ​Packing Info =
1351 1351  
1352 1352  
... ... @@ -1361,6 +1361,7 @@
1361 1361  * Package Size / pcs : cm
1362 1362  * Weight / pcs : g
1363 1363  
1211 +
1364 1364  = 9. Support =
1365 1365  
1366 1366  
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0