<
From version < 79.1 >
edited by Mengting Qiu
on 2023/12/13 10:24
To version < 50.1 >
edited by Saxer Lin
on 2023/06/10 17:00
>
Change comment: Uploaded new attachment "image-20230610170047-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -226,33 +226,33 @@
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
230 +*0x01: EU868
230 230  
231 -0x02: US915
232 +*0x02: US915
232 232  
233 -0x03: IN865
234 +*0x03: IN865
234 234  
235 -0x04: AU915
236 +*0x04: AU915
236 236  
237 -0x05: KZ865
238 +*0x05: KZ865
238 238  
239 -0x06: RU864
240 +*0x06: RU864
240 240  
241 -0x07: AS923
242 +*0x07: AS923
242 242  
243 -0x08: AS923-1
244 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
246 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
248 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
250 +*0x0b: CN470
250 250  
251 -0x0c: EU433
252 +*0x0c: EU433
252 252  
253 -0x0d: KR920
254 +*0x0d: KR920
254 254  
255 -0x0e: MA869
256 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -328,8 +328,9 @@
328 328  )))|(% style="width:189px" %)(((
329 329  Digital in(PB15) & Digital Interrupt(PA8)
330 330  )))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
332 -Or 2) Ultrasonic Sensor
332 +Distance measure by:1) LIDAR-Lite V3HP
333 +Or
334 +2) Ultrasonic Sensor
333 333  )))|(% style="width:117px" %)Reserved
334 334  
335 335  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -359,7 +359,8 @@
359 359  ADC(PA4)
360 360  )))|(% style="width:323px" %)(((
361 361  Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
364 +Or 
365 +2) TF-Luna LiDAR
363 363  )))|(% style="width:188px" %)Distance signal  strength
364 364  
365 365  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -376,7 +376,7 @@
376 376  
377 377  (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 378  
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
382 +[[image:image-20230513105207-4.png||height="469" width="802"]]
380 380  
381 381  
382 382  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -466,6 +466,7 @@
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 467  
468 468  
472 +
469 469  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 470  
471 471  
... ... @@ -578,106 +578,6 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM output =====
633 -
634 -[[image:image-20230817172209-2.png||height="439" width="683"]]
635 -
636 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
637 -
638 -a is the time delay of the output, the unit is ms.
639 -
640 -b is the output frequency, the unit is HZ.
641 -
642 -c is the duty cycle of the output, the unit is %.
643 -
644 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
645 -
646 -aa is the time delay of the output, the unit is ms.
647 -
648 -bb is the output frequency, the unit is HZ.
649 -
650 -cc is the duty cycle of the output, the unit is %.
651 -
652 -
653 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
654 -
655 -The oscilloscope displays as follows:
656 -
657 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
658 -
659 -
660 -===== 2.3.2.10.c  Downlink, PWM output =====
661 -
662 -
663 -[[image:image-20230817173800-3.png||height="412" width="685"]]
664 -
665 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
666 -
667 - xx xx xx is the output frequency, the unit is HZ.
668 -
669 - yy is the duty cycle of the output, the unit is %.
670 -
671 - zz zz is the time delay of the output, the unit is ms.
672 -
673 -
674 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
675 -
676 -The oscilloscope displays as follows:
677 -
678 -[[image:image-20230817173858-5.png||height="694" width="921"]]
679 -
680 -
681 681  === 2.3.3  ​Decode payload ===
682 682  
683 683  
... ... @@ -741,9 +741,9 @@
741 741  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
742 742  
743 743  
744 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
648 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
745 745  
746 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
650 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
747 747  
748 748  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
749 749  
... ... @@ -751,10 +751,6 @@
751 751  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
752 752  
753 753  
754 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
755 -
756 -[[image:image-20230811113449-1.png||height="370" width="608"]]
757 -
758 758  ==== 2.3.3.5 Digital Interrupt ====
759 759  
760 760  
... ... @@ -823,7 +823,7 @@
823 823  
824 824  Below is the connection to SHT20/ SHT31. The connection is as below:
825 825  
826 -[[image:image-20230610170152-2.png||height="501" width="846"]]
726 +[[image:image-20230513103633-3.png||height="448" width="716"]]
827 827  
828 828  
829 829  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -901,40 +901,9 @@
901 901  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
902 902  
903 903  
904 -==== 2.3.3.12  PWM MOD ====
804 +==== 2.3.3.12  Working MOD ====
905 905  
906 906  
907 -* (((
908 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
909 -)))
910 -* (((
911 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
912 -)))
913 -
914 - [[image:image-20230817183249-3.png||height="320" width="417"]]
915 -
916 -* (((
917 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
918 -)))
919 -* (((
920 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
921 -)))
922 -* (((
923 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
924 -
925 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
926 -
927 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
928 -
929 -b) If the output duration is more than 30 seconds, better to use external power source. 
930 -
931 -
932 -
933 -)))
934 -
935 -==== 2.3.3.13  Working MOD ====
936 -
937 -
938 938  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
939 939  
940 940  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -950,7 +950,6 @@
950 950  * 6: MOD7
951 951  * 7: MOD8
952 952  * 8: MOD9
953 -* 9: MOD10
954 954  
955 955  == 2.4 Payload Decoder file ==
956 956  
... ... @@ -1008,7 +1008,7 @@
1008 1008  (% style="color:blue" %)**AT Command: AT+TDC**
1009 1009  
1010 1010  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
879 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1012 1012  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1013 1013  30000
1014 1014  OK
... ... @@ -1046,7 +1046,7 @@
1046 1046  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1047 1047  
1048 1048  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1049 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1050 1050  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1051 1051  0
1052 1052  OK
... ... @@ -1090,7 +1090,7 @@
1090 1090  (% style="color:blue" %)**AT Command: AT+5VT**
1091 1091  
1092 1092  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1093 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1094 1094  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1095 1095  500(default)
1096 1096  OK
... ... @@ -1116,7 +1116,7 @@
1116 1116  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1117 1117  
1118 1118  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1119 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1120 1120  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1121 1121  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1122 1122  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1143,7 +1143,7 @@
1143 1143  (% style="color:blue" %)**AT Command: AT+SETCNT**
1144 1144  
1145 1145  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1146 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1147 1147  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1148 1148  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1149 1149  
... ... @@ -1164,7 +1164,7 @@
1164 1164  (% style="color:blue" %)**AT Command: AT+MOD**
1165 1165  
1166 1166  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1167 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1168 1168  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1169 1169  OK
1170 1170  )))
... ... @@ -1180,104 +1180,9 @@
1180 1180  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1181 1181  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1182 1182  
1183 -(% id="H3.3.8PWMsetting" %)
1184 -=== 3.3.8 PWM setting ===
1051 += 4. Battery & Power Consumption =
1185 1185  
1186 1186  
1187 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1188 -
1189 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1190 -
1191 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1192 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1193 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1194 -0(default)
1195 -
1196 -OK
1197 -)))
1198 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1199 -OK
1200 -
1201 -)))
1202 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1203 -
1204 -(% style="color:blue" %)**Downlink Command: 0x0C**
1205 -
1206 -Format: Command Code (0x0C) followed by 1 bytes.
1207 -
1208 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1209 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1210 -
1211 -
1212 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1213 -
1214 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1215 -
1216 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1217 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1218 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1219 -0,0,0(default)
1220 -
1221 -OK
1222 -)))
1223 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1224 -OK
1225 -
1226 -)))
1227 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1228 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1229 -
1230 -
1231 -)))|(% style="width:137px" %)(((
1232 -OK
1233 -)))
1234 -
1235 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1236 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1237 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1238 -AT+PWMOUT=a,b,c
1239 -
1240 -
1241 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1242 -Set PWM output time, output frequency and output duty cycle.
1243 -
1244 -(((
1245 -
1246 -)))
1247 -
1248 -(((
1249 -
1250 -)))
1251 -)))|(% style="width:242px" %)(((
1252 -a: Output time (unit: seconds)
1253 -
1254 -The value ranges from 0 to 65535.
1255 -
1256 -When a=65535, PWM will always output.
1257 -)))
1258 -|(% style="width:242px" %)(((
1259 -b: Output frequency (unit: HZ)
1260 -)))
1261 -|(% style="width:242px" %)(((
1262 -c: Output duty cycle (unit: %)
1263 -
1264 -The value ranges from 0 to 100.
1265 -)))
1266 -
1267 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1268 -
1269 -Format: Command Code (0x0B01) followed by 6 bytes.
1270 -
1271 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1272 -
1273 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1274 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1275 -
1276 -
1277 -
1278 -= 4. Battery & Power Cons =
1279 -
1280 -
1281 1281  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1282 1282  
1283 1283  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1293,12 +1293,12 @@
1293 1293  * Update with new features.
1294 1294  * Fix bugs.
1295 1295  
1296 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1297 1297  
1298 1298  **Methods to Update Firmware:**
1299 1299  
1300 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1301 -* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1073 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1074 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1302 1302  
1303 1303  = 6. FAQ =
1304 1304  
... ... @@ -1308,22 +1308,6 @@
1308 1308  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1309 1309  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1310 1310  
1311 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1312 -
1313 -
1314 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1315 -
1316 -
1317 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1318 -
1319 -
1320 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1321 -
1322 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1323 -
1324 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1325 -
1326 -
1327 1327  = 7. Order Info =
1328 1328  
1329 1329  
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0