Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -226,33 +226,33 @@ 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 -0x01: EU868 230 +*0x01: EU868 230 230 231 -0x02: US915 232 +*0x02: US915 232 232 233 -0x03: IN865 234 +*0x03: IN865 234 234 235 -0x04: AU915 236 +*0x04: AU915 236 236 237 -0x05: KZ865 238 +*0x05: KZ865 238 238 239 -0x06: RU864 240 +*0x06: RU864 240 240 241 -0x07: AS923 242 +*0x07: AS923 242 242 243 -0x08: AS923-1 244 +*0x08: AS923-1 244 244 245 -0x09: AS923-2 246 +*0x09: AS923-2 246 246 247 -0x0a: AS923-3 248 +*0x0a: AS923-3 248 248 249 -0x0b: CN470 250 +*0x0b: CN470 250 250 251 -0x0c: EU433 252 +*0x0c: EU433 252 252 253 -0x0d: KR920 254 +*0x0d: KR920 254 254 255 -0x0e: MA869 256 +*0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -328,8 +328,9 @@ 328 328 )))|(% style="width:189px" %)((( 329 329 Digital in(PB15) & Digital Interrupt(PA8) 330 330 )))|(% style="width:208px" %)((( 331 -Distance measure by: 1) LIDAR-Lite V3HP 332 -Or 2) Ultrasonic Sensor 332 +Distance measure by:1) LIDAR-Lite V3HP 333 +Or 334 +2) Ultrasonic Sensor 333 333 )))|(% style="width:117px" %)Reserved 334 334 335 335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -359,7 +359,8 @@ 359 359 ADC(PA4) 360 360 )))|(% style="width:323px" %)((( 361 361 Distance measure by:1)TF-Mini plus LiDAR 362 -Or 2) TF-Luna LiDAR 364 +Or 365 +2) TF-Luna LiDAR 363 363 )))|(% style="width:188px" %)Distance signal strength 364 364 365 365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -376,7 +376,7 @@ 376 376 377 377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 378 378 379 -[[image:image-20230 610170047-1.png||height="452" width="799"]]382 +[[image:image-20230513105207-4.png||height="469" width="802"]] 380 380 381 381 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -466,6 +466,7 @@ 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 467 467 468 468 472 + 469 469 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 470 471 471 ... ... @@ -578,106 +578,6 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 -===== 2.3.2.10.b Uplink, PWM output ===== 633 - 634 -[[image:image-20230817172209-2.png||height="439" width="683"]] 635 - 636 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 637 - 638 -a is the time delay of the output, the unit is ms. 639 - 640 -b is the output frequency, the unit is HZ. 641 - 642 -c is the duty cycle of the output, the unit is %. 643 - 644 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 645 - 646 -aa is the time delay of the output, the unit is ms. 647 - 648 -bb is the output frequency, the unit is HZ. 649 - 650 -cc is the duty cycle of the output, the unit is %. 651 - 652 - 653 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 654 - 655 -The oscilloscope displays as follows: 656 - 657 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 658 - 659 - 660 -===== 2.3.2.10.c Downlink, PWM output ===== 661 - 662 - 663 -[[image:image-20230817173800-3.png||height="412" width="685"]] 664 - 665 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 666 - 667 - xx xx xx is the output frequency, the unit is HZ. 668 - 669 - yy is the duty cycle of the output, the unit is %. 670 - 671 - zz zz is the time delay of the output, the unit is ms. 672 - 673 - 674 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 675 - 676 -The oscilloscope displays as follows: 677 - 678 -[[image:image-20230817173858-5.png||height="694" width="921"]] 679 - 680 - 681 681 === 2.3.3 Decode payload === 682 682 683 683 ... ... @@ -741,9 +741,9 @@ 741 741 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 742 742 743 743 744 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.648 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 745 745 746 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.650 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 747 747 748 748 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 749 749 ... ... @@ -751,10 +751,6 @@ 751 751 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 752 752 753 753 754 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 755 - 756 -[[image:image-20230811113449-1.png||height="370" width="608"]] 757 - 758 758 ==== 2.3.3.5 Digital Interrupt ==== 759 759 760 760 ... ... @@ -823,7 +823,7 @@ 823 823 824 824 Below is the connection to SHT20/ SHT31. The connection is as below: 825 825 826 -[[image:image-20230 610170152-2.png||height="501" width="846"]]726 +[[image:image-20230513103633-3.png||height="448" width="716"]] 827 827 828 828 829 829 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -901,40 +901,9 @@ 901 901 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 902 902 903 903 904 -==== 2.3.3.12 PWMMOD ====804 +==== 2.3.3.12 Working MOD ==== 905 905 906 906 907 -* ((( 908 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 909 -))) 910 -* ((( 911 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 912 -))) 913 - 914 - [[image:image-20230817183249-3.png||height="320" width="417"]] 915 - 916 -* ((( 917 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 918 -))) 919 -* ((( 920 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 921 -))) 922 -* ((( 923 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 924 - 925 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 926 - 927 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 928 - 929 -b) If the output duration is more than 30 seconds, better to use external power source. 930 - 931 - 932 - 933 -))) 934 - 935 -==== 2.3.3.13 Working MOD ==== 936 - 937 - 938 938 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 939 939 940 940 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -950,7 +950,6 @@ 950 950 * 6: MOD7 951 951 * 7: MOD8 952 952 * 8: MOD9 953 -* 9: MOD10 954 954 955 955 == 2.4 Payload Decoder file == 956 956 ... ... @@ -1008,7 +1008,7 @@ 1008 1008 (% style="color:blue" %)**AT Command: AT+TDC** 1009 1009 1010 1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1011 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**879 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1012 1012 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1013 1013 30000 1014 1014 OK ... ... @@ -1046,7 +1046,7 @@ 1046 1046 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1047 1047 1048 1048 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1049 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1050 1050 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1051 1051 0 1052 1052 OK ... ... @@ -1090,7 +1090,7 @@ 1090 1090 (% style="color:blue" %)**AT Command: AT+5VT** 1091 1091 1092 1092 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1093 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1094 1094 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1095 1095 500(default) 1096 1096 OK ... ... @@ -1116,7 +1116,7 @@ 1116 1116 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1117 1117 1118 1118 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1119 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1120 1120 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1121 1121 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1122 1122 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1143,7 +1143,7 @@ 1143 1143 (% style="color:blue" %)**AT Command: AT+SETCNT** 1144 1144 1145 1145 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1146 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1147 1147 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1148 1148 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1149 1149 ... ... @@ -1164,7 +1164,7 @@ 1164 1164 (% style="color:blue" %)**AT Command: AT+MOD** 1165 1165 1166 1166 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1167 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1168 1168 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1169 1169 OK 1170 1170 ))) ... ... @@ -1180,104 +1180,9 @@ 1180 1180 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1181 1181 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1182 1182 1183 -(% id="H3.3.8PWMsetting" %) 1184 -=== 3.3.8 PWM setting === 1051 += 4. Battery & Power Consumption = 1185 1185 1186 1186 1187 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1188 - 1189 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1190 - 1191 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1192 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1193 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1194 -0(default) 1195 - 1196 -OK 1197 -))) 1198 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1199 -OK 1200 - 1201 -))) 1202 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1203 - 1204 -(% style="color:blue" %)**Downlink Command: 0x0C** 1205 - 1206 -Format: Command Code (0x0C) followed by 1 bytes. 1207 - 1208 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1209 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1210 - 1211 - 1212 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1213 - 1214 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1215 - 1216 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1217 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1218 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1219 -0,0,0(default) 1220 - 1221 -OK 1222 -))) 1223 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1224 -OK 1225 - 1226 -))) 1227 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1228 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1229 - 1230 - 1231 -)))|(% style="width:137px" %)((( 1232 -OK 1233 -))) 1234 - 1235 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1236 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1237 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1238 -AT+PWMOUT=a,b,c 1239 - 1240 - 1241 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1242 -Set PWM output time, output frequency and output duty cycle. 1243 - 1244 -((( 1245 - 1246 -))) 1247 - 1248 -((( 1249 - 1250 -))) 1251 -)))|(% style="width:242px" %)((( 1252 -a: Output time (unit: seconds) 1253 - 1254 -The value ranges from 0 to 65535. 1255 - 1256 -When a=65535, PWM will always output. 1257 -))) 1258 -|(% style="width:242px" %)((( 1259 -b: Output frequency (unit: HZ) 1260 -))) 1261 -|(% style="width:242px" %)((( 1262 -c: Output duty cycle (unit: %) 1263 - 1264 -The value ranges from 0 to 100. 1265 -))) 1266 - 1267 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1268 - 1269 -Format: Command Code (0x0B01) followed by 6 bytes. 1270 - 1271 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1272 - 1273 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1274 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1275 - 1276 - 1277 - 1278 -= 4. Battery & Power Cons = 1279 - 1280 - 1281 1281 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1282 1282 1283 1283 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1293,12 +1293,12 @@ 1293 1293 * Update with new features. 1294 1294 * Fix bugs. 1295 1295 1296 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/ 4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1297 1297 1298 1298 **Methods to Update Firmware:** 1299 1299 1300 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**1301 -* Update through UART TTL interface :**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.1073 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1074 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1302 1302 1303 1303 = 6. FAQ = 1304 1304 ... ... @@ -1308,22 +1308,6 @@ 1308 1308 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1309 1309 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1310 1310 1311 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1312 - 1313 - 1314 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1315 - 1316 - 1317 -== 6.3 How to put several sensors to a SN50v3-LB? == 1318 - 1319 - 1320 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1321 - 1322 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1323 - 1324 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1325 - 1326 - 1327 1327 = 7. Order Info = 1328 1328 1329 1329
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content