<
From version < 79.1 >
edited by Mengting Qiu
on 2023/12/13 10:24
To version < 43.61 >
edited by Xiaoling
on 2023/05/16 17:08
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
132 +[[image:image-20230513102034-2.png]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== 1.9 Hole Option ==
145 +== Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
236 +*0x01: EU868
230 230  
231 -0x02: US915
238 +*0x02: US915
232 232  
233 -0x03: IN865
240 +*0x03: IN865
234 234  
235 -0x04: AU915
242 +*0x04: AU915
236 236  
237 -0x05: KZ865
244 +*0x05: KZ865
238 238  
239 -0x06: RU864
246 +*0x06: RU864
240 240  
241 -0x07: AS923
248 +*0x07: AS923
242 242  
243 -0x08: AS923-1
250 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
252 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
254 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
256 +*0x0b: CN470
250 250  
251 -0x0c: EU433
258 +*0x0c: EU433
252 252  
253 -0x0d: KR920
260 +*0x0d: KR920
254 254  
255 -0x0e: MA869
262 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,22 +276,21 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 280  
281 281  For example:
282 282  
283 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 +1. All modes share the same Payload Explanation from HERE.
297 +1. By default, the device will send an uplink message every 20 minutes.
289 289  
290 -2. All modes share the same Payload Explanation from HERE.
291 291  
292 -3. By default, the device will send an uplink message every 20 minutes.
293 293  
294 -
295 295  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
296 296  
297 297  
... ... @@ -299,7 +299,7 @@
299 299  
300 300  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 301  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 -|Value|Bat|(% style="width:191px" %)(((
308 +|**Value**|Bat|(% style="width:191px" %)(((
303 303  Temperature(DS18B20)(PC13)
304 304  )))|(% style="width:78px" %)(((
305 305  ADC(PA4)
... ... @@ -314,6 +314,7 @@
314 314  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315 315  
316 316  
323 +
317 317  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318 318  
319 319  
... ... @@ -321,7 +321,7 @@
321 321  
322 322  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 323  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 -|Value|BAT|(% style="width:196px" %)(((
331 +|**Value**|BAT|(% style="width:196px" %)(((
325 325  Temperature(DS18B20)(PC13)
326 326  )))|(% style="width:87px" %)(((
327 327  ADC(PA4)
... ... @@ -328,8 +328,9 @@
328 328  )))|(% style="width:189px" %)(((
329 329  Digital in(PB15) & Digital Interrupt(PA8)
330 330  )))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
332 -Or 2) Ultrasonic Sensor
338 +Distance measure by:1) LIDAR-Lite V3HP
339 +Or
340 +2) Ultrasonic Sensor
333 333  )))|(% style="width:117px" %)Reserved
334 334  
335 335  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -342,7 +342,7 @@
342 342  
343 343  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344 344  
345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
346 346  
347 347  [[image:image-20230512173903-6.png||height="596" width="715"]]
348 348  
... ... @@ -351,7 +351,7 @@
351 351  
352 352  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 353  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 -|Value|BAT|(% style="width:183px" %)(((
362 +|**Value**|BAT|(% style="width:183px" %)(((
355 355  Temperature(DS18B20)(PC13)
356 356  )))|(% style="width:173px" %)(((
357 357  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -359,7 +359,8 @@
359 359  ADC(PA4)
360 360  )))|(% style="width:323px" %)(((
361 361  Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
370 +Or 
371 +2) TF-Luna LiDAR
363 363  )))|(% style="width:188px" %)Distance signal  strength
364 364  
365 365  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -367,7 +367,7 @@
367 367  
368 368  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 369  
370 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
371 371  
372 372  [[image:image-20230512180609-7.png||height="555" width="802"]]
373 373  
... ... @@ -374,9 +374,9 @@
374 374  
375 375  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378 378  
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
388 +[[image:image-20230513105207-4.png||height="469" width="802"]]
380 380  
381 381  
382 382  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -388,7 +388,7 @@
388 388  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 389  **Size(bytes)**
390 390  )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|Value|(% style="width:68px" %)(((
400 +|**Value**|(% style="width:68px" %)(((
392 392  ADC1(PA4)
393 393  )))|(% style="width:75px" %)(((
394 394  ADC2(PA5)
... ... @@ -412,7 +412,7 @@
412 412  
413 413  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 414  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|Value|BAT|(% style="width:186px" %)(((
424 +|**Value**|BAT|(% style="width:186px" %)(((
416 416  Temperature1(DS18B20)(PC13)
417 417  )))|(% style="width:82px" %)(((
418 418  ADC(PA4)
... ... @@ -423,10 +423,10 @@
423 423  
424 424  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 425  
426 -
427 427  [[image:image-20230513134006-1.png||height="559" width="736"]]
428 428  
429 429  
438 +
430 430  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 431  
432 432  
... ... @@ -434,8 +434,8 @@
434 434  
435 435  Each HX711 need to be calibrated before used. User need to do below two steps:
436 436  
437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
439 439  1. (((
440 440  Weight has 4 bytes, the unit is g.
441 441  
... ... @@ -445,7 +445,7 @@
445 445  
446 446  For example:
447 447  
448 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
457 +**AT+GETSENSORVALUE =0**
449 449  
450 450  Response:  Weight is 401 g
451 451  
... ... @@ -455,7 +455,7 @@
455 455  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
456 456  **Size(bytes)**
457 457  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 -|Value|BAT|(% style="width:193px" %)(((
467 +|**Value**|BAT|(% style="width:193px" %)(((
459 459  Temperature(DS18B20)(PC13)
460 460  )))|(% style="width:85px" %)(((
461 461  ADC(PA4)
... ... @@ -466,6 +466,7 @@
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 467  
468 468  
478 +
469 469  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 470  
471 471  
... ... @@ -480,7 +480,7 @@
480 480  
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 482  |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 -|Value|BAT|(% style="width:256px" %)(((
493 +|**Value**|BAT|(% style="width:256px" %)(((
484 484  Temperature(DS18B20)(PC13)
485 485  )))|(% style="width:108px" %)(((
486 486  ADC(PA4)
... ... @@ -493,6 +493,7 @@
493 493  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494 494  
495 495  
506 +
496 496  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 497  
498 498  
... ... @@ -500,7 +500,7 @@
500 500  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 501  **Size(bytes)**
502 502  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|Value|BAT|(% style="width:188px" %)(((
514 +|**Value**|BAT|(% style="width:188px" %)(((
504 504  Temperature(DS18B20)
505 505  (PC13)
506 506  )))|(% style="width:83px" %)(((
... ... @@ -519,7 +519,7 @@
519 519  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 520  **Size(bytes)**
521 521  )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|Value|BAT|(% style="width:207px" %)(((
533 +|**Value**|BAT|(% style="width:207px" %)(((
523 523  Temperature(DS18B20)
524 524  (PC13)
525 525  )))|(% style="width:94px" %)(((
... ... @@ -542,7 +542,7 @@
542 542  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 543  **Size(bytes)**
544 544  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|Value|BAT|(((
556 +|**Value**|BAT|(((
546 546  Temperature
547 547  (DS18B20)(PC13)
548 548  )))|(((
... ... @@ -578,106 +578,6 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM output =====
633 -
634 -[[image:image-20230817172209-2.png||height="439" width="683"]]
635 -
636 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
637 -
638 -a is the time delay of the output, the unit is ms.
639 -
640 -b is the output frequency, the unit is HZ.
641 -
642 -c is the duty cycle of the output, the unit is %.
643 -
644 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
645 -
646 -aa is the time delay of the output, the unit is ms.
647 -
648 -bb is the output frequency, the unit is HZ.
649 -
650 -cc is the duty cycle of the output, the unit is %.
651 -
652 -
653 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
654 -
655 -The oscilloscope displays as follows:
656 -
657 -[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
658 -
659 -
660 -===== 2.3.2.10.c  Downlink, PWM output =====
661 -
662 -
663 -[[image:image-20230817173800-3.png||height="412" width="685"]]
664 -
665 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
666 -
667 - xx xx xx is the output frequency, the unit is HZ.
668 -
669 - yy is the duty cycle of the output, the unit is %.
670 -
671 - zz zz is the time delay of the output, the unit is ms.
672 -
673 -
674 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
675 -
676 -The oscilloscope displays as follows:
677 -
678 -[[image:image-20230817173858-5.png||height="694" width="921"]]
679 -
680 -
681 681  === 2.3.3  ​Decode payload ===
682 682  
683 683  
... ... @@ -687,13 +687,13 @@
687 687  
688 688  The payload decoder function for TTN V3 are here:
689 689  
690 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
601 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
691 691  
692 692  
693 693  ==== 2.3.3.1 Battery Info ====
694 694  
695 695  
696 -Check the battery voltage for SN50v3-LB.
607 +Check the battery voltage for SN50v3.
697 697  
698 698  Ex1: 0x0B45 = 2885mV
699 699  
... ... @@ -741,24 +741,19 @@
741 741  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
742 742  
743 743  
744 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
745 745  
746 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
747 747  
748 748  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
749 749  
750 -
751 751  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
752 752  
753 753  
754 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
755 -
756 -[[image:image-20230811113449-1.png||height="370" width="608"]]
757 -
758 758  ==== 2.3.3.5 Digital Interrupt ====
759 759  
760 760  
761 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
762 762  
763 763  (% style="color:blue" %)** Interrupt connection method:**
764 764  
... ... @@ -771,18 +771,18 @@
771 771  
772 772  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
773 773  
774 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
775 775  
776 776  
777 777  (% style="color:blue" %)**Below is the installation example:**
778 778  
779 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
780 780  
781 781  * (((
782 -One pin to SN50v3-LB's PA8 pin
688 +One pin to SN50_v3's PA8 pin
783 783  )))
784 784  * (((
785 -The other pin to SN50v3-LB's VDD pin
691 +The other pin to SN50_v3's VDD pin
786 786  )))
787 787  
788 788  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -799,7 +799,7 @@
799 799  
800 800  The command is:
801 801  
802 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
803 803  
804 804  Below shows some screen captures in TTN V3:
805 805  
... ... @@ -806,7 +806,7 @@
806 806  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
807 807  
808 808  
809 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
810 810  
811 811  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
812 812  
... ... @@ -818,13 +818,12 @@
818 818  
819 819  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
820 820  
821 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
822 822  
823 -
824 824  Below is the connection to SHT20/ SHT31. The connection is as below:
825 825  
826 -[[image:image-20230610170152-2.png||height="501" width="846"]]
827 827  
732 +[[image:image-20230513103633-3.png||height="448" width="716"]]
828 828  
829 829  The device will be able to get the I2C sensor data now and upload to IoT Server.
830 830  
... ... @@ -852,7 +852,7 @@
852 852  
853 853  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
854 854  
855 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
856 856  
857 857  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
858 858  
... ... @@ -861,7 +861,7 @@
861 861  [[image:image-20230512173903-6.png||height="596" width="715"]]
862 862  
863 863  
864 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
865 865  
866 866  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
867 867  
... ... @@ -873,13 +873,13 @@
873 873  ==== 2.3.3.9  Battery Output - BAT pin ====
874 874  
875 875  
876 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
877 877  
878 878  
879 879  ==== 2.3.3.10  +5V Output ====
880 880  
881 881  
882 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
883 883  
884 884  The 5V output time can be controlled by AT Command.
885 885  
... ... @@ -887,7 +887,7 @@
887 887  
888 888  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
889 889  
890 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
891 891  
892 892  
893 893  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -901,40 +901,9 @@
901 901  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
902 902  
903 903  
904 -==== 2.3.3.12  PWM MOD ====
809 +==== 2.3.3.12  Working MOD ====
905 905  
906 906  
907 -* (((
908 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
909 -)))
910 -* (((
911 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
912 -)))
913 -
914 - [[image:image-20230817183249-3.png||height="320" width="417"]]
915 -
916 -* (((
917 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
918 -)))
919 -* (((
920 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
921 -)))
922 -* (((
923 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
924 -
925 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
926 -
927 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
928 -
929 -b) If the output duration is more than 30 seconds, better to use external power source. 
930 -
931 -
932 -
933 -)))
934 -
935 -==== 2.3.3.13  Working MOD ====
936 -
937 -
938 938  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
939 939  
940 940  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -950,8 +950,9 @@
950 950  * 6: MOD7
951 951  * 7: MOD8
952 952  * 8: MOD9
953 -* 9: MOD10
954 954  
828 +
829 +
955 955  == 2.4 Payload Decoder file ==
956 956  
957 957  
... ... @@ -981,6 +981,8 @@
981 981  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
982 982  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
983 983  
859 +
860 +
984 984  == 3.2 General Commands ==
985 985  
986 986  
... ... @@ -997,7 +997,7 @@
997 997  == 3.3 Commands special design for SN50v3-LB ==
998 998  
999 999  
1000 -These commands only valid for SN50v3-LB, as below:
877 +These commands only valid for S31x-LB, as below:
1001 1001  
1002 1002  
1003 1003  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1008,7 +1008,7 @@
1008 1008  (% style="color:blue" %)**AT Command: AT+TDC**
1009 1009  
1010 1010  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
888 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1012 1012  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1013 1013  30000
1014 1014  OK
... ... @@ -1028,14 +1028,16 @@
1028 1028  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1029 1029  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1030 1030  
908 +
909 +
1031 1031  === 3.3.2 Get Device Status ===
1032 1032  
1033 1033  
1034 1034  Send a LoRaWAN downlink to ask the device to send its status.
1035 1035  
1036 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
915 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1037 1037  
1038 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
917 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1039 1039  
1040 1040  
1041 1041  === 3.3.3 Set Interrupt Mode ===
... ... @@ -1046,7 +1046,7 @@
1046 1046  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1047 1047  
1048 1048  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1049 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
928 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1050 1050  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1051 1051  0
1052 1052  OK
... ... @@ -1076,6 +1076,8 @@
1076 1076  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1077 1077  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1078 1078  
958 +
959 +
1079 1079  === 3.3.4 Set Power Output Duration ===
1080 1080  
1081 1081  
... ... @@ -1090,7 +1090,7 @@
1090 1090  (% style="color:blue" %)**AT Command: AT+5VT**
1091 1091  
1092 1092  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1093 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
974 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1094 1094  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1095 1095  500(default)
1096 1096  OK
... ... @@ -1108,6 +1108,8 @@
1108 1108  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1109 1109  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1110 1110  
992 +
993 +
1111 1111  === 3.3.5 Set Weighing parameters ===
1112 1112  
1113 1113  
... ... @@ -1116,7 +1116,7 @@
1116 1116  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1117 1117  
1118 1118  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1119 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1002 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1120 1120  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1121 1121  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1122 1122  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1133,6 +1133,8 @@
1133 1133  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1134 1134  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1135 1135  
1019 +
1020 +
1136 1136  === 3.3.6 Set Digital pulse count value ===
1137 1137  
1138 1138  
... ... @@ -1143,7 +1143,7 @@
1143 1143  (% style="color:blue" %)**AT Command: AT+SETCNT**
1144 1144  
1145 1145  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1146 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1031 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1147 1147  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1148 1148  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1149 1149  
... ... @@ -1156,6 +1156,8 @@
1156 1156  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1157 1157  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1158 1158  
1044 +
1045 +
1159 1159  === 3.3.7 Set Workmode ===
1160 1160  
1161 1161  
... ... @@ -1164,7 +1164,7 @@
1164 1164  (% style="color:blue" %)**AT Command: AT+MOD**
1165 1165  
1166 1166  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1167 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1054 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1168 1168  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1169 1169  OK
1170 1170  )))
... ... @@ -1180,104 +1180,11 @@
1180 1180  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1181 1181  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1182 1182  
1183 -(% id="H3.3.8PWMsetting" %)
1184 -=== 3.3.8 PWM setting ===
1185 1185  
1186 1186  
1187 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1072 += 4. Battery & Power Consumption =
1188 1188  
1189 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1190 1190  
1191 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1192 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1193 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1194 -0(default)
1195 -
1196 -OK
1197 -)))
1198 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1199 -OK
1200 -
1201 -)))
1202 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1203 -
1204 -(% style="color:blue" %)**Downlink Command: 0x0C**
1205 -
1206 -Format: Command Code (0x0C) followed by 1 bytes.
1207 -
1208 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1209 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1210 -
1211 -
1212 -(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1213 -
1214 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1215 -
1216 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1217 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1218 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1219 -0,0,0(default)
1220 -
1221 -OK
1222 -)))
1223 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1224 -OK
1225 -
1226 -)))
1227 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1228 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1229 -
1230 -
1231 -)))|(% style="width:137px" %)(((
1232 -OK
1233 -)))
1234 -
1235 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1236 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1237 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1238 -AT+PWMOUT=a,b,c
1239 -
1240 -
1241 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1242 -Set PWM output time, output frequency and output duty cycle.
1243 -
1244 -(((
1245 -
1246 -)))
1247 -
1248 -(((
1249 -
1250 -)))
1251 -)))|(% style="width:242px" %)(((
1252 -a: Output time (unit: seconds)
1253 -
1254 -The value ranges from 0 to 65535.
1255 -
1256 -When a=65535, PWM will always output.
1257 -)))
1258 -|(% style="width:242px" %)(((
1259 -b: Output frequency (unit: HZ)
1260 -)))
1261 -|(% style="width:242px" %)(((
1262 -c: Output duty cycle (unit: %)
1263 -
1264 -The value ranges from 0 to 100.
1265 -)))
1266 -
1267 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1268 -
1269 -Format: Command Code (0x0B01) followed by 6 bytes.
1270 -
1271 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1272 -
1273 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1274 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1275 -
1276 -
1277 -
1278 -= 4. Battery & Power Cons =
1279 -
1280 -
1281 1281  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1282 1282  
1283 1283  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1287,19 +1287,22 @@
1287 1287  
1288 1288  
1289 1289  (% class="wikigeneratedid" %)
1290 -**User can change firmware SN50v3-LB to:**
1084 +User can change firmware SN50v3-LB to:
1291 1291  
1292 1292  * Change Frequency band/ region.
1293 1293  * Update with new features.
1294 1294  * Fix bugs.
1295 1295  
1296 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1090 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1297 1297  
1298 -**Methods to Update Firmware:**
1299 1299  
1300 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1301 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1093 +Methods to Update Firmware:
1302 1302  
1095 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1096 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1097 +
1098 +
1099 +
1303 1303  = 6. FAQ =
1304 1304  
1305 1305  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1308,22 +1308,8 @@
1308 1308  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1309 1309  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1310 1310  
1311 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1312 1312  
1313 1313  
1314 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1315 -
1316 -
1317 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1318 -
1319 -
1320 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1321 -
1322 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1323 -
1324 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1325 -
1326 -
1327 1327  = 7. Order Info =
1328 1328  
1329 1329  
... ... @@ -1347,6 +1347,8 @@
1347 1347  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1348 1348  * (% style="color:red" %)**NH**(%%): No Hole
1349 1349  
1133 +
1134 +
1350 1350  = 8. ​Packing Info =
1351 1351  
1352 1352  
... ... @@ -1361,6 +1361,8 @@
1361 1361  * Package Size / pcs : cm
1362 1362  * Weight / pcs : g
1363 1363  
1149 +
1150 +
1364 1364  = 9. Support =
1365 1365  
1366 1366  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0