<
From version < 78.1 >
edited by Mengting Qiu
on 2023/12/13 10:24
To version < 74.4 >
edited by Xiaoling
on 2023/08/19 15:45
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -580,7 +580,6 @@
580 580  
581 581  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 584  
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
... ... @@ -629,18 +629,10 @@
629 629  
630 630  [[image:image-20230818092200-1.png||height="344" width="627"]]
631 631  
632 -===== 2.3.2.10.b  Uplink, PWM output =====
633 633  
634 -[[image:image-20230817172209-2.png||height="439" width="683"]]
633 +===== 2.3.2.10. Downlink, PWM output =====
635 635  
636 636  
637 -
638 -
639 -
640 -
641 -===== 2.3.2.10.c  Downlink, PWM output =====
642 -
643 -
644 644  [[image:image-20230817173800-3.png||height="412" width="685"]]
645 645  
646 646  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -899,17 +899,7 @@
899 899  )))
900 900  * (((
901 901  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
902 -)))
903 -* (((
904 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
905 905  
906 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
907 -
908 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
909 -
910 -b) If the output duration is more than 30 seconds, better to use external power source. 
911 -
912 -
913 913  
914 914  )))
915 915  
... ... @@ -1161,26 +1161,24 @@
1161 1161  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1162 1162  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1163 1163  
1164 -(% id="H3.3.8PWMsetting" %)
1165 1165  === 3.3.8 PWM setting ===
1166 1166  
1148 +Feature: Set the time acquisition unit for PWM input capture.
1167 1167  
1168 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1169 -
1170 1170  (% style="color:blue" %)**AT Command: AT+PWMSET**
1171 1171  
1172 1172  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1173 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1174 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1153 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1154 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1175 1175  0(default)
1176 1176  
1177 1177  OK
1178 1178  )))
1179 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1159 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1180 1180  OK
1181 1181  
1182 1182  )))
1183 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1163 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1184 1184  
1185 1185  (% style="color:blue" %)**Downlink Command: 0x0C**
1186 1186  
... ... @@ -1189,73 +1189,9 @@
1189 1189  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1190 1190  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1191 1191  
1172 += 4. Battery & Power Consumption =
1192 1192  
1193 1193  
1194 -(% class="mark" %)Feature: Set the time acquisition unit for PWM output.
1195 -
1196 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1197 -
1198 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1199 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1200 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1201 -0,0,0(default)
1202 -
1203 -OK
1204 -)))
1205 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1206 -OK
1207 -
1208 -)))
1209 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1210 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1211 -
1212 -
1213 -)))|(% style="width:137px" %)(((
1214 -OK
1215 -)))
1216 -
1217 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1218 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1219 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1220 -AT+PWMOUT=a,b,c
1221 -
1222 -
1223 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1224 -Set PWM output time, output frequency and output duty cycle.(((
1225 -
1226 -)))
1227 -
1228 -(((
1229 -
1230 -)))
1231 -)))|(% style="width:242px" %)(((
1232 -a: Output time (unit: seconds)
1233 -
1234 -The value ranges from 0 to 65535.
1235 -
1236 -When a=65535, PWM will always output.
1237 -)))
1238 -|(% style="width:242px" %)(((
1239 -b: Output frequency (unit: HZ)
1240 -)))
1241 -|(% style="width:242px" %)(((
1242 -c: Output duty cycle (unit: %)
1243 -
1244 -The value ranges from 0 to 100.
1245 -)))
1246 -
1247 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1248 -
1249 -Format: Command Code (0x0B01) followed by 6 bytes.
1250 -
1251 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1252 -
1253 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1254 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1255 -
1256 -= 4. Battery & Power Cons =
1257 -
1258 -
1259 1259  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1260 1260  
1261 1261  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0