<
From version < 78.1 >
edited by Mengting Qiu
on 2023/12/13 10:24
To version < 56.1 >
edited by Edwin Chen
on 2023/08/10 12:15
>
Change comment: Uploaded new attachment "image-20230810121434-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Edwin
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -466,6 +466,7 @@
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 467  
468 468  
476 +
469 469  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 470  
471 471  
... ... @@ -578,87 +578,6 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM output =====
633 -
634 -[[image:image-20230817172209-2.png||height="439" width="683"]]
635 -
636 -
637 -
638 -
639 -
640 -
641 -===== 2.3.2.10.c  Downlink, PWM output =====
642 -
643 -
644 -[[image:image-20230817173800-3.png||height="412" width="685"]]
645 -
646 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
647 -
648 - xx xx xx is the output frequency, the unit is HZ.
649 -
650 - yy is the duty cycle of the output, the unit is %.
651 -
652 - zz zz is the time delay of the output, the unit is ms.
653 -
654 -
655 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
656 -
657 -The oscilloscope displays as follows:
658 -
659 -[[image:image-20230817173858-5.png||height="694" width="921"]]
660 -
661 -
662 662  === 2.3.3  ​Decode payload ===
663 663  
664 664  
... ... @@ -732,10 +732,6 @@
732 732  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
733 733  
734 734  
735 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
736 -
737 -[[image:image-20230811113449-1.png||height="370" width="608"]]
738 -
739 739  ==== 2.3.3.5 Digital Interrupt ====
740 740  
741 741  
... ... @@ -882,40 +882,9 @@
882 882  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
883 883  
884 884  
885 -==== 2.3.3.12  PWM MOD ====
808 +==== 2.3.3.12  Working MOD ====
886 886  
887 887  
888 -* (((
889 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
890 -)))
891 -* (((
892 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
893 -)))
894 -
895 - [[image:image-20230817183249-3.png||height="320" width="417"]]
896 -
897 -* (((
898 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
899 -)))
900 -* (((
901 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
902 -)))
903 -* (((
904 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
905 -
906 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
907 -
908 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
909 -
910 -b) If the output duration is more than 30 seconds, better to use external power source. 
911 -
912 -
913 -
914 -)))
915 -
916 -==== 2.3.3.13  Working MOD ====
917 -
918 -
919 919  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
920 920  
921 921  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -931,8 +931,9 @@
931 931  * 6: MOD7
932 932  * 7: MOD8
933 933  * 8: MOD9
934 -* 9: MOD10
935 935  
827 +
828 +
936 936  == 2.4 Payload Decoder file ==
937 937  
938 938  
... ... @@ -962,6 +962,8 @@
962 962  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
963 963  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
964 964  
858 +
859 +
965 965  == 3.2 General Commands ==
966 966  
967 967  
... ... @@ -1009,6 +1009,8 @@
1009 1009  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1010 1010  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1011 1011  
907 +
908 +
1012 1012  === 3.3.2 Get Device Status ===
1013 1013  
1014 1014  
... ... @@ -1057,6 +1057,8 @@
1057 1057  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1058 1058  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1059 1059  
957 +
958 +
1060 1060  === 3.3.4 Set Power Output Duration ===
1061 1061  
1062 1062  
... ... @@ -1089,6 +1089,8 @@
1089 1089  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1090 1090  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1091 1091  
991 +
992 +
1092 1092  === 3.3.5 Set Weighing parameters ===
1093 1093  
1094 1094  
... ... @@ -1114,6 +1114,8 @@
1114 1114  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1115 1115  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1116 1116  
1018 +
1019 +
1117 1117  === 3.3.6 Set Digital pulse count value ===
1118 1118  
1119 1119  
... ... @@ -1137,6 +1137,8 @@
1137 1137  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1138 1138  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1139 1139  
1043 +
1044 +
1140 1140  === 3.3.7 Set Workmode ===
1141 1141  
1142 1142  
... ... @@ -1161,101 +1161,11 @@
1161 1161  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1162 1162  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1163 1163  
1164 -(% id="H3.3.8PWMsetting" %)
1165 -=== 3.3.8 PWM setting ===
1166 1166  
1167 1167  
1168 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1071 += 4. Battery & Power Consumption =
1169 1169  
1170 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1171 1171  
1172 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1173 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1174 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1175 -0(default)
1176 -
1177 -OK
1178 -)))
1179 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1180 -OK
1181 -
1182 -)))
1183 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1184 -
1185 -(% style="color:blue" %)**Downlink Command: 0x0C**
1186 -
1187 -Format: Command Code (0x0C) followed by 1 bytes.
1188 -
1189 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1190 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1191 -
1192 -
1193 -
1194 -(% class="mark" %)Feature: Set the time acquisition unit for PWM output.
1195 -
1196 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1197 -
1198 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1199 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1200 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1201 -0,0,0(default)
1202 -
1203 -OK
1204 -)))
1205 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1206 -OK
1207 -
1208 -)))
1209 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1210 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1211 -
1212 -
1213 -)))|(% style="width:137px" %)(((
1214 -OK
1215 -)))
1216 -
1217 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1218 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1219 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1220 -AT+PWMOUT=a,b,c
1221 -
1222 -
1223 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1224 -Set PWM output time, output frequency and output duty cycle.(((
1225 -
1226 -)))
1227 -
1228 -(((
1229 -
1230 -)))
1231 -)))|(% style="width:242px" %)(((
1232 -a: Output time (unit: seconds)
1233 -
1234 -The value ranges from 0 to 65535.
1235 -
1236 -When a=65535, PWM will always output.
1237 -)))
1238 -|(% style="width:242px" %)(((
1239 -b: Output frequency (unit: HZ)
1240 -)))
1241 -|(% style="width:242px" %)(((
1242 -c: Output duty cycle (unit: %)
1243 -
1244 -The value ranges from 0 to 100.
1245 -)))
1246 -
1247 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1248 -
1249 -Format: Command Code (0x0B01) followed by 6 bytes.
1250 -
1251 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1252 -
1253 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1254 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1255 -
1256 -= 4. Battery & Power Cons =
1257 -
1258 -
1259 1259  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1260 1260  
1261 1261  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1278,6 +1278,8 @@
1278 1278  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1279 1279  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1280 1280  
1096 +
1097 +
1281 1281  = 6. FAQ =
1282 1282  
1283 1283  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1286,6 +1286,8 @@
1286 1286  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1287 1287  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1288 1288  
1106 +
1107 +
1289 1289  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1290 1290  
1291 1291  
... ... @@ -1292,16 +1292,6 @@
1292 1292  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1293 1293  
1294 1294  
1295 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1296 -
1297 -
1298 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1299 -
1300 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1301 -
1302 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1303 -
1304 -
1305 1305  = 7. Order Info =
1306 1306  
1307 1307  
... ... @@ -1325,6 +1325,8 @@
1325 1325  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1326 1326  * (% style="color:red" %)**NH**(%%): No Hole
1327 1327  
1137 +
1138 +
1328 1328  = 8. ​Packing Info =
1329 1329  
1330 1330  
... ... @@ -1339,6 +1339,8 @@
1339 1339  * Package Size / pcs : cm
1340 1340  * Weight / pcs : g
1341 1341  
1153 +
1154 +
1342 1342  = 9. Support =
1343 1343  
1344 1344  
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0