Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230610170047-1.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 13 removed)
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -226,33 +226,33 @@ 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 -0x01: EU868 230 +*0x01: EU868 230 230 231 -0x02: US915 232 +*0x02: US915 232 232 233 -0x03: IN865 234 +*0x03: IN865 234 234 235 -0x04: AU915 236 +*0x04: AU915 236 236 237 -0x05: KZ865 238 +*0x05: KZ865 238 238 239 -0x06: RU864 240 +*0x06: RU864 240 240 241 -0x07: AS923 242 +*0x07: AS923 242 242 243 -0x08: AS923-1 244 +*0x08: AS923-1 244 244 245 -0x09: AS923-2 246 +*0x09: AS923-2 246 246 247 -0x0a: AS923-3 248 +*0x0a: AS923-3 248 248 249 -0x0b: CN470 250 +*0x0b: CN470 250 250 251 -0x0c: EU433 252 +*0x0c: EU433 252 252 253 -0x0d: KR920 254 +*0x0d: KR920 254 254 255 -0x0e: MA869 256 +*0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -328,8 +328,9 @@ 328 328 )))|(% style="width:189px" %)((( 329 329 Digital in(PB15) & Digital Interrupt(PA8) 330 330 )))|(% style="width:208px" %)((( 331 -Distance measure by: 1) LIDAR-Lite V3HP 332 -Or 2) Ultrasonic Sensor 332 +Distance measure by:1) LIDAR-Lite V3HP 333 +Or 334 +2) Ultrasonic Sensor 333 333 )))|(% style="width:117px" %)Reserved 334 334 335 335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -359,7 +359,8 @@ 359 359 ADC(PA4) 360 360 )))|(% style="width:323px" %)((( 361 361 Distance measure by:1)TF-Mini plus LiDAR 362 -Or 2) TF-Luna LiDAR 364 +Or 365 +2) TF-Luna LiDAR 363 363 )))|(% style="width:188px" %)Distance signal strength 364 364 365 365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -376,7 +376,7 @@ 376 376 377 377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 378 378 379 -[[image:image-20230 610170047-1.png||height="452" width="799"]]382 +[[image:image-20230513105207-4.png||height="469" width="802"]] 380 380 381 381 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -466,6 +466,7 @@ 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 467 467 468 468 472 + 469 469 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 470 471 471 ... ... @@ -578,87 +578,6 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 -===== 2.3.2.10.b Uplink, PWM output ===== 633 - 634 -[[image:image-20230817172209-2.png||height="439" width="683"]] 635 - 636 - 637 - 638 - 639 - 640 - 641 -===== 2.3.2.10.c Downlink, PWM output ===== 642 - 643 - 644 -[[image:image-20230817173800-3.png||height="412" width="685"]] 645 - 646 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 647 - 648 - xx xx xx is the output frequency, the unit is HZ. 649 - 650 - yy is the duty cycle of the output, the unit is %. 651 - 652 - zz zz is the time delay of the output, the unit is ms. 653 - 654 - 655 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 656 - 657 -The oscilloscope displays as follows: 658 - 659 -[[image:image-20230817173858-5.png||height="694" width="921"]] 660 - 661 - 662 662 === 2.3.3 Decode payload === 663 663 664 664 ... ... @@ -722,9 +722,9 @@ 722 722 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 723 723 724 724 725 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.648 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 726 726 727 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.650 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 728 728 729 729 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 730 730 ... ... @@ -732,10 +732,6 @@ 732 732 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 733 733 734 734 735 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 736 - 737 -[[image:image-20230811113449-1.png||height="370" width="608"]] 738 - 739 739 ==== 2.3.3.5 Digital Interrupt ==== 740 740 741 741 ... ... @@ -804,7 +804,7 @@ 804 804 805 805 Below is the connection to SHT20/ SHT31. The connection is as below: 806 806 807 -[[image:image-20230 610170152-2.png||height="501" width="846"]]726 +[[image:image-20230513103633-3.png||height="448" width="716"]] 808 808 809 809 810 810 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -882,40 +882,9 @@ 882 882 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 883 883 884 884 885 -==== 2.3.3.12 PWMMOD ====804 +==== 2.3.3.12 Working MOD ==== 886 886 887 887 888 -* ((( 889 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 890 -))) 891 -* ((( 892 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 893 -))) 894 - 895 - [[image:image-20230817183249-3.png||height="320" width="417"]] 896 - 897 -* ((( 898 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 899 -))) 900 -* ((( 901 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 902 -))) 903 -* ((( 904 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 905 - 906 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 907 - 908 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 909 - 910 -b) If the output duration is more than 30 seconds, better to use external power source. 911 - 912 - 913 - 914 -))) 915 - 916 -==== 2.3.3.13 Working MOD ==== 917 - 918 - 919 919 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 920 920 921 921 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -931,7 +931,6 @@ 931 931 * 6: MOD7 932 932 * 7: MOD8 933 933 * 8: MOD9 934 -* 9: MOD10 935 935 936 936 == 2.4 Payload Decoder file == 937 937 ... ... @@ -989,7 +989,7 @@ 989 989 (% style="color:blue" %)**AT Command: AT+TDC** 990 990 991 991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 992 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**879 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 993 993 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 994 994 30000 995 995 OK ... ... @@ -1027,7 +1027,7 @@ 1027 1027 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1028 1028 1029 1029 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1030 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1031 1031 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1032 1032 0 1033 1033 OK ... ... @@ -1071,7 +1071,7 @@ 1071 1071 (% style="color:blue" %)**AT Command: AT+5VT** 1072 1072 1073 1073 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1074 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1075 1075 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1076 1076 500(default) 1077 1077 OK ... ... @@ -1097,7 +1097,7 @@ 1097 1097 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1098 1098 1099 1099 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1100 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1101 1101 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1102 1102 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1103 1103 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1124,7 +1124,7 @@ 1124 1124 (% style="color:blue" %)**AT Command: AT+SETCNT** 1125 1125 1126 1126 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1127 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1128 1128 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1129 1129 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1130 1130 ... ... @@ -1145,7 +1145,7 @@ 1145 1145 (% style="color:blue" %)**AT Command: AT+MOD** 1146 1146 1147 1147 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1148 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1149 1149 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1150 1150 OK 1151 1151 ))) ... ... @@ -1161,101 +1161,9 @@ 1161 1161 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1162 1162 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1163 1163 1164 -(% id="H3.3.8PWMsetting" %) 1165 -=== 3.3.8 PWM setting === 1051 += 4. Battery & Power Consumption = 1166 1166 1167 1167 1168 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1169 - 1170 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1171 - 1172 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1173 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1174 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1175 -0(default) 1176 - 1177 -OK 1178 -))) 1179 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1180 -OK 1181 - 1182 -))) 1183 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1184 - 1185 -(% style="color:blue" %)**Downlink Command: 0x0C** 1186 - 1187 -Format: Command Code (0x0C) followed by 1 bytes. 1188 - 1189 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1190 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1191 - 1192 - 1193 - 1194 -(% class="mark" %)Feature: Set the time acquisition unit for PWM output. 1195 - 1196 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1197 - 1198 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1199 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1200 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1201 -0,0,0(default) 1202 - 1203 -OK 1204 -))) 1205 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1206 -OK 1207 - 1208 -))) 1209 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1210 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1211 - 1212 - 1213 -)))|(% style="width:137px" %)((( 1214 -OK 1215 -))) 1216 - 1217 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1218 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1219 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1220 -AT+PWMOUT=a,b,c 1221 - 1222 - 1223 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1224 -Set PWM output time, output frequency and output duty cycle.((( 1225 - 1226 -))) 1227 - 1228 -((( 1229 - 1230 -))) 1231 -)))|(% style="width:242px" %)((( 1232 -a: Output time (unit: seconds) 1233 - 1234 -The value ranges from 0 to 65535. 1235 - 1236 -When a=65535, PWM will always output. 1237 -))) 1238 -|(% style="width:242px" %)((( 1239 -b: Output frequency (unit: HZ) 1240 -))) 1241 -|(% style="width:242px" %)((( 1242 -c: Output duty cycle (unit: %) 1243 - 1244 -The value ranges from 0 to 100. 1245 -))) 1246 - 1247 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1248 - 1249 -Format: Command Code (0x0B01) followed by 6 bytes. 1250 - 1251 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1252 - 1253 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1254 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1255 - 1256 -= 4. Battery & Power Cons = 1257 - 1258 - 1259 1259 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1260 1260 1261 1261 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1271,12 +1271,12 @@ 1271 1271 * Update with new features. 1272 1272 * Fix bugs. 1273 1273 1274 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/ 4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1275 1275 1276 1276 **Methods to Update Firmware:** 1277 1277 1278 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**1279 -* Update through UART TTL interface :**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.1073 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1074 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1280 1280 1281 1281 = 6. FAQ = 1282 1282 ... ... @@ -1286,22 +1286,6 @@ 1286 1286 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1287 1287 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1288 1288 1289 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1290 - 1291 - 1292 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1293 - 1294 - 1295 -== 6.3 How to put several sensors to a SN50v3-LB? == 1296 - 1297 - 1298 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1299 - 1300 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1301 - 1302 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1303 - 1304 - 1305 1305 = 7. Order Info = 1306 1306 1307 1307
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content