Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Xiaoling - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,9 +27,9 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 - 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== 1.9Hole Option ==138 +== Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 218 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 -0x01: EU868 229 +*0x01: EU868 230 230 231 -0x02: US915 231 +*0x02: US915 232 232 233 -0x03: IN865 233 +*0x03: IN865 234 234 235 -0x04: AU915 235 +*0x04: AU915 236 236 237 -0x05: KZ865 237 +*0x05: KZ865 238 238 239 -0x06: RU864 239 +*0x06: RU864 240 240 241 -0x07: AS923 241 +*0x07: AS923 242 242 243 -0x08: AS923-1 243 +*0x08: AS923-1 244 244 245 -0x09: AS923-2 245 +*0x09: AS923-2 246 246 247 -0x0a: AS923-3 247 +*0x0a: AS923-3 248 248 249 -0x0b: CN470 249 +*0x0b: CN470 250 250 251 -0x0c: EU433 251 +*0x0c: EU433 252 252 253 -0x0d: KR920 253 +*0x0d: KR920 254 254 255 -0x0e: MA869 255 +*0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,22 +276,19 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 280 281 281 For example: 282 282 283 - (% style="color:blue" %)**AT+MOD=2 **(%%)283 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 +1. All modes share the same Payload Explanation from HERE. 290 +1. By default, the device will send an uplink message every 20 minutes. 289 289 290 -2. All modes share the same Payload Explanation from HERE. 291 - 292 -3. By default, the device will send an uplink message every 20 minutes. 293 - 294 - 295 295 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 296 296 297 297 ... ... @@ -298,8 +298,8 @@ 298 298 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 299 299 300 300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:90px" %)**1**|(% style="background-color:#d9e2f3;c0; width:130px" %)**2**|(% style="background-color:#d9e2f3;c0; width:80px" %)**2**302 -|Value|Bat|(% style="width:191px" %)((( 298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2** 299 +|**Value**|Bat|(% style="width:191px" %)((( 303 303 Temperature(DS18B20)(PC13) 304 304 )))|(% style="width:78px" %)((( 305 305 ADC(PA4) ... ... @@ -316,12 +316,11 @@ 316 316 317 317 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 318 318 319 - 320 320 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 321 321 322 322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:30px" %)**2**|(% style="background-color:#d9e2f3;c0; width:110px" %)**2**|(% style="background-color:#d9e2f3;c0; width:40px" %)**2**|(% style="background-color:#d9e2f3;c0; width:110px" %)**1**|(% style="background-color:#d9e2f3;c0; width:140px" %)**2**|(% style="background-color:#d9e2f3;c0; width:40px" %)**2**324 -|Value|BAT|(% style="width:196px" %)((( 319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2** 320 +|**Value**|BAT|(% style="width:196px" %)((( 325 325 Temperature(DS18B20)(PC13) 326 326 )))|(% style="width:87px" %)((( 327 327 ADC(PA4) ... ... @@ -328,30 +328,27 @@ 328 328 )))|(% style="width:189px" %)((( 329 329 Digital in(PB15) & Digital Interrupt(PA8) 330 330 )))|(% style="width:208px" %)((( 331 -Distance measure by: 327 +Distance measure by:1) LIDAR-Lite V3HP 332 332 Or 2) Ultrasonic Sensor 333 333 )))|(% style="width:117px" %)Reserved 334 334 335 335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 336 336 337 - 338 338 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 339 339 340 340 [[image:image-20230512173758-5.png||height="563" width="712"]] 341 341 342 - 343 343 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 344 344 345 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 346 346 347 347 [[image:image-20230512173903-6.png||height="596" width="715"]] 348 348 349 - 350 350 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 351 351 352 352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:120px" %)**2**|(% style="background-color:#d9e2f3;c0; width:80px" %)**2**354 -|Value|BAT|(% style="width:183px" %)((( 346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2** 347 +|**Value**|BAT|(% style="width:183px" %)((( 355 355 Temperature(DS18B20)(PC13) 356 356 )))|(% style="width:173px" %)((( 357 357 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -359,36 +359,34 @@ 359 359 ADC(PA4) 360 360 )))|(% style="width:323px" %)((( 361 361 Distance measure by:1)TF-Mini plus LiDAR 362 -Or 2) TF-Luna LiDAR 355 +Or 356 +2) TF-Luna LiDAR 363 363 )))|(% style="width:188px" %)Distance signal strength 364 364 365 365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 366 366 367 - 368 368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 369 369 370 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 371 371 372 372 [[image:image-20230512180609-7.png||height="555" width="802"]] 373 373 374 - 375 375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 376 376 377 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 378 378 379 -[[image:image-20230 610170047-1.png||height="452" width="799"]]371 +[[image:image-20230513105207-4.png||height="469" width="802"]] 380 380 381 381 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 383 383 384 - 385 385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 386 386 387 387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 389 389 **Size(bytes)** 390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1391 -|Value|(% style="width:68px" %)((( 381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 382 +|**Value**|(% style="width:68px" %)((( 392 392 ADC1(PA4) 393 393 )))|(% style="width:75px" %)((( 394 394 ADC2(PA5) ... ... @@ -411,8 +411,8 @@ 411 411 This mode has total 11 bytes. As shown below: 412 412 413 413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 -|(% style="background-color:# d9e2f3;c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;c0; width:100px" %)**2**415 -|Value|BAT|(% style="width:186px" %)((( 405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2** 406 +|**Value**|BAT|(% style="width:186px" %)((( 416 416 Temperature1(DS18B20)(PC13) 417 417 )))|(% style="width:82px" %)((( 418 418 ADC(PA4) ... ... @@ -423,29 +423,24 @@ 423 423 424 424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 425 425 426 - 427 427 [[image:image-20230513134006-1.png||height="559" width="736"]] 428 428 429 429 430 430 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 431 432 - 433 433 [[image:image-20230512164658-2.png||height="532" width="729"]] 434 434 435 435 Each HX711 need to be calibrated before used. User need to do below two steps: 436 436 437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 439 439 1. ((( 440 440 Weight has 4 bytes, the unit is g. 441 - 442 - 443 - 444 444 ))) 445 445 446 446 For example: 447 447 448 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**434 +**AT+GETSENSORVALUE =0** 449 449 450 450 Response: Weight is 401 g 451 451 ... ... @@ -455,12 +455,14 @@ 455 455 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 456 456 **Size(bytes)** 457 457 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 -|Value|BAT|(% style="width:193px" %)((( 459 -Temperature(DS18B20)(PC13) 444 +|**Value**|BAT|(% style="width:193px" %)((( 445 +Temperature(DS18B20) 446 +(PC13) 460 460 )))|(% style="width:85px" %)((( 461 461 ADC(PA4) 462 462 )))|(% style="width:186px" %)((( 463 -Digital in(PB15) & Digital Interrupt(PA8) 450 +Digital in(PB15) & 451 +Digital Interrupt(PA8) 464 464 )))|(% style="width:100px" %)Weight 465 465 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -468,7 +468,6 @@ 468 468 469 469 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 470 471 - 472 472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 473 473 474 474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -475,12 +475,11 @@ 475 475 476 476 [[image:image-20230512181814-9.png||height="543" width="697"]] 477 477 465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 478 478 479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 480 - 481 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**483 -|Value|BAT|(% style="width:256px" %)((( 468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 469 +|**Value**|BAT|(% style="width:256px" %)((( 484 484 Temperature(DS18B20)(PC13) 485 485 )))|(% style="width:108px" %)((( 486 486 ADC(PA4) ... ... @@ -495,12 +495,11 @@ 495 495 496 496 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 497 498 - 499 499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 501 501 **Size(bytes)** 502 502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 -|Value|BAT|(% style="width:188px" %)((( 488 +|**Value**|BAT|(% style="width:188px" %)((( 504 504 Temperature(DS18B20) 505 505 (PC13) 506 506 )))|(% style="width:83px" %)((( ... ... @@ -511,15 +511,13 @@ 511 511 512 512 [[image:image-20230513111203-7.png||height="324" width="975"]] 513 513 514 - 515 515 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 516 516 517 - 518 518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 520 520 **Size(bytes)** 521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2522 -|Value|BAT|(% style="width:207px" %)((( 504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 505 +|**Value**|BAT|(% style="width:207px" %)((( 523 523 Temperature(DS18B20) 524 524 (PC13) 525 525 )))|(% style="width:94px" %)((( ... ... @@ -537,23 +537,22 @@ 537 537 538 538 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 539 539 540 - 541 541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 543 543 **Size(bytes)** 544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4545 -|Value|BAT|((( 546 -Temperature 547 -( DS18B20)(PC13)526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 527 +|**Value**|BAT|((( 528 +Temperature1(DS18B20) 529 +(PC13) 548 548 )))|((( 549 -Temperature2 550 -( DS18B20)(PB9)531 +Temperature2(DS18B20) 532 +(PB9) 551 551 )))|((( 552 552 Digital Interrupt 553 553 (PB15) 554 554 )))|(% style="width:193px" %)((( 555 -Temperature3 556 -( DS18B20)(PB8)537 +Temperature3(DS18B20) 538 +(PB8) 557 557 )))|(% style="width:78px" %)((( 558 558 Count1(PA8) 559 559 )))|(% style="width:78px" %)((( ... ... @@ -564,11 +564,11 @@ 564 564 565 565 (% style="color:blue" %)**The newly added AT command is issued correspondingly:** 566 566 567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 549 +(% style="color:#037691" %)**~ AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 568 568 569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 551 +(% style="color:#037691" %)**~ AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 570 570 571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 553 +(% style="color:#037691" %)**~ AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 572 572 573 573 574 574 (% style="color:blue" %)**AT+SETCNT=aa,bb** ... ... @@ -578,90 +578,9 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 582 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 -===== 2.3.2.10.b Uplink, PWM output ===== 633 - 634 -[[image:image-20230817172209-2.png||height="439" width="683"]] 635 - 636 - 637 - 638 - 639 - 640 - 641 -===== 2.3.2.10.c Downlink, PWM output ===== 642 - 643 - 644 -[[image:image-20230817173800-3.png||height="412" width="685"]] 645 - 646 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 647 - 648 - xx xx xx is the output frequency, the unit is HZ. 649 - 650 - yy is the duty cycle of the output, the unit is %. 651 - 652 - zz zz is the time delay of the output, the unit is ms. 653 - 654 - 655 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 656 - 657 -The oscilloscope displays as follows: 658 - 659 -[[image:image-20230817173858-5.png||height="694" width="921"]] 660 - 661 - 662 662 === 2.3.3 Decode payload === 663 663 664 - 665 665 While using TTN V3 network, you can add the payload format to decode the payload. 666 666 667 667 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -668,14 +668,13 @@ 668 668 669 669 The payload decoder function for TTN V3 are here: 670 670 671 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]572 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 672 672 673 673 674 674 ==== 2.3.3.1 Battery Info ==== 675 675 577 +Check the battery voltage for SN50v3. 676 676 677 -Check the battery voltage for SN50v3-LB. 678 - 679 679 Ex1: 0x0B45 = 2885mV 680 680 681 681 Ex2: 0x0B49 = 2889mV ... ... @@ -683,16 +683,14 @@ 683 683 684 684 ==== 2.3.3.2 Temperature (DS18B20) ==== 685 685 686 - 687 687 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 688 688 689 -More DS18B20 can check the [[3 DS18B20 mode>> ||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]588 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 690 690 691 691 (% style="color:blue" %)**Connection:** 692 692 693 693 [[image:image-20230512180718-8.png||height="538" width="647"]] 694 694 695 - 696 696 (% style="color:blue" %)**Example**: 697 697 698 698 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -704,7 +704,6 @@ 704 704 705 705 ==== 2.3.3.3 Digital Input ==== 706 706 707 - 708 708 The digital input for pin PB15, 709 709 710 710 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -714,38 +714,28 @@ 714 714 ((( 715 715 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 716 716 717 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 718 - 719 - 614 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 720 720 ))) 721 721 722 722 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 723 723 619 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 724 724 725 - The measuringrange of theADCis onlyabout0.1Vto1.1VThe voltage resolution is about0.24mv.621 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 726 726 727 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 728 - 729 729 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 730 730 625 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 731 731 732 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 733 733 734 - 735 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 736 - 737 -[[image:image-20230811113449-1.png||height="370" width="608"]] 738 - 739 739 ==== 2.3.3.5 Digital Interrupt ==== 740 740 630 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 741 741 742 - Digital Interruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.632 +(% style="color:blue" %)**~ Interrupt connection method:** 743 743 744 -(% style="color:blue" %)** Interrupt connection method:** 745 - 746 746 [[image:image-20230513105351-5.png||height="147" width="485"]] 747 747 748 - 749 749 (% style="color:blue" %)**Example to use with door sensor :** 750 750 751 751 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -752,23 +752,22 @@ 752 752 753 753 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 754 754 755 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.642 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 756 756 644 +(% style="color:blue" %)**~ Below is the installation example:** 757 757 758 - (%style="color:blue"%)**Belowisthe installationexample:**646 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 759 759 760 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 761 - 762 762 * ((( 763 -One pin to SN50v3 -LB's PA8 pin649 +One pin to SN50_v3's PA8 pin 764 764 ))) 765 765 * ((( 766 -The other pin to SN50v3 -LB's VDD pin652 +The other pin to SN50_v3's VDD pin 767 767 ))) 768 768 769 769 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 770 770 771 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.657 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 772 772 773 773 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 774 774 ... ... @@ -780,32 +780,29 @@ 780 780 781 781 The command is: 782 782 783 -(% style="color:blue" %)**AT+INTMOD1=1 669 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 784 784 785 785 Below shows some screen captures in TTN V3: 786 786 787 787 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 788 788 675 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 789 789 790 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 791 - 792 792 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 793 793 794 794 795 795 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 796 796 797 - 798 798 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 799 799 800 800 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 801 801 802 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**686 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 803 803 804 - 805 805 Below is the connection to SHT20/ SHT31. The connection is as below: 806 806 807 -[[image:image-20230610170152-2.png||height="501" width="846"]] 808 808 691 +[[image:image-20230513103633-3.png||height="448" width="716"]] 809 809 810 810 The device will be able to get the I2C sensor data now and upload to IoT Server. 811 811 ... ... @@ -824,26 +824,23 @@ 824 824 825 825 ==== 2.3.3.7 Distance Reading ==== 826 826 827 - 828 828 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 829 829 830 830 831 831 ==== 2.3.3.8 Ultrasonic Sensor ==== 832 832 833 - 834 834 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 835 835 836 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.717 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 837 837 838 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%)ultrasonic sensor.719 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 839 839 840 840 The picture below shows the connection: 841 841 842 842 [[image:image-20230512173903-6.png||height="596" width="715"]] 843 843 725 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 844 844 845 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 846 - 847 847 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 848 848 849 849 **Example:** ... ... @@ -851,17 +851,16 @@ 851 851 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 852 852 853 853 734 + 854 854 ==== 2.3.3.9 Battery Output - BAT pin ==== 855 855 737 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 856 856 857 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 858 858 859 - 860 860 ==== 2.3.3.10 +5V Output ==== 861 861 742 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 862 862 863 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 864 - 865 865 The 5V output time can be controlled by AT Command. 866 866 867 867 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -868,54 +868,21 @@ 868 868 869 869 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 870 870 871 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.750 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 872 872 873 873 753 + 874 874 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 875 875 876 - 877 877 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 878 878 879 879 [[image:image-20230512172447-4.png||height="416" width="712"]] 880 880 881 - 882 882 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 883 883 884 884 885 -==== 2.3.3.12 PWMMOD ====763 +==== 2.3.3.12 Working MOD ==== 886 886 887 - 888 -* ((( 889 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 890 -))) 891 -* ((( 892 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 893 -))) 894 - 895 - [[image:image-20230817183249-3.png||height="320" width="417"]] 896 - 897 -* ((( 898 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 899 -))) 900 -* ((( 901 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 902 -))) 903 -* ((( 904 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 905 - 906 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 907 - 908 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 909 - 910 -b) If the output duration is more than 30 seconds, better to use external power source. 911 - 912 - 913 - 914 -))) 915 - 916 -==== 2.3.3.13 Working MOD ==== 917 - 918 - 919 919 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 920 920 921 921 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -931,8 +931,9 @@ 931 931 * 6: MOD7 932 932 * 7: MOD8 933 933 * 8: MOD9 934 -* 9: MOD10 935 935 781 + 782 + 936 936 == 2.4 Payload Decoder file == 937 937 938 938 ... ... @@ -943,6 +943,7 @@ 943 943 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 944 944 945 945 793 + 946 946 == 2.5 Frequency Plans == 947 947 948 948 ... ... @@ -978,18 +978,17 @@ 978 978 == 3.3 Commands special design for SN50v3-LB == 979 979 980 980 981 -These commands only valid for S N50v3-LB, as below:829 +These commands only valid for S31x-LB, as below: 982 982 983 983 984 984 === 3.3.1 Set Transmit Interval Time === 985 985 986 - 987 987 Feature: Change LoRaWAN End Node Transmit Interval. 988 988 989 989 (% style="color:blue" %)**AT Command: AT+TDC** 990 990 991 991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 992 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**839 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 993 993 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 994 994 30000 995 995 OK ... ... @@ -1009,25 +1009,25 @@ 1009 1009 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1010 1010 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1011 1011 1012 -=== 3.3.2 Get Device Status === 1013 1013 1014 1014 861 +=== 3.3.2 Get Device Status === 862 + 1015 1015 Send a LoRaWAN downlink to ask the device to send its status. 1016 1016 1017 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **865 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1018 1018 1019 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.867 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1020 1020 1021 1021 1022 1022 === 3.3.3 Set Interrupt Mode === 1023 1023 1024 - 1025 1025 Feature, Set Interrupt mode for GPIO_EXIT. 1026 1026 1027 1027 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1028 1028 1029 1029 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1030 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**877 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1031 1031 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1032 1032 0 1033 1033 OK ... ... @@ -1042,6 +1042,7 @@ 1042 1042 )))|(% style="width:157px" %)OK 1043 1043 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1044 1044 Set Transmit Interval 892 + 1045 1045 trigger by rising edge. 1046 1046 )))|(% style="width:157px" %)OK 1047 1047 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -1057,9 +1057,10 @@ 1057 1057 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1058 1058 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1059 1059 1060 -=== 3.3.4 Set Power Output Duration === 1061 1061 1062 1062 910 +=== 3.3.4 Set Power Output Duration === 911 + 1063 1063 Control the output duration 5V . Before each sampling, device will 1064 1064 1065 1065 ~1. first enable the power output to external sensor, ... ... @@ -1071,7 +1071,7 @@ 1071 1071 (% style="color:blue" %)**AT Command: AT+5VT** 1072 1072 1073 1073 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1074 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**923 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1075 1075 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1076 1076 500(default) 1077 1077 OK ... ... @@ -1089,15 +1089,16 @@ 1089 1089 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1090 1090 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1091 1091 1092 -=== 3.3.5 Set Weighing parameters === 1093 1093 1094 1094 943 +=== 3.3.5 Set Weighing parameters === 944 + 1095 1095 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1096 1096 1097 1097 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1098 1098 1099 1099 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1100 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**950 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1101 1101 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1102 1102 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1103 1103 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1114,9 +1114,10 @@ 1114 1114 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1115 1115 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1116 1116 1117 -=== 3.3.6 Set Digital pulse count value === 1118 1118 1119 1119 969 +=== 3.3.6 Set Digital pulse count value === 970 + 1120 1120 Feature: Set the pulse count value. 1121 1121 1122 1122 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1124,7 +1124,7 @@ 1124 1124 (% style="color:blue" %)**AT Command: AT+SETCNT** 1125 1125 1126 1126 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1127 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**978 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1128 1128 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1129 1129 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1130 1130 ... ... @@ -1137,15 +1137,16 @@ 1137 1137 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1138 1138 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1139 1139 1140 -=== 3.3.7 Set Workmode === 1141 1141 1142 1142 993 +=== 3.3.7 Set Workmode === 994 + 1143 1143 Feature: Switch working mode. 1144 1144 1145 1145 (% style="color:blue" %)**AT Command: AT+MOD** 1146 1146 1147 1147 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1148 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1000 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1149 1149 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1150 1150 OK 1151 1151 ))) ... ... @@ -1161,101 +1161,11 @@ 1161 1161 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1162 1162 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1163 1163 1164 -(% id="H3.3.8PWMsetting" %) 1165 -=== 3.3.8 PWM setting === 1166 1166 1167 1167 1168 - (% class="mark"%)Feature:Setthetime acquisitionnitfor PWMinputcapture.1018 += 4. Battery & Power Consumption = 1169 1169 1170 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1171 1171 1172 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1173 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1174 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1175 -0(default) 1176 - 1177 -OK 1178 -))) 1179 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1180 -OK 1181 - 1182 -))) 1183 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1184 - 1185 -(% style="color:blue" %)**Downlink Command: 0x0C** 1186 - 1187 -Format: Command Code (0x0C) followed by 1 bytes. 1188 - 1189 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1190 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1191 - 1192 - 1193 - 1194 -(% class="mark" %)Feature: Set the time acquisition unit for PWM output. 1195 - 1196 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1197 - 1198 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1199 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1200 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1201 -0,0,0(default) 1202 - 1203 -OK 1204 -))) 1205 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1206 -OK 1207 - 1208 -))) 1209 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1210 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1211 - 1212 - 1213 -)))|(% style="width:137px" %)((( 1214 -OK 1215 -))) 1216 - 1217 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1218 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1219 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1220 -AT+PWMOUT=a,b,c 1221 - 1222 - 1223 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1224 -Set PWM output time, output frequency and output duty cycle.((( 1225 - 1226 -))) 1227 - 1228 -((( 1229 - 1230 -))) 1231 -)))|(% style="width:242px" %)((( 1232 -a: Output time (unit: seconds) 1233 - 1234 -The value ranges from 0 to 65535. 1235 - 1236 -When a=65535, PWM will always output. 1237 -))) 1238 -|(% style="width:242px" %)((( 1239 -b: Output frequency (unit: HZ) 1240 -))) 1241 -|(% style="width:242px" %)((( 1242 -c: Output duty cycle (unit: %) 1243 - 1244 -The value ranges from 0 to 100. 1245 -))) 1246 - 1247 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1248 - 1249 -Format: Command Code (0x0B01) followed by 6 bytes. 1250 - 1251 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1252 - 1253 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1254 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1255 - 1256 -= 4. Battery & Power Cons = 1257 - 1258 - 1259 1259 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1260 1260 1261 1261 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1265,43 +1265,27 @@ 1265 1265 1266 1266 1267 1267 (% class="wikigeneratedid" %) 1268 - **User can change firmware SN50v3-LB to:**1030 +User can change firmware SN50v3-LB to: 1269 1269 1270 1270 * Change Frequency band/ region. 1271 1271 * Update with new features. 1272 1272 * Fix bugs. 1273 1273 1274 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1036 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1275 1275 1276 -**Methods to Update Firmware:** 1277 1277 1278 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1279 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1039 +Methods to Update Firmware: 1280 1280 1041 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1042 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1043 + 1281 1281 = 6. FAQ = 1282 1282 1283 1283 == 6.1 Where can i find source code of SN50v3-LB? == 1284 1284 1285 - 1286 1286 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1287 1287 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1288 1288 1289 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1290 - 1291 - 1292 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1293 - 1294 - 1295 -== 6.3 How to put several sensors to a SN50v3-LB? == 1296 - 1297 - 1298 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1299 - 1300 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1301 - 1302 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1303 - 1304 - 1305 1305 = 7. Order Info = 1306 1306 1307 1307 ... ... @@ -1327,7 +1327,6 @@ 1327 1327 1328 1328 = 8. Packing Info = 1329 1329 1330 - 1331 1331 (% style="color:#037691" %)**Package Includes**: 1332 1332 1333 1333 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content