Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 36 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Edwin - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,20 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 + 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 32 + 30 30 == 1.2 Features == 31 31 32 - 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -42,7 +42,6 @@ 42 42 43 43 == 1.3 Specification == 44 44 45 - 46 46 (% style="color:#037691" %)**Common DC Characteristics:** 47 47 48 48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,7 +79,6 @@ 79 79 80 80 == 1.4 Sleep mode and working mode == 81 81 82 - 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,9 +135,8 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== 1.9Hole Option ==138 +== Hole Option == 139 139 140 - 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 -0x01: EU868 228 +*0x01: EU868 230 230 231 -0x02: US915 230 +*0x02: US915 232 232 233 -0x03: IN865 232 +*0x03: IN865 234 234 235 -0x04: AU915 234 +*0x04: AU915 236 236 237 -0x05: KZ865 236 +*0x05: KZ865 238 238 239 -0x06: RU864 238 +*0x06: RU864 240 240 241 -0x07: AS923 240 +*0x07: AS923 242 242 243 -0x08: AS923-1 242 +*0x08: AS923-1 244 244 245 -0x09: AS923-2 244 +*0x09: AS923-2 246 246 247 -0x0a: AS923-3 246 +*0x0a: AS923-3 248 248 249 -0x0b: CN470 248 +*0x0b: CN470 250 250 251 -0x0c: EU433 250 +*0x0c: EU433 252 252 253 -0x0d: KR920 252 +*0x0d: KR920 254 254 255 -0x0e: MA869 254 +*0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,40 +276,25 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 280 281 281 For example: 282 282 283 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 289 289 290 -2. All modes share the same Payload Explanation from HERE. 291 - 292 -3. By default, the device will send an uplink message every 20 minutes. 293 - 294 - 295 295 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 296 296 297 - 298 298 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 299 299 300 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 -|Value|Bat|(% style="width:191px" %)((( 303 -Temperature(DS18B20)(PC13) 304 -)))|(% style="width:78px" %)((( 305 -ADC(PA4) 306 -)))|(% style="width:216px" %)((( 307 -Digital in(PB15)&Digital Interrupt(PA8) 308 -)))|(% style="width:308px" %)((( 309 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 310 -)))|(% style="width:154px" %)((( 311 -Humidity(SHT20 or SHT31) 312 -))) 295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 313 313 314 314 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 315 315 ... ... @@ -316,152 +316,128 @@ 316 316 317 317 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 318 318 319 - 320 320 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 321 321 322 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 -|Value|BAT|(% style="width:196px" %)((( 325 -Temperature(DS18B20)(PC13) 326 -)))|(% style="width:87px" %)((( 327 -ADC(PA4) 328 -)))|(% style="width:189px" %)((( 329 -Digital in(PB15) & Digital Interrupt(PA8) 330 -)))|(% style="width:208px" %)((( 331 -Distance measure by: 1) LIDAR-Lite V3HP 332 -Or 2) Ultrasonic Sensor 333 -)))|(% style="width:117px" %)Reserved 305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 306 +|**Value**|BAT|((( 307 +Temperature(DS18B20) 308 +)))|ADC|Digital in & Digital Interrupt|((( 309 +Distance measure by: 310 +1) LIDAR-Lite V3HP 311 +Or 312 +2) Ultrasonic Sensor 313 +)))|Reserved 334 334 335 335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 336 336 317 +**Connection of LIDAR-Lite V3HP:** 337 337 338 - (% style="color:blue"%)**ConnectionfLIDAR-LiteV3HP:**319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]] 339 339 340 - [[image:image-20230512173758-5.png||height="563"width="712"]]321 +**Connection to Ultrasonic Sensor:** 341 341 323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 342 342 343 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 344 - 345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 346 - 347 -[[image:image-20230512173903-6.png||height="596" width="715"]] 348 - 349 - 350 350 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 351 351 352 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 -|Value|BAT|(% style="width:183px" %)((( 355 -Temperature(DS18B20)(PC13) 356 -)))|(% style="width:173px" %)((( 357 -Digital in(PB15) & Digital Interrupt(PA8) 358 -)))|(% style="width:84px" %)((( 359 -ADC(PA4) 360 -)))|(% style="width:323px" %)((( 327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 328 +|**Value**|BAT|((( 329 +Temperature(DS18B20) 330 +)))|Digital in & Digital Interrupt|ADC|((( 361 361 Distance measure by:1)TF-Mini plus LiDAR 362 -Or 2) TF-Luna LiDAR 363 -)))|(% style="width:188px" %)Distance signal strength 332 +Or 333 +2) TF-Luna LiDAR 334 +)))|Distance signal strength 364 364 365 365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 366 366 367 - 368 368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 369 369 370 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 371 371 372 -[[image:i mage-20230512180609-7.png||height="555"width="802"]]342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]] 373 373 374 - 375 375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 376 376 377 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 378 378 379 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 380 380 350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 381 381 352 + 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 383 383 384 - 385 385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 386 386 387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 357 +|=((( 389 389 **Size(bytes)** 390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 -|Value|(% style="width:68px" %)((( 392 -ADC1(PA4) 393 -)))|(% style="width:75px" %)((( 394 -ADC2(PA5) 395 -)))|((( 396 -ADC3(PA8) 397 -)))|((( 398 -Digital Interrupt(PB15) 399 -)))|(% style="width:304px" %)((( 400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 401 -)))|(% style="width:163px" %)((( 402 -Humidity(SHT20 or SHT31) 403 -)))|(% style="width:53px" %)Bat 359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 361 +Digital in(PA12)&Digital Interrupt1(PB14) 362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 404 404 405 -[[image:i mage-20230513110214-6.png]]364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 406 406 407 407 408 408 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 409 409 369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 410 410 411 - This modehas total11 bytes.Asshownbelow:371 +Hardware connection is as below, 412 412 413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 -|Value|BAT|(% style="width:186px" %)((( 416 -Temperature1(DS18B20)(PC13) 417 -)))|(% style="width:82px" %)((( 418 -ADC(PA4) 419 -)))|(% style="width:210px" %)((( 420 -Digital in(PB15) & Digital Interrupt(PA8) 421 -)))|(% style="width:191px" %)Temperature2(DS18B20) 422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 373 +**( Note:** 423 423 424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 425 425 378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 426 426 427 -[[image:i mage-20230513134006-1.png||height="559" width="736"]]380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 428 428 382 +This mode has total 11 bytes. As shown below: 429 429 384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 385 +|**Value**|BAT|((( 386 +Temperature1 387 +(DS18B20) 388 +(PB3) 389 +)))|ADC|Digital in & Digital Interrupt|Temperature2 390 +(DS18B20) 391 +(PA9)|Temperature3 392 +(DS18B20) 393 +(PA10) 394 + 395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 396 + 397 + 430 430 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 431 400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 432 432 433 -[[image:image-20230512164658-2.png||height="532" width="729"]] 434 434 403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 404 + 435 435 Each HX711 need to be calibrated before used. User need to do below two steps: 436 436 437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 439 439 1. ((( 440 -Weight has 4 bytes, the unit is g. 441 - 442 - 443 - 410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 444 444 ))) 445 445 446 446 For example: 447 447 448 - (% style="color:blue" %)**AT+GETSENSORVALUE=0**415 +**AT+WEIGAP =403.0** 449 449 450 450 Response: Weight is 401 g 451 451 452 452 Check the response of this command and adjust the value to match the real value for thing. 453 453 454 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 421 +|=((( 456 456 **Size(bytes)** 457 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 -|Value|BAT|(% style="width:193px" %)((( 459 -Temperature(DS18B20)(PC13) 460 -)))|(% style="width:85px" %)((( 461 -ADC(PA4) 462 -)))|(% style="width:186px" %)((( 463 -Digital in(PB15) & Digital Interrupt(PA8) 464 -)))|(% style="width:100px" %)Weight 423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 465 465 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 467 467 ... ... @@ -468,495 +468,516 @@ 468 468 469 469 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 470 471 - 472 472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 473 473 474 474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 475 475 476 -[[image:i mage-20230512181814-9.png||height="543" width="697"]]435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]] 477 477 437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 478 478 479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 480 480 481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 -|Value|BAT|(% style="width:256px" %)((( 484 -Temperature(DS18B20)(PC13) 485 -)))|(% style="width:108px" %)((( 486 -ADC(PA4) 487 -)))|(% style="width:126px" %)((( 488 -Digital in(PB15) 489 -)))|(% style="width:145px" %)((( 490 -Count(PA8) 491 -))) 492 - 493 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 494 494 495 495 496 496 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 497 449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 498 498 499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 451 +|=((( 501 501 **Size(bytes)** 502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 -|Value|BAT|(% style="width:188px" %)((( 504 -Temperature(DS18B20) 505 -(PC13) 506 -)))|(% style="width:83px" %)((( 507 -ADC(PA5) 508 -)))|(% style="width:184px" %)((( 509 -Digital Interrupt1(PA8) 510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 454 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 455 +Digital in(PA12)&Digital Interrupt1(PB14) 456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 511 511 512 -[[image:image-20230513111203-7.png||height="324" width="975"]] 513 - 514 - 515 515 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 516 516 517 - 518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 460 +|=((( 520 520 **Size(bytes)** 521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 -|Value|BAT|(% style="width:207px" %)((( 523 -Temperature(DS18B20) 524 -(PC13) 525 -)))|(% style="width:94px" %)((( 526 -ADC1(PA4) 527 -)))|(% style="width:198px" %)((( 528 -Digital Interrupt(PB15) 529 -)))|(% style="width:84px" %)((( 530 -ADC2(PA5) 531 -)))|(% style="width:82px" %)((( 532 -ADC3(PA8) 462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 463 +|**Value**|BAT|Temperature(DS18B20)|((( 464 +ADC1(PA0) 465 +)))|((( 466 +Digital in 467 +& Digital Interrupt(PB14) 468 +)))|((( 469 +ADC2(PA1) 470 +)))|((( 471 +ADC3(PA4) 533 533 ))) 534 534 535 -[[image:image-202 30513111231-8.png||height="335" width="900"]]474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 536 536 537 537 538 538 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 539 539 540 - 541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 +|=((( 543 543 **Size(bytes)** 544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 -|Value|BAT|((( 546 -Temperature 547 -(DS18B20)(PC13) 481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 482 +|**Value**|BAT|((( 483 +Temperature1(PB3) 548 548 )))|((( 549 -Temperature2 550 -(DS18B20)(PB9) 485 +Temperature2(PA9) 551 551 )))|((( 552 -Digital Interrupt 553 -(PB15) 554 -)))|(% style="width:193px" %)((( 555 -Temperature3 556 -(DS18B20)(PB8) 557 -)))|(% style="width:78px" %)((( 558 -Count1(PA8) 559 -)))|(% style="width:78px" %)((( 560 -Count2(PA4) 487 +Digital in 488 +& Digital Interrupt(PA4) 489 +)))|((( 490 +Temperature3(PA10) 491 +)))|((( 492 +Count1(PB14) 493 +)))|((( 494 +Count2(PB15) 561 561 ))) 562 562 563 -[[image:image-202 30513111255-9.png||height="341"width="899"]]497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 564 564 565 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**499 +**The newly added AT command is issued correspondingly:** 566 566 567 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**501 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 568 568 569 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**503 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 570 570 571 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**505 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 572 572 507 +**AT+SETCNT=aa,bb** 573 573 574 - (%style="color:blue"%)**AT+SETCNT=aa,bb**509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 575 575 576 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 577 577 578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -=== =2.3.2.10MOD~=10 (PWM inputcapture andoutput mode,Sincefirmware v1.2)====515 +=== 2.3.3 Decode payload === 582 582 583 - (% style="color:red"%)**Note:Firmwarenotelease,contactDragino for testing.**517 +While using TTN V3 network, you can add the payload format to decode the payload. 584 584 585 - In thismode, the uplinkcanperformPWMput capture,andthedownlink can perform PWMoutput.519 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 586 586 587 - [[It shouldbenotedwhenusingPWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]521 +The payload decoder function for TTN V3 are here: 588 588 523 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 589 589 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 591 526 +==== 2.3.3.1 Battery Info ==== 592 592 593 - [[image:image-20230817172209-2.png||height="439" width="683"]]528 +Check the battery voltage for SN50v3. 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 530 +Ex1: 0x0B45 = 2885mV 603 603 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 532 +Ex2: 0x0B49 = 2889mV 610 610 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 612 535 +==== 2.3.3.2 Temperature (DS18B20) ==== 613 613 614 - Whenthedevicedetects thefollowingPWMsignal,decoder willconvertsthe pulseperiodandhigh-levelduration to frequencyand dutycycle.537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 615 615 616 - **Frequency:**539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 617 617 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 541 +**Connection:** 620 620 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]] 623 623 545 +**Example**: 624 624 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 547 +If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 627 627 628 - Dutycycle= Durationofhighlevel/Pulseperiod*100~(%).549 +If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 629 629 630 - [[image:image-20230818092200-1.png||height="344"width="627"]]551 +(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 631 631 632 -===== 2.3.2.10.b Uplink, PWM output ===== 633 633 634 - [[image:image-20230817172209-2.png||height="439"width="683"]]554 +==== 2.3.3.3 Digital Input ==== 635 635 556 +The digital input for pin PA12, 636 636 558 +* When PA12 is high, the bit 1 of payload byte 6 is 1. 559 +* When PA12 is low, the bit 1 of payload byte 6 is 0. 637 637 638 638 562 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 639 639 564 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin. 640 640 641 - =====2.3.2.10.cDownlink,PWMoutput=====566 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink. 642 642 568 +The ADC monitors the voltage on the PA0 line, in mV. 643 643 644 - [[image:image-20230817173800-3.png||height="412"width="685"]]570 +Ex: 0x021F = 543mv, 645 645 646 - Downlink:(%style="color:#037691"%)**0Bxxxxxx yy zz zz**572 +**~ Example1:** Reading an Oil Sensor (Read a resistance value): 647 647 648 - xx xx xx is the output frequency, the unit is HZ. 649 649 650 - yyis thedutycycleoftheutput, theunits %.575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]] 651 651 652 - zz zz is the time delay of the output, the unit is ms. 577 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor. 578 + 653 653 580 +**Steps:** 654 654 655 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 582 +1. Solder a 10K resistor between PA0 and VCC. 583 +1. Screw oil sensor's two pins to PA0 and PB4. 656 656 657 -The oscilloscopedisplaysasfollows:585 +The equipment circuit is as below: 658 658 659 -[[image:image-202 30817173858-5.png||height="694" width="921"]]587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]] 660 660 589 +According to above diagram: 661 661 662 - === 2.3.3 Decodepayload=591 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]] 663 663 593 +So 664 664 665 - While usingTTN V3 network, youcanadd the payloadmat tocodethepayload.595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]] 666 666 667 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/ 1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]597 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v 668 668 669 -The pa yloadcoderfunctionforTTNV3 arehere:599 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm 670 670 671 -S N50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]601 +Since the Bouy is linear resistance from 10 ~~ 70cm. 672 672 603 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy. 673 673 674 -==== 2.3.3.1 Battery Info ==== 675 675 606 +==== 2.3.3.5 Digital Interrupt ==== 676 676 677 - Checkthebatteryvoltagefor SN50v3-LB.608 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 678 678 679 - Ex1:0x0B45=2885mV610 +**~ Interrupt connection method:** 680 680 681 - Ex2:0x0B49 =2889mV612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 682 682 614 +**Example to use with door sensor :** 683 683 684 - ====2.3.3.2Temperature(DS18B20)====616 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 685 685 618 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 686 686 687 - Ifthereis aDS18B20connectedtoPC13pin.The temperature will beuploadedin thepayload.620 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 688 688 689 - MoreDS18B20 can checkthe[[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]622 +**~ Below is the installation example:** 690 690 691 - (%style="color:blue"%)**Connection:**624 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 692 692 693 -[[image:image-20230512180718-8.png||height="538" width="647"]] 626 +* ((( 627 +One pin to LSN50's PB14 pin 628 +))) 629 +* ((( 630 +The other pin to LSN50's VCC pin 631 +))) 694 694 633 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 695 695 696 - (%style="color:blue"%)**Example**:635 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 697 697 698 - Ifpayload is:0105H:(0105&8000==0), temp=0105H/10= 26.1degree637 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 699 699 700 - Ifpayload: FF3FH : (FF3F & 8000== 1) , temp = (FF3FH - 65536)/10= -19.3 degrees.639 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 701 701 702 - (FF3F& 8000:Judgewhetherthehighestbitis1,whenthehighestbitis1,it is negative)641 +The above photos shows the two parts of the magnetic switch fitted to a door. 703 703 643 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt. 704 704 705 - ====2.3.3.3 Digital Input====645 +The command is: 706 706 647 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 707 707 708 - Thedigitalinputfor pinPB15,649 +Below shows some screen captures in TTN V3: 709 709 710 -* When PB15 is high, the bit 1 of payload byte 6 is 1. 711 -* When PB15 is low, the bit 1 of payload byte 6 is 0. 651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 712 712 713 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 714 -((( 715 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 653 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 716 716 717 - (% style="color:red"%)**Note:Themaximumvoltage input supports 3.6V.**655 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 718 718 719 - 720 -))) 657 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov). 721 721 722 - ====2.3.3.4Analogue DigitalConverter(ADC)====659 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board. 723 723 661 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]] 724 724 725 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 726 726 727 - Whenthe measured output voltage of the sensor is not within the range of 0.1V and 1.1V,theoutput voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three timesIfit isnecessaryto reduce more times, calculate according to theformulain the figure andconnectthecorresponding resistance in series.664 +==== 2.3.3.6 I2C Interface (SHT20) ==== 728 728 729 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png"height="241"width="285"]]666 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 730 730 668 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).** 731 731 732 - (% style="color:red" %)**Note:IftheADCtypesensorneedsto bepowered by SN50_v3, itisrecommended to use+5Vtocontrolitsswitch.Onlysensors withlowpowerconsumption can bepowered with VDD.**670 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference. 733 733 672 +Below is the connection to SHT20/ SHT31. The connection is as below: 734 734 735 - Theositionf PA5onthe hardwareter**LSN50v3.3** is changedtothepositionhown in the figurebelow,and the collected voltagebecomes one-sixth of the original.674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 736 736 737 - [[image:image-20230811113449-1.png||height="370"width="608"]]676 +The device will be able to get the I2C sensor data now and upload to IoT Server. 738 738 739 - ==== 2.3.3.5 DigitalInterrupt===678 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] 740 740 680 +Convert the read byte to decimal and divide it by ten. 741 741 742 - Digital Interrupt refers to pin PA8, and there are different triggermethods. When there is a trigger, the SN50v3-LB will send a packet to the server.682 +**Example:** 743 743 744 - (% style="color:blue"%)**Interruptconnectionmethod:**684 +Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 745 745 746 - [[image:image-20230513105351-5.png||height="147"width="485"]]686 +Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 747 747 688 +If you want to use other I2C device, please refer the SHT20 part source code as reference. 748 748 749 -(% style="color:blue" %)**Example to use with door sensor :** 750 750 751 - Thedoor sensor is shown at right.Itisatwo wire magneticcontact switch usedfor detecting the open/close status ofdoors or windows.691 +==== 2.3.3.7 Distance Reading ==== 752 752 753 -[[ image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]693 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 754 754 755 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 756 756 696 +==== 2.3.3.8 Ultrasonic Sensor ==== 757 757 758 - (%style="color:blue"%)**Belowis theinstallationxample:**698 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 759 759 760 - Fix onepiece of themagneticsensor to thedoordconnect the two pinstoSN50v3-LBasfollows:700 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 761 761 762 -* ((( 763 -One pin to SN50v3-LB's PA8 pin 764 -))) 765 -* ((( 766 -The other pin to SN50v3-LB's VDD pin 767 -))) 702 +The picture below shows the connection: 768 768 769 - Install theother piecetothedoor. Find a place where the twopieceswillbe close to each other whenthedoor is closed. For thisparticularmagneticsensor, when the door is closed, theoutput will beshort,and PA8 willbeat theVCCvoltage.704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]] 770 770 771 - Door sensors have two types: (%style="color:blue" %)**NC(Normal close)**(%%) and(% style="color:blue"%)**NO(normal open)**(%%).The connectionfor both type sensorsare the same. Butthe decoding forpayload are reverse, userneedtomodify this in theIoTServer decoder.706 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 772 772 773 - Whendoor sensorisshorted,therewill extrapower consumptioninthecircuit,the extracurrentis 3v3/R14 = 3v3/1Mohm = 3uA which can beignored.708 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 774 774 775 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]710 +**Example:** 776 776 777 - The above photosshowsthetwo partsof themagneticswitchfittedtoa door.712 +Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 778 778 779 - The softwareby defaultusesthe falling edge on the signal lineasaninterrupt.Weneedtomodify it to accept both the rising edge (0v ~-~->VCC , doorclose)and the fallingedge(VCC ~-~->0v , door open)asthe interrupt.714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 780 780 781 - Themand:716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 782 782 783 - (% style="color:blue"%)**AT+INTMOD1=1** (%%) ~/~/ (moreinfo aboutINMOD pleaseefer** **[[**AT CommandManual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**.**)718 +You can see the serial output in ULT mode as below: 784 784 785 - Belowshowsmecreencaptures in TTN V3:720 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 786 786 787 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]722 +**In TTN V3 server:** 788 788 724 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 789 789 790 - In **MOD=1**, usercanusebyte 6 toe the statusforr openclose. TTNV3 decoder issbelow:726 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 791 791 792 - door=(bytes[6]&0x80)?"CLOSE":"OPEN";728 +==== 2.3.3.9 Battery Output - BAT pin ==== 793 793 730 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 794 794 795 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 796 796 733 +==== 2.3.3.10 +5V Output ==== 797 797 798 - TheSDAandSCK areI2C interfacelines.YoucanusethesetoconnecttoanI2C deviceandgetthesensordata.735 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 799 799 800 - Wehavemadean example toshow howtousetheI2C interfacetoconnecttotheSHT20/SHT31Temperature andHumidity Sensor.737 +The 5V output time can be controlled by AT Command. 801 801 802 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31code in SN50v3-LB will be a good reference.**739 +**AT+5VT=1000** 803 803 741 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 804 804 805 -Below is t he connection toSHT20/SHT31. Theconnection isasbelow:743 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 806 806 807 -[[image:image-20230610170152-2.png||height="501" width="846"]] 808 808 809 809 810 - Thedevicewillbeabletoget the I2C sensordata now and upload to IoT Server.747 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 811 811 812 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]749 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 813 813 814 - Converthereadbyte toecimalivideby ten.751 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]] 815 815 816 - **Example:**753 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 817 817 818 -Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 819 819 820 - Humidity:Read:0248(H)=584(D)Value: 584 / 10=58.4, So 58.4%756 +==== 2.3.3.12 Working MOD ==== 821 821 822 - Ifyouwanttouseother I2Cdevice,please refertheSHT20 partsourcecodeasreference.758 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 823 823 760 +User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 824 824 825 - ====2.3.3.7DistanceReading====762 +Case 7^^th^^ Byte >> 2 & 0x1f: 826 826 764 +* 0: MOD1 765 +* 1: MOD2 766 +* 2: MOD3 767 +* 3: MOD4 768 +* 4: MOD5 769 +* 5: MOD6 827 827 828 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 829 829 772 +== 2.4 Payload Decoder file == 830 830 831 -==== 2.3.3.8 Ultrasonic Sensor ==== 832 832 775 +In TTN, use can add a custom payload so it shows friendly reading 833 833 834 - This FundamentalPrinciplesofthissensor canbefound atthislink: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]777 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 835 835 836 - The SN50v3-LB detects thepulse widthf the sensornverts it to mm output. Theccuracy will be withincentimeter. Theusablerange (the distance between the ultrasonic probeandthemeasuredobject) is between 24cmd 600cm.779 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 837 837 838 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 839 839 840 - Thepicturebelowshowstheconnection:782 +== 2.5 Datalog Feature == 841 841 842 -[[image:image-20230512173903-6.png||height="596" width="715"]] 843 843 785 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes. 844 844 845 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 846 846 847 - Theultrasonicsensorusesthe8^^th^^ and9^^th^^ byte forthe measurementvalue.788 +=== 2.5.1 Ways to get datalog via LoRaWAN === 848 848 849 -**Example:** 850 850 851 - Distance: Read:0C2D(Hex)=3117(D)Value:3117mm=311.7cm791 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 852 852 793 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 794 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 853 853 854 - ====2.3.3.9BatteryOutput-BATpin====796 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1) 855 855 798 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 856 856 857 - TheBAT pin of SN50v3-LB is connected to the Battery directly.If users want to use BAT pin to power an externalsensor. User need to make sure the external sensoris of low power consumption. Becausethe BAT pin isalways open. If the external sensor is of high power consumption.the battery of SN50v3-LB will run out very soon.800 +=== 2.5.2 Unix TimeStamp === 858 858 859 859 860 - ==== 2.3.3.10+5V Output====803 +S31x-LB uses Unix TimeStamp format based on 861 861 805 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 862 862 863 - SN50v3-LBwillenable+5V outputbeforeall samplingand disablethe +5vafterallsampling.807 +User can get this time from link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 864 864 865 - The5Voutputtimecan be controlledby AT Command.809 +Below is the converter example 866 866 867 - (% style="color:blue"%)**AT+5VT=1000**811 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]] 868 868 869 - Meansset5Vvalidtime to have 1000ms.So the real 5V outputwill actually have1000ms+samplingtimeforothersensors.813 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25 870 870 871 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 872 872 816 +=== 2.5.3 Set Device Time === 873 873 874 -==== 2.3.3.11 BH1750 Illumination Sensor ==== 875 875 819 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command. 876 876 877 - MOD=1support thissensor.The sensorvalue is inthe8^^th^^and9^^th^^bytes.821 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 878 878 879 - [[image:image-20230512172447-4.png||height="416"width="712"]]823 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 880 880 881 881 882 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"height="361"width="953"]]826 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 883 883 884 884 885 - ====2.3.3.12PWMMOD====829 +The Datalog uplinks will use below payload format. 886 886 831 +**Retrieval data payload:** 887 887 888 -* ((( 889 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 890 -))) 891 -* ((( 892 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 893 -))) 833 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 834 +|=(% style="width: 80px;background-color:#D9E2F3" %)((( 835 +**Size(bytes)** 836 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 837 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 838 +[[Temp_Black>>||anchor="HTemperatureBlack:"]] 839 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 894 894 895 - [[image:image-20230817183249-3.png||height="320"width="417"]]841 +**Poll message flag & Ext:** 896 896 897 -* ((( 898 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 899 -))) 900 -* ((( 901 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 902 -))) 903 -* ((( 904 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 843 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]] 905 905 906 - ForPWMOutput Feature,thereare twoconsiderationtoseeif thedevice canbepoweredby batteryorhavetobepoweredbyexternalDC.845 +**No ACK Message**: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature) 907 907 908 - a)If real-timecontroloutputisrequired, the SN50v3-LB islreadyoperating in classCandan externalpower supplymust beused.847 +**Poll Message Flag**: 1: This message is a poll message reply. 909 909 910 - b)Iftheoutput durationismore than 30seconds, bettertouse external power source.849 +* Poll Message Flag is set to 1. 911 911 851 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 912 912 913 - 853 +For example, in US915 band, the max payload for different DR is: 854 + 855 +**a) DR0:** max is 11 bytes so one entry of data 856 + 857 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 858 + 859 +**c) DR2:** total payload includes 11 entries of data 860 + 861 +**d) DR3: **total payload includes 22 entries of data. 862 + 863 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 864 + 865 + 866 +**Example:** 867 + 868 +If S31x-LB has below data inside Flash: 869 + 870 +[[image:1682646494051-944.png]] 871 + 872 +If user sends below downlink command: 3160065F9760066DA705 873 + 874 +Where : Start time: 60065F97 = time 21/1/19 04:27:03 875 + 876 + Stop time: 60066DA7= time 21/1/19 05:27:03 877 + 878 + 879 +**S31x-LB will uplink this payload.** 880 + 881 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 882 + 883 +((( 884 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 914 914 ))) 915 915 916 -==== 2.3.3.13 Working MOD ==== 887 +((( 888 +Where the first 11 bytes is for the first entry: 889 +))) 917 917 891 +((( 892 +7FFF089801464160065F97 893 +))) 918 918 919 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 895 +((( 896 +**Ext sensor data**=0x7FFF/100=327.67 897 +))) 920 920 921 -User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 899 +((( 900 +**Temp**=0x088E/100=22.00 901 +))) 922 922 923 -Case 7^^th^^ Byte >> 2 & 0x1f: 903 +((( 904 +**Hum**=0x014B/10=32.6 905 +))) 924 924 925 -* 0: MOD1 926 -* 1: MOD2 927 -* 2: MOD3 928 -* 3: MOD4 929 -* 4: MOD5 930 -* 5: MOD6 931 -* 6: MOD7 932 -* 7: MOD8 933 -* 8: MOD9 934 -* 9: MOD10 907 +((( 908 +**poll message flag & Ext**=0x41,means reply data,Ext=1 909 +))) 935 935 936 -== 2.4 Payload Decoder file == 911 +((( 912 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 913 +))) 937 937 938 938 939 -In TTN,use can add a custom payload so it shows friendly reading916 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的 940 940 941 - Inthepage(% style="color:#037691"%)**Applications ~-~-> Payload Formats~-~-> Custom ~-~-> decoder**(%%) toaddthedecoder from:918 +== 2.6 Temperature Alarm Feature == 942 942 943 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 944 944 921 +S31x-LB work flow with Alarm feature. 945 945 946 -== 2.5 Frequency Plans == 947 947 924 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 948 948 949 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 950 950 927 +== 2.7 Frequency Plans == 928 + 929 + 930 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 931 + 951 951 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 952 952 953 953 954 -= 3. Configure S N50v3-LB =935 += 3. Configure S31x-LB = 955 955 956 956 == 3.1 Configure Methods == 957 957 958 958 959 -S N50v3-LB supports below configure method:940 +S31x-LB supports below configure method: 960 960 961 961 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 962 962 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -975,10 +975,10 @@ 975 975 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 976 976 977 977 978 -== 3.3 Commands special design for S N50v3-LB ==959 +== 3.3 Commands special design for S31x-LB == 979 979 980 980 981 -These commands only valid for S N50v3-LB, as below:962 +These commands only valid for S31x-LB, as below: 982 982 983 983 984 984 === 3.3.1 Set Transmit Interval Time === ... ... @@ -989,7 +989,7 @@ 989 989 (% style="color:blue" %)**AT Command: AT+TDC** 990 990 991 991 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 992 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**973 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 993 993 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 994 994 30000 995 995 OK ... ... @@ -1012,250 +1012,118 @@ 1012 1012 === 3.3.2 Get Device Status === 1013 1013 1014 1014 1015 -Send a LoRaWAN downlink to ask thedevicetosenditsstatus.996 +Send a LoRaWAN downlink to ask device send Alarm settings. 1016 1016 1017 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **998 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1018 1018 1019 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.1000 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1020 1020 1021 1021 1022 -=== 3.3.3 Set InterruptMode===1003 +=== 3.3.3 Set Temperature Alarm Threshold === 1023 1023 1005 +* (% style="color:blue" %)**AT Command:** 1024 1024 1025 - Feature,SetInterrupt mode forGPIO_EXIT.1007 +(% style="color:#037691" %)**AT+SHTEMP=min,max** 1026 1026 1027 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1009 +* When min=0, and max≠0, Alarm higher than max 1010 +* When min≠0, and max=0, Alarm lower than min 1011 +* When min≠0 and max≠0, Alarm higher than max or lower than min 1028 1028 1029 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1030 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1031 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1032 -0 1033 -OK 1034 -the mode is 0 =Disable Interrupt 1035 -))) 1036 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 1037 -Set Transmit Interval 1038 -0. (Disable Interrupt), 1039 -~1. (Trigger by rising and falling edge) 1040 -2. (Trigger by falling edge) 1041 -3. (Trigger by rising edge) 1042 -)))|(% style="width:157px" %)OK 1043 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1044 -Set Transmit Interval 1045 -trigger by rising edge. 1046 -)))|(% style="width:157px" %)OK 1047 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1013 +Example: 1048 1048 1049 - (%style="color:blue"%)**DownlinkCommand:0x06**1015 + AT+SHTEMP=0,30 ~/~/ Alarm when temperature higher than 30. 1050 1050 1051 - Format:CommandCode(0x06)followedby 3 bytes.1017 +* (% style="color:blue" %)**Downlink Payload:** 1052 1052 1053 - Thismeanshat theinterrupt modeofthe end node is set to0x000003=3(risingedgetrigger),andthetypecodeis06.1019 +(% style="color:#037691" %)**0x(0C 01 00 1E)** (%%) ~/~/ Set AT+SHTEMP=0,30 1054 1054 1055 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1056 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1057 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1058 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1021 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 1059 1059 1060 -=== 3.3.4 Set Power Output Duration === 1061 1061 1024 +=== 3.3.4 Set Humidity Alarm Threshold === 1062 1062 1063 - Controltheoutput duration 5V . Beforeeachsampling,device will1026 +* (% style="color:blue" %)**AT Command:** 1064 1064 1065 - ~1.firstenablethe poweroutput to externalsensor,1028 +(% style="color:#037691" %)**AT+SHHUM=min,max** 1066 1066 1067 -2. keep it on as per duration, read sensor value and construct uplink payload 1030 +* When min=0, and max≠0, Alarm higher than max 1031 +* When min≠0, and max=0, Alarm lower than min 1032 +* When min≠0 and max≠0, Alarm higher than max or lower than min 1068 1068 1069 - 3. final, closethe power output.1034 +Example: 1070 1070 1071 - (%style="color:blue"%)**ATCommand:AT+5VT**1036 + AT+SHHUM=70,0 ~/~/ Alarm when humidity lower than 70%. 1072 1072 1073 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1074 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1075 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1076 -500(default) 1077 -OK 1078 -))) 1079 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1080 -Close after a delay of 1000 milliseconds. 1081 -)))|(% style="width:157px" %)OK 1038 +* (% style="color:blue" %)**Downlink Payload:** 1082 1082 1083 -(% style="color: blue" %)**DownlinkCommand:0x07**1040 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%) ~/~/ Set AT+SHTHUM=70,0 1084 1084 1085 - Format:CommandCode(0x07)followedby2bytes.1042 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))** 1086 1086 1087 -The first and second bytes are the time to turn on. 1088 1088 1089 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1090 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1045 +=== 3.3.5 Set Alarm Interval === 1091 1091 1092 - ===3.3.5 SetWeighingparameters===1047 +The shortest time of two Alarm packet. (unit: min) 1093 1093 1049 +* (% style="color:blue" %)**AT Command:** 1094 1094 1095 - Feature:Workingmode5iseffective,weight initializationandweightfactorsettingofHX711.1051 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 1096 1096 1097 -(% style="color:blue" %)** ATCommand:AT+WEIGRE,AT+WEIGAP**1053 +* (% style="color:blue" %)**Downlink Payload:** 1098 1098 1099 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1100 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1101 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1102 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1103 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1055 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 1104 1104 1105 -(% style="color:blue" %)**Downlink Command: 0x08** 1106 1106 1107 - Format:CommandCode(0x08) followed by 2 bytesor4 bytes.1058 +=== 3.3.6 Get Alarm settings === 1108 1108 1109 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1110 1110 1111 - Thesecond andthird bytesaremultipliedby10timesto betheAT+WEIGAP value.1061 +Send a LoRaWAN downlink to ask device send Alarm settings. 1112 1112 1113 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1114 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1115 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1063 +* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 1116 1116 1117 - === 3.3.6 Set Digitalpulsecount value ===1065 +**Example:** 1118 1118 1067 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]] 1119 1119 1120 -Feature: Set the pulse count value. 1121 1121 1122 - Count 1 is PA8pin of mode 6and mode 9. Count 2is PA4 pinof mode 9.1070 +**Explain:** 1123 1123 1124 - (%style="color:blue"%)**ATCommand:AT+SETCNT**1072 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 1125 1125 1126 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1127 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1128 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1129 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1074 +=== 3.3.7 Set Interrupt Mode === 1130 1130 1131 -(% style="color:blue" %)**Downlink Command: 0x09** 1132 1132 1133 -F ormat:CommandCode(0x09)followedby 5 bytes.1077 +Feature, Set Interrupt mode for GPIO_EXIT. 1134 1134 1135 - Thefirstbyte is to select which count value toinitialize, and the next fourytes are the count valuetobe initialized.1079 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1136 1136 1137 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1138 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1139 - 1140 -=== 3.3.7 Set Workmode === 1141 - 1142 - 1143 -Feature: Switch working mode. 1144 - 1145 -(% style="color:blue" %)**AT Command: AT+MOD** 1146 - 1147 1147 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1148 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1149 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1082 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1083 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1084 +0 1150 1150 OK 1086 +the mode is 0 =Disable Interrupt 1151 1151 ))) 1152 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1153 -OK 1154 -Attention:Take effect after ATZ 1155 -))) 1088 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1089 +Set Transmit Interval 1090 +0. (Disable Interrupt), 1091 +~1. (Trigger by rising and falling edge) 1092 +2. (Trigger by falling edge) 1093 +3. (Trigger by rising edge) 1094 +)))|(% style="width:157px" %)OK 1156 1156 1157 -(% style="color:blue" %)**Downlink Command: 0x0 A**1096 +(% style="color:blue" %)**Downlink Command: 0x06** 1158 1158 1159 -Format: Command Code (0x0 A) followed by1bytes.1098 +Format: Command Code (0x06) followed by 3 bytes. 1160 1160 1161 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1162 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1100 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1163 1163 1164 - (%id="H3.3.8PWMsetting"%)1165 - ===3.3.8PWMsetting===1102 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1103 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1166 1166 1105 += 4. Battery & Power Consumption = 1167 1167 1168 -(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1169 1169 1170 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1171 - 1172 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1173 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1174 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1175 -0(default) 1176 - 1177 -OK 1178 -))) 1179 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1180 -OK 1181 - 1182 -))) 1183 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1184 - 1185 -(% style="color:blue" %)**Downlink Command: 0x0C** 1186 - 1187 -Format: Command Code (0x0C) followed by 1 bytes. 1188 - 1189 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1190 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1191 - 1192 - 1193 - 1194 -(% class="mark" %)Feature: Set the time acquisition unit for PWM output. 1195 - 1196 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1197 - 1198 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1199 -|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1200 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1201 -0,0,0(default) 1202 - 1203 -OK 1204 -))) 1205 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1206 -OK 1207 - 1208 -))) 1209 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1210 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1211 - 1212 - 1213 -)))|(% style="width:137px" %)((( 1214 -OK 1215 -))) 1216 - 1217 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1218 -|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1219 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1220 -AT+PWMOUT=a,b,c 1221 - 1222 - 1223 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1224 -Set PWM output time, output frequency and output duty cycle.((( 1225 - 1226 -))) 1227 - 1228 -((( 1229 - 1230 -))) 1231 -)))|(% style="width:242px" %)((( 1232 -a: Output time (unit: seconds) 1233 - 1234 -The value ranges from 0 to 65535. 1235 - 1236 -When a=65535, PWM will always output. 1237 -))) 1238 -|(% style="width:242px" %)((( 1239 -b: Output frequency (unit: HZ) 1240 -))) 1241 -|(% style="width:242px" %)((( 1242 -c: Output duty cycle (unit: %) 1243 - 1244 -The value ranges from 0 to 100. 1245 -))) 1246 - 1247 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1248 - 1249 -Format: Command Code (0x0B01) followed by 6 bytes. 1250 - 1251 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1252 - 1253 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1254 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1255 - 1256 -= 4. Battery & Power Cons = 1257 - 1258 - 1259 1259 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1260 1260 1261 1261 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1265,43 +1265,24 @@ 1265 1265 1266 1266 1267 1267 (% class="wikigeneratedid" %) 1268 - **User can change firmware SN50v3-LB to:**1117 +User can change firmware SN50v3-LB to: 1269 1269 1270 1270 * Change Frequency band/ region. 1271 1271 * Update with new features. 1272 1272 * Fix bugs. 1273 1273 1274 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1123 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1275 1275 1276 -**Methods to Update Firmware:** 1277 1277 1278 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1279 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1126 +Methods to Update Firmware: 1280 1280 1128 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1129 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1130 + 1281 1281 = 6. FAQ = 1282 1282 1283 -== 6.1 Where can i find source code of SN50v3-LB? == 1284 1284 1285 1285 1286 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1287 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1288 - 1289 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1290 - 1291 - 1292 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1293 - 1294 - 1295 -== 6.3 How to put several sensors to a SN50v3-LB? == 1296 - 1297 - 1298 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1299 - 1300 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1301 - 1302 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1303 - 1304 - 1305 1305 = 7. Order Info = 1306 1306 1307 1307 ... ... @@ -1327,7 +1327,6 @@ 1327 1327 1328 1328 = 8. Packing Info = 1329 1329 1330 - 1331 1331 (% style="color:#037691" %)**Package Includes**: 1332 1332 1333 1333 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1343,5 +1343,4 @@ 1343 1343 1344 1344 1345 1345 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1346 - 1347 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 1175 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content